Biomonitoring of Metals in Children Living in an Urban Area and Close to Waste Incinerators
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Study Population and Area
2.3. Assessment of Potential Confounders
2.4. Nail collection, Sample Preparation, and Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Buonanno, G.; Stabile, L.; Avino, P.; Vanoli, R. Dimensional and chemical characterization of particles at a downwind receptor site of a waste-to-energy plant. Waste Manag. 2010, 30, 1325–1333. [Google Scholar] [CrossRef]
- Vilavert, L.; Nadal, M.; Schuhmacher, M.; Domingo, J.L. Concentrations of metals in soils in the neighborhood of a hazardous waste incinerator: Assessment of the temporal trends. Biol. Trace Elem. Res. 2012, 149, 435–442. [Google Scholar] [CrossRef]
- Haynes, E.N.; Sucharew, H.; Hilbert, T.J.; Kuhnell, P.; Spencer, A.; Newman, N.C.; Burns, R.; Wright, R.; Parsons, P.J.; Dietrich, K.N. Impact of air manganese on child neurodevelopment in East Liverpool, Ohio. Neurotoxicology 2018, 64, 94–102. [Google Scholar] [CrossRef]
- Hu, C.W.; Chao, M.R.; Wu, K.Y.; Chang-Chien, G.P.; Lee, W.J.; Chang, L.W.; Lee, W.S. Characterization of multiple airborne particulate metals in the surroundings of a municipal waste incinerator in Taiwan. Atmos. Environ. 2003, 37, 2845–2852. [Google Scholar] [CrossRef]
- Cao, L.; Zeng, J.; Liu, K.; Bao, L.; Li, Y. Characterization and Cytotoxicity of PM<0.2, PM0.2-2.5 and PM2.5-10 around MSWI in Shanghai, China. Int. J. Environ. Res. Public Health 2015, 12, 5076–5089. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Hu, Y.; Cheng, H. Municipal solid waste (MSW) incineration fly ash as an important source of heavy metal pollution in China. Environ. Pollut. 2019, 252, 461–475. [Google Scholar] [CrossRef]
- Pan, Y.; Wu, Z.; Zhou, J.; Zhao, J.; Ruan, X.; Liu, J.; Qian, G. Chemical characteristics and risk assessment of typical municipal solid waste incineration (MSWI) fly ash in China. J. Hazard. Mater. 2013, 261, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, H.; Shao, L.; Zhou, X.; He, P. Impact of municipal solid waste incineration on heavy metals in the surrounding soils by multivariate analysis and lead isotope analysis. J. Environ. Sci. 2019, 82, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Wu, M.; Zhou, J.; Zhang, X.; Zhong, Y.; An, J.; Qian, G. Cytotoxicity comparison between fine particles emitted from the combustion of municipal solid waste and biomass. J. Hazard. Mater. 2019, 367, 316–324. [Google Scholar] [CrossRef]
- Lou, Z.; Bilitewski, B.; Zhu, N.; Chai, X.; Li, B.; Zhao, Y. Environmental impacts of a large-scale incinerator with mixed MSW of high water content from a LCA perspective. J. Environ. Sci. 2015, 30, 173–179. [Google Scholar] [CrossRef]
- Jinhui, L.; Huabo, D.; Pixing, S. Heavy metal contamination of surface soil in electronic waste dismantling area: Site investigation and source-apportionment analysis. Waste Manag. Res. J. Int. Solid Wastes Public Clean. Assoc. Iswa 2011, 29, 727–738. [Google Scholar] [CrossRef]
- Zhao, K.; Liu, X.; Xu, J.; Selim, H.M. Heavy metal contaminations in a soil-rice system: Identification of spatial dependence in relation to soil properties of paddy fields. J. Hazard. Mater. 2010, 181, 778–787. [Google Scholar] [CrossRef] [PubMed]
- Carrizales, L.; Razo, I.; Tellez-Hernandez, J.I.; Torres-Nerio, R.; Torres, A.; Batres, L.E.; Cubillas, A.C.; Diaz-Barriga, F. Exposure to arsenic and lead of children living near a copper-smelter in San Luis Potosi, Mexico: Importance of soil contamination for exposure of children. Environ. Res. 2006, 101, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Claus Henn, B.; Ettinger, A.S.; Hopkins, M.R.; Jim, R.; Amarasiriwardena, C.; Christiani, D.C.; Coull, B.A.; Bellinger, D.C.; Wright, R.O. Prenatal Arsenic Exposure and Birth Outcomes among a Population Residing near a Mining-Related Superfund Site. Environ. Health Perspect. 2016, 124, 1308–1315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haynes, E.N.; Sucharew, H.; Kuhnell, P.; Alden, J.; Barnas, M.; Wright, R.O.; Parsons, P.J.; Aldous, K.M.; Praamsma, M.L.; Beidler, C.; et al. Manganese Exposure and Neurocognitive Outcomes in Rural School-Age Children: The Communities Actively Researching Exposure Study (Ohio, USA). Environ. Health Perspect. 2015, 123, 1066–1071. [Google Scholar] [CrossRef] [PubMed]
- Torres-Agustin, R.; Rodriguez-Agudelo, Y.; Schilmann, A.; Solis-Vivanco, R.; Montes, S.; Riojas-Rodriguez, H.; Cortez-Lugo, M.; Rios, C. Effect of environmental manganese exposure on verbal learning and memory in Mexican children. Environ. Res. 2013, 121, 39–44. [Google Scholar] [CrossRef]
- Claus Henn, B.; Bellinger, D.C.; Hopkins, M.R.; Coull, B.A.; Ettinger, A.S.; Jim, R.; Hatley, E.; Christiani, D.C.; Wright, R.O. Maternal and Cord Blood Manganese Concentrations and Early Childhood Neurodevelopment among Residents near a Mining-Impacted Superfund Site. Environ. Health Perspect. 2017, 125, 067020. [Google Scholar] [CrossRef] [Green Version]
- Pizzino, G.; Irrera, N.; Bitto, A.; Pallio, G.; Mannino, F.; Arcoraci, V.; Aliquo, F.; Minutoli, L.; De Ponte, C.; D’Andrea, P.; et al. Cadmium-Induced Oxidative Stress Impairs Glycemic Control in Adolescents. Oxidative Med. Cell. Longev. 2017, 2017, 6341671. [Google Scholar] [CrossRef]
- Zheng, G.; Xu, X.; Li, B.; Wu, K.; Yekeen, T.A.; Huo, X. Association between lung function in school children and exposure to three transition metals from an e-waste recycling area. J. Expo. Sci. Environ. Epidemiol. 2013, 23, 67–72. [Google Scholar] [CrossRef]
- Shah, S.; Jeong, K.S.; Park, H.; Hong, Y.C.; Kim, Y.; Kim, B.; Chang, N.; Kim, S.; Kim, Y.; Kim, B.N.; et al. Environmental pollutants affecting children’s growth and development: Collective results from the MOCEH study, a multi-centric prospective birth cohort in Korea. Environ. Int. 2020, 137, 105547. [Google Scholar] [CrossRef]
- Shao, W.; Liu, Q.; He, X.; Liu, H.; Gu, A.; Jiang, Z. Association between level of urinary trace heavy metals and obesity among children aged 6-19 years: NHANES 1999-2011. Environ. Sci. Pollut. Res. Int. 2017, 24, 11573–11581. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, C.; Bu, J. Relationship between Selected Serum Metallic Elements and Obesity in Children and Adolescent in the U.S. Nutrients 2017, 9, 104. [Google Scholar] [CrossRef] [PubMed]
- Rehmani, N.; Zafar, A.; Arif, H.; Hadi, S.M.; Wani, A.A. Copper-mediated DNA damage by the neurotransmitter dopamine and L-DOPA: A pro-oxidant mechanism. Toxicol. In Vitro Int. J. Pub. Assoc. BIBRA 2017, 40, 336–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alemany, S.; Vilor-Tejedor, N.; Bustamante, M.; Alvarez-Pedrerol, M.; Rivas, I.; Forns, J.; Querol, X.; Pujol, J.; Sunyer, J. Interaction between airborne copper exposure and ATP7B polymorphisms on inattentiveness in scholar children. Int. J. Hyg. Environ. Health 2017, 220, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Pujol, J.; Fenoll, R.; Macia, D.; Martinez-Vilavella, G.; Alvarez-Pedrerol, M.; Rivas, I.; Forns, J.; Deus, J.; Blanco-Hinojo, L.; Querol, X.; et al. Airborne copper exposure in school environments associated with poorer motor performance and altered basal ganglia. Brain Behav. 2016, 6, e00467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucchini, R.G.; Guazzetti, S.; Renzetti, S.; Conversano, M.; Cagna, G.; Fedrighi, C.; Giorgino, A.; Peli, M.; Placidi, D.; Zoni, S.; et al. Neurocognitive impact of metal exposure and social stressors among schoolchildren in Taranto, Italy. Environ. Health Glob. Access Sci. Source 2019, 18, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madrigal, J.M.; Persky, V.; Pappalardo, A.; Argos, M. Association of heavy metals with measures of pulmonary function in children and youth: Results from the National Health and Nutrition Examination Survey (NHANES). Environ. Int. 2018, 121, 871–878. [Google Scholar] [CrossRef]
- Xu, P.; Chen, Y.; He, S.; Chen, W.; Wu, L.; Xu, D.; Chen, Z.; Wang, X.; Lou, X. A follow-up study on the characterization and health risk assessment of heavy metals in ambient air particles emitted from a municipal waste incinerator in Zhejiang, China. Chemosphere 2019, 246, 125777. [Google Scholar] [CrossRef]
- Zumel-Marne, A.; Castano-Vinyals, G.; Kundi, M.; Alguacil, J.; Cardis, E. Environmental Factors and the Risk of Brain Tumours in Young People: A Systematic Review. Neuroepidemiology 2019, 53, 121–141. [Google Scholar] [CrossRef]
- Zhang, H.; Mao, Z.; Huang, K.; Wang, X.; Cheng, L.; Zeng, L.; Zhou, Y.; Jing, T. Multiple exposure pathways and health risk assessment of heavy metal(loid)s for children living in fourth-tier cities in Hubei Province. Environ. Int. 2019, 129, 517–524. [Google Scholar] [CrossRef]
- Ranzi, A.; Fustinoni, S.; Erspamer, L.; Campo, L.; Gatti, M.G.; Bechtold, P.; Bonassi, S.; Trenti, T.; Goldoni, C.A.; Bertazzi, P.A.; et al. Biomonitoring of the general population living near a modern solid waste incinerator: A pilot study in Modena, Italy. Environ. Int. 2013, 61, 88–97. [Google Scholar] [CrossRef]
- Gatti, M.G.; Bechtold, P.; Campo, L.; Barbieri, G.; Quattrini, G.; Ranzi, A.; Sucato, S.; Olgiati, L.; Polledri, E.; Romolo, M.; et al. Human biomonitoring of polycyclic aromatic hydrocarbonsand metals in the general population residing near the municipal solid waste incinerator of Modena, Italy. Chemosphere 2017, 186, 546–557. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Wan, Y.; Ben, Y.; Fan, S.; Hu, J. Relative importance of different exposure routes of heavy metals for humans living near a municipal solid waste incinerator. Environ. Pollut. 2017, 226, 385–393. [Google Scholar] [CrossRef]
- Lee, C.S.; Lim, Y.W.; Kim, H.H.; Yang, J.Y.; Shin, D.C. Exposure to heavy metals in blood and risk perception of the population living in the vicinity of municipal waste incinerators in Korea. Environ. Sci. Pollut. Res. Int. 2012, 19, 1629–1639. [Google Scholar] [CrossRef] [PubMed]
- Reis, M.F.; Sampaio, C.; Brantes, A.; Aniceto, P.; Melim, M.; Cardoso, L.; Gabriel, C.; Simao, F.; Miguel, J.P. Human exposure to heavy metals in the vicinity of Portuguese solid waste incinerators--Part 1: Biomonitoring of Pb, Cd and Hg in blood of the general population. Int. J. Hyg. Environ. Health 2007, 210, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Wrbitzky, R.; Goen, T.; Letzel, S.; Frank, F.; Angerer, J. Internal exposure of waste incineration workers to organic and inorganic substances. Int. Arch. Occup. Environ. Health 1995, 68, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Yaemsiri, S.; Hou, N.; Slining, M.M.; He, K. Growth rate of human fingernails and toenails in healthy American young adults. J. Eur. Acad. Derm. Venereol. 2010, 24, 420–423. [Google Scholar] [CrossRef]
- Sukumar, A. Human Nails as a Biomarker of Element Exposure. In Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology; Ware, G.W., Nigg, H.N., Doerge, D.R., Eds.; Springer: New York, NY, USA, 2006; Volume 185. [Google Scholar]
- Hopps, H.C. The biologic bases for using hair and nail for analyses of trace elements. Sci. Total Environ. 1977, 7, 71–89. [Google Scholar] [CrossRef]
- Gutierrez-Gonzalez, E.; Garcia-Esquinas, E.; de Larrea-Baz, N.F.; Salcedo-Bellido, I.; Navas-Acien, A.; Lope, V.; Gomez-Ariza, J.L.; Pastor, R.; Pollan, M.; Perez-Gomez, B. Toenails as biomarker of exposure to essential trace metals: A review. Environ. Res. 2019, 179, 108787. [Google Scholar] [CrossRef]
- Xu, P.; Chen, Z.; Chen, Y.; Feng, L.; Wu, L.; Xu, D.; Wang, X.; Lou, X.; Lou, J. Body burdens of heavy metals associated with epigenetic damage in children living in the vicinity of a municipal waste incinerator. Chemosphere 2019, 229, 160–168. [Google Scholar] [CrossRef]
- Schroijen, C.; Baeyens, W.; Schoeters, G.; Den Hond, E.; Koppen, G.; Bruckers, L.; Nelen, V.; Van De Mieroop, E.; Bilau, M.; Covaci, A.; et al. Internal exposure to pollutants measured in blood and urine of Flemish adolescents in function of area of residence. Chemosphere 2008, 71, 1317–1325. [Google Scholar] [CrossRef]
- Reis, M.F.; Sampaio, C.; Brantes, A.; Aniceto, P.; Melim, M.; Cardoso, L.; Gabriel, C.; Simao, F.; Miguel, J.P. Human exposure to heavy metals in the vicinity of Portuguese solid waste incinerators--Part 3: Biomonitoring of Pb in blood of children under the age of 6 years. Int. J. Hyg. Environ. Health 2007, 210, 455–459. [Google Scholar] [CrossRef] [PubMed]
- Llobet, J.M.; Falco, G.; Casas, C.; Teixido, A.; Domingo, J.L. Concentrations of arsenic, cadmium, mercury, and lead in common foods and estimated daily intake by children, adolescents, adults, and seniors of Catalonia, Spain. J. Agric. Food Chem. 2003, 51, 838–842. [Google Scholar] [CrossRef] [PubMed]
- Joas, R.; Casteleyn, L.; Biot, P.; Kolossa-Gehring, M.; Castano, A.; Angerer, J.; Schoeters, G.; Sepai, O.; Knudsen, L.E.; Joas, A.; et al. Harmonised human biomonitoring in Europe: Activities towards an EU HBM framework. Int. J. Hyg. Environ. Health 2012, 215, 172–175. [Google Scholar] [CrossRef] [PubMed]
- Esteban, M.; Castano, A. Non-invasive matrices in human biomonitoring: A review. Environ. Int. 2009, 35, 438–449. [Google Scholar] [CrossRef] [PubMed]
- Slotnick, M.J.; Nriagu, J.O.; Johnson, M.M.; Linder, A.M.; Savoie, K.L.; Jamil, H.J.; Hammad, A.S. Profiles of trace elements in toenails of Arab-Americans in the Detroit area, Michigan. Biol. Trace Elem. Res. 2005, 107, 113–126. [Google Scholar] [CrossRef]
- Da Silveira Fleck, A.; Carneiro, M.F.; Barbosa, F., Jr.; Amantea, S.L.; Rhoden, C.R. The use of tree barks and human fingernails for monitoring metal levels in urban areas of different population densities of Porto Alegre, Brazil. Environ. Sci. Pollut. Res. Int. 2017, 24, 2433–2441. [Google Scholar] [CrossRef]
- Menezes-Filho, J.A.; Carvalho, C.F.; Rodrigues, J.L.G.; Araujo, C.F.S.; Dos Santos, N.R.; Lima, C.S.; Bandeira, M.J.; Marques, B.L.S.; Anjos, A.L.S.; Bah, H.A.F.; et al. Environmental Co-Exposure to Lead and Manganese and Intellectual Deficit in School-Aged Children. Int. J. Environ. Res. Public Health 2018, 15, 2418. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, J.L.G.; Araujo, C.F.S.; Dos Santos, N.R.; Bandeira, M.J.; Anjos, A.L.S.; Carvalho, C.F.; Lima, C.S.; Abreu, J.N.S.; Mergler, D.; Menezes-Filho, J.A. Airborne manganese exposure and neurobehavior in school-aged children living near a ferro-manganese alloy plant. Environ. Res. 2018, 167, 66–77. [Google Scholar] [CrossRef]
- Carneiro, M.F.; Grotto, D.; Batista, B.L.; Rhoden, C.R.; Barbosa, F., Jr. Background values for essential and toxic elements in children’s nails and correlation with hair levels. Biol. Trace Elem. Res. 2011, 144, 339–350. [Google Scholar] [CrossRef]
- Hunter, D.J.; Morris, J.S.; Chute, C.G.; Kushner, E.; Colditz, G.A.; Stampfer, M.J.; Speizer, F.E.; Willett, W.C. Predictors of selenium concentration in human toenails. Am. J. Epidemiol. 1990, 132, 114–122. [Google Scholar] [CrossRef]
- Slotnick, M.J.; Nriagu, J.O. Validity of human nails as a biomarker of arsenic and selenium exposure: A review. Environ. Res. 2006, 102, 125–139. [Google Scholar] [CrossRef] [PubMed]
- Ranzi, A.; Fano, V.; Erspamer, L.; Lauriola, P.; Perucci, C.A.; Forastiere, F. Mortality and morbidity among people living close to incinerators: A cohort study based on dispersion modeling for exposure assessment. Environ. Health 2011, 10, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elliott, P.; Hills, M.; Beresford, J.; Kleinschmidt, I.; Jolley, D.; Pattenden, S.; Rodrigues, L.; Westlake, A.; Rose, G. Incidence of cancers of the larynx and lung near incinerators of waste solvents and oils in Great Britain. Lancet 1992, 339, 854–858. [Google Scholar] [CrossRef]
- Forastiere, F.; Badaloni, C.; de Hoogh, K.; von Kraus, M.K.; Martuzzi, M.; Mitis, F.; Palkovicova, L.; Porta, D.; Preiss, P.; Ranzi, A.; et al. Health impact assessment of waste management facilities in three European countries. Environ. Health Glob. Access Sci. Source 2011, 10, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michelozzi, P.; Fusco, D.; Forastiere, F.; Ancona, C.; Dell’Orco, V.; Perucci, C.A. Small area study of mortality among people living near multiple sources of air pollution. Occup. Environ. Med. 1998, 55, 611–615. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, F., Jr.; Tanus-Santos, J.E.; Gerlach, R.F.; Parsons, P.J. A critical review of biomarkers used for monitoring human exposure to lead: Advantages, limitations, and future needs. Environ. Health Perspect. 2005, 113, 1669–1674. [Google Scholar] [CrossRef] [Green Version]
- Gault, A.G.; Rowland, H.A.; Charnock, J.M.; Wogelius, R.A.; Gomez-Morilla, I.; Vong, S.; Leng, M.; Samreth, S.; Sampson, M.L.; Polya, D.A. Arsenic in hair and nails of individuals exposed to arsenic-rich groundwaters in Kandal province, Cambodia. Sci. Total Environ. 2008, 393, 168–176. [Google Scholar] [CrossRef]
- Coelho, P.; Costa, S.; Costa, C.; Silva, S.; Walter, A.; Ranville, J.; Pastorinho, M.R.; Harrington, C.; Taylor, A.; Dall’Armi, V.; et al. Biomonitoring of several toxic metal(loid)s in different biological matrices from environmentally and occupationally exposed populations from Panasqueira mine area, Portugal. Environ. Geochem. Health 2014, 36, 255–269. [Google Scholar] [CrossRef]
- Butler, L.; Gennings, C.; Peli, M.; Borgese, L.; Placidi, D.; Zimmerman, N.; Hsu, H.L.; Coull, B.A.; Wright, R.O.; Smith, D.R.; et al. Assessing the contributions of metals in environmental media to exposure biomarkers in a region of ferroalloy industry. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 674–687. [Google Scholar] [CrossRef]
- Wilhelm, M.; Lombeck, I.; Ohnesorge, F.K. Cadmium, copper, lead and zinc concentrations in hair and toenails of young children and family members: A follow-up study. Sci. Total Environ. 1994, 141, 275–280. [Google Scholar] [CrossRef]
- Wickre, J.B.; Folt, C.L.; Sturup, S.; Karagas, M.R. Environmental exposure and fingernail analysis of arsenic and mercury in children and adults in a Nicaraguan gold mining community. Arch. Environ. Health 2004, 59, 400–409. [Google Scholar] [CrossRef] [PubMed]
- Oyoo-Okoth, E.; Admiraal, W.; Osano, O.; Ngure, V.; Kraak, M.H.; Omutange, E.S. Monitoring exposure to heavy metals among children in Lake Victoria, Kenya: Environmental and fish matrix. Ecotoxicol. Environ. Saf. 2010, 73, 1797–1803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carneiro, M.F.; Rhoden, C.R.; Amantea, S.L.; Barbosa, F., Jr. Low concentrations of selenium and zinc in nails are associated with childhood asthma. Biol. Trace Elem. Res. 2011, 144, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Chanpiwat, P.; Himeno, S.; Sthiannopkao, S. Arsenic and Other Metals’ Presence in Biomarkers of Cambodians in Arsenic Contaminated Areas. Int. J. Environ. Res. Public Health 2015, 12, 14285–14300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grashow, R.; Zhang, J.; Fang, S.C.; Weisskopf, M.G.; Christiani, D.C.; Cavallari, J.M. Toenail metal concentration as a biomarker of occupational welding fume exposure. J. Occup. Environ. Hyg. 2014, 11, 397–405. [Google Scholar] [CrossRef] [Green Version]
- Sanches, T.P.; Saiki, M. Establishing a protocol for element determinations in human nail clippings by neutron activation analysis. In Proceedings of the 2011 International Nuclear Atlantic Conference—INAC 2011, Belo Horizonte, Brazil, 24–28 October 2011. [Google Scholar]
- Lubin, J.H.; Colt, J.S.; Camann, D.; Davis, S.; Cerhan, J.R.; Severson, R.K.; Bernstein, L.; Hartge, P. Epidemiologic evaluation of measurement data in the presence of detection limits. Environ. Health Perspect. 2004, 112, 1691–1696. [Google Scholar] [CrossRef]
- Tobin, J. Estimation of Relationships for Limited Dependent Variables. Econometrica 1958, 26, 24–36. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, J.L.G.; Bandeira, M.J.; Araujo, C.F.S.; Dos Santos, N.R.; Anjos, A.L.S.; Koin, N.L.; Pereira, L.C.; Oliveira, S.S.P.; Mergler, D.; Menezes-Filho, J.A. Manganese and lead levels in settled dust in elementary schools are correlated with biomarkers of exposure in school-aged children. Environ. Pollut. 2018, 236, 1004–1013. [Google Scholar] [CrossRef]
- Laohaudomchok, W.; Lin, X.; Herrick, R.F.; Fang, S.C.; Cavallari, J.M.; Christiani, D.C.; Weisskopf, M.G. Toenail, blood, and urine as biomarkers of manganese exposure. J. Occup. Environ. Med. 2011, 53, 506–510. [Google Scholar] [CrossRef] [Green Version]
- Adair, B.M.; Hudgens, E.E.; Schmitt, M.T.; Calderon, R.L.; Thomas, D.J. Total arsenic concentrations in toenails quantified by two techniques provide a useful biomarker of chronic arsenic exposure in drinking water. Environ. Res. 2006, 101, 213–220. [Google Scholar] [CrossRef]
- Hughes, M.F. Biomarkers of exposure: A case study with inorganic arsenic. Environ. Health Perspect. 2006, 114, 1790–1796. [Google Scholar] [CrossRef] [PubMed]
- Hassani, H.; Golbabaei, F.; Shirkhanloo, H.; Tehrani-Doust, M. Relations of biomarkers of manganese exposure and neuropsychological effects among welders and ferroalloy smelters. Ind. Health 2016, 54, 79–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucas, E.L.; Bertrand, P.; Guazzetti, S.; Donna, F.; Peli, M.; Jursa, T.P.; Lucchini, R.; Smith, D.R. Impact of ferromanganese alloy plants on household dust manganese levels: Implications for childhood exposure. Environ. Res. 2015, 138, 279–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berasaluce, M.; Mondaca, P.; Schuhmacher, M.; Bravo, M.; Sauve, S.; Navarro-Villarroel, C.; Dovletyarova, E.A.; Neaman, A. Soil and indoor dust as environmental media of human exposure to As, Cd, Cu, and Pb near a copper smelter in central Chile. J. Trace Elem. Med. Biol. Organ Soc. Miner. Trace Elem. 2019, 54, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Pearce, D.C.; Dowling, K.; Gerson, A.R.; Sim, M.R.; Sutton, S.R.; Newville, M.; Russell, R.; McOrist, G. Arsenic microdistribution and speciation in toenail clippings of children living in a historic gold mining area. Sci. Total Environ. 2010, 408, 2590–2599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ab Razak, N.H.; Praveena, S.M.; Hashim, Z. Toenail as a biomarker of heavy metal exposure via drinking water: A systematic review. Rev. Environ. Health 2015, 30, 1–7. [Google Scholar] [CrossRef]
- Liu, L.; Urch, B.; Szyszkowicz, M.; Evans, G.; Speck, M.; Van Huang, A.; Leingartner, K.; Shutt, R.H.; Pelletier, G.; Gold, D.R.; et al. Metals and oxidative potential in urban particulate matter influence systemic inflammatory and neural biomarkers: A controlled exposure study. Environ. Int. 2018, 121, 1331–1340. [Google Scholar] [CrossRef]
- Goulle, J.P.; Saussereau, E.; Mahieu, L.; Bouige, D.; Groenwont, S.; Guerbet, M.; Lacroix, C. Application of inductively coupled plasma mass spectrometry multielement analysis in fingernail and toenail as a biomarker of metal exposure. J. Anal. Toxicol. 2009, 33, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Mohmand, J.; Eqani, S.A.; Fasola, M.; Alamdar, A.; Mustafa, I.; Ali, N.; Liu, L.; Peng, S.; Shen, H. Human exposure to toxic metals via contaminated dust: Bio-accumulation trends and their potential risk estimation. Chemosphere 2015, 132, 142–151. [Google Scholar] [CrossRef]
- Rovira, J.; Mari, M.; Nadal, M.; Schuhmacher, M.; Domingo, J.L. Environmental monitoring of metals, PCDD/Fs and PCBs as a complementary tool of biological surveillance to assess human health risks. Chemosphere 2010, 80, 1183–1189. [Google Scholar] [CrossRef]
- Elder, A.; Gelein, R.; Silva, V.; Feikert, T.; Opanashuk, L.; Carter, J.; Potter, R.; Maynard, A.; Ito, Y.; Finkelstein, J.; et al. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ. Health Perspect. 2006, 114, 1172–1178. [Google Scholar] [CrossRef] [PubMed]
- Rovira, J.; Nadal, M.; Schuhmacher, M.; Domingo, J.L. Concentrations of trace elements and PCDD/Fs around a municipal solid waste incinerator in Girona (Catalonia, Spain). Human health risks for the population living in the neighborhood. Sci. Total Environ. 2018, 630, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Qayyum, M.A.; Shah, M.H. Disparities in Trace Metal Levels in Hodgkin/Non-Hodgkin Lymphoma Patients in Comparison with Controls. Biol. Trace Elem. Res. 2020, 194, 34–47. [Google Scholar] [CrossRef] [PubMed]
- Theophanides, T.; Anastassopoulou, J. Copper and carcinogenesis. Crit. Rev. Oncol. Hematol. 2002, 42, 57–64. [Google Scholar] [CrossRef]
- Yakinci, C.; Pac, A.; Kucukbay, F.Z.; Tayfun, M.; Gul, A. Serum zinc, copper, and magnesium levels in obese children. Acta Paediatr. Jpn. Overseas Ed. 1997, 39, 339–341. [Google Scholar] [CrossRef]
- Lima, S.C.; Arrais, R.F.; Sales, C.H.; Almeida, M.G.; de Sena, K.C.; Oliveira, V.T.; de Andrade, A.S.; Pedrosa, L.F. Assessment of copper and lipid profile in obese children and adolescents. Biol. Trace Elem. Res. 2006, 114, 19–29. [Google Scholar] [CrossRef]
- Kravchenko, J.; Darrah, T.H.; Miller, R.K.; Lyerly, H.K.; Vengosh, A. A review of the health impacts of barium from natural and anthropogenic exposure. Environ. Geochem. Health 2014, 36, 797–814. [Google Scholar] [CrossRef]
- Poddalgoda, D.; Macey, K.; Assad, H.; Krishnan, K. Development of biomonitoring equivalents for barium in urine and plasma for interpreting human biomonitoring data. Regul. Toxicol. Pharm. 2017, 86, 303–311. [Google Scholar] [CrossRef]
- Ohgami, N.; Mitsumatsu, Y.; Ahsan, N.; Akhand, A.A.; Li, X.; Iida, M.; Yajima, I.; Naito, M.; Wakai, K.; Ohnuma, S.; et al. Epidemiological analysis of the association between hearing and barium in humans. J. Expo. Sci. Environ. Epidemiol. 2016, 26, 488–493. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, Z.; Tian, X.; Chen, M.; Deng, Y.; Guo, Y.; Li, N.; Yu, P.; Yang, J.; Zhu, J. Barium exposure increases the risk of congenital heart defects occurrence in offspring. Clin. Toxicol. 2018, 56, 132–139. [Google Scholar] [CrossRef]
- Masironi, R.; Koirtyohann, S.R.; Pierce, J.O.; Schamschula, R.G. Calcium content of river water, trace element concentrations in toenails, and blood pressure in village populations in New Guinea. Sci. Total Environ. 1976, 6, 41–53. [Google Scholar] [CrossRef]
- Rakovic, M.; Foltynova, V.; Pilecka, N.; Glagolicova, A.; Kucera, J. Assessment of metals and metalloids in skin derivatives of volunteers from capital city of Prague, Czech Republic. Sbornik Lekarsky 1997, 98, 107–114. [Google Scholar] [PubMed]
- Swietlicki, E.; Kemp, K.; Wahlin, P.; Bartnicki, J.; Jalkanen, L. Source–receptor relationships for heavy metals in the European atmosphere. Nucl. Instrum. Meth. B 1999, 150, 322–332. [Google Scholar] [CrossRef]
- Rahn, K.A.; Lowenthal, D.H. Elemental tracers of distant regional pollution aerosols. Science 1984, 223, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Sato, T.; Xing, B. Size distribution and anthropogenic sources apportionment of airborne trace metals in Kanazawa, Japan. Chemosphere 2006, 65, 2440–2448. [Google Scholar] [CrossRef] [PubMed]
- Eeftens, M.; Hoek, G.; Gruzieva, O.; Molter, A.; Agius, R.; Beelen, R.; Brunekreef, B.; Custovic, A.; Cyrys, J.; Fuertes, E.; et al. Elemental composition of particulate matter and the association with lung function. Epidemiology 2014, 25, 648–657. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Chen, M.; Li, J.; Deng, Y.; Li, S.L.; Guo, Y.X.; Li, N.; Lin, Y.; Yu, P.; Liu, Z.; et al. Metal nickel exposure increase the risk of congenital heart defects occurrence in offspring: A case-control study in China. Medicine 2019, 98, e15352. [Google Scholar] [CrossRef]
- Yang, Y.; Jin, X.M.; Yan, C.H.; Tian, Y.; Tang, J.Y.; Shen, X.M. Urinary level of nickel and acute leukaemia in Chinese children. Toxicol. Ind. Health 2008, 24, 603–610. [Google Scholar] [CrossRef]
- Carpenter, D.O.; Arcaro, K.; Spink, D.C. Understanding the human health effects of chemical mixtures. Environ. Health Perspect. 2002, 110 (Suppl. 1), 25–42. [Google Scholar] [CrossRef] [Green Version]
- Wild, C.P. The exposome: From concept to utility. Int. J. Epidemiol. 2012, 41, 24–32. [Google Scholar] [CrossRef]
- Goodson, W.H., 3rd; Lowe, L.; Carpenter, D.O.; Gilbertson, M.; Manaf Ali, A.; Lopez de Cerain Salsamendi, A.; Lasfar, A.; Carnero, A.; Azqueta, A.; Amedei, A.; et al. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: The challenge ahead. Carcinogenesis 2015, 36 (Suppl. 1), S254–S296. [Google Scholar] [CrossRef] [Green Version]
Metal | Exposed Area (n = 62) | Reference Area (n = 158) | p |
---|---|---|---|
Al | 166.48 ± 50.42 | 103.24 ± 11.01 | NS |
At | 0.07 ± 0.02 | 0.10 ± 0.02 | NS |
As | 0.01 ± 0.01 | 0.00 | NS |
Ba | 11.95 ± 9.01 | 2.15 ± 0.87 | <0.0002 |
Be | 0.03 ± 0.01 | 0.03 ± 0.005 | NS |
Bo | 0.00 | 0.15 ± 0.15 | NS |
Cd | 0.03 ± 0.004 | 0.07 ± 0.02 | NS |
Co | 0.04 ± 0.04 | 0.00 | NS |
Cr | 4.82 ± 3.88 | 1.28 ± 0.44 | NS |
Fe | 360.08 ± 126.57 | 164.49 ± 21.06 | NS |
Mn | 4.40 ± 1.23 | 2.47 ± 0.35 | <0.05 |
Hg | 0.05 ± 0.01 | 0.06 ± 0.02 | NS |
Mo | 0.00 | 0.00 | NS |
Ni | 2.23 ± 1.51 | 0.43 ± 0.18 | NS |
Pb | 0.32 ± 0.13 | 0.95 ± 0.47 | NS |
Cu | 6.34 ± 0.70 | 4.74 ± 0.36 | <0.05 |
Se | 0.01 ± 0.005 | 0.01 ± 0.003 | NS |
Tl | 0.00 | 0.00 | NS |
Th | 0.01 ± 0.01 | 0.00 | NS |
W | 0.00 | 0.00 | NS |
U | 0.00 | 0.00 | NS |
V | 0.19 ± 0.11 | 0.02 ± 0.02 | <0.02 |
Zn | 96.27 ± 9.42 | 95.30 ± 3.09 | NS |
Ba | Ni | Cu | Mn | V | |
---|---|---|---|---|---|
Exposed vs. Reference | 0.76 *** (0.4 to 1.1) | 0.31 * (0.05 to 0.6) | 0.22 ** (0.06 to 0.4) | 0.2 * (0.06 to 0.4) | 1.08 * (0.2 to 2.0) |
Residential proximity to busy roads | −0.13 (−0.5 to 0.2) | −0.18 (−0.4 to 0.05) | 0.09 (−0.03 to 0.2) | −0.1 (−0.3 to 0.01) | −0.1 (−0.8 to 0.5) |
Orthodontic treatments | −0.87 * (−1.6 to −0.2) | −0.08 (−0.5 to 0.3) | 0.3 * (0.04 to 0.5) | −0.05 (−0.3 to 0.2) | 0.8 (−0.1 to 1.7) |
Outdoor sports | 0.13 (−0.2 to 0.5) | 0.08 (−0.2 to 0.3) | 0.006 (−0.1 to 0.2) | 0.1 (−0.03 to 0.3) | −0.3 (−1.0 to 0.4) |
Hobbies involving chemicals | 0.08 (−0.2 to 0.4) | −0.07 (−0.3 to 0.2) | −0.1 (−0.3 to 0.006) | 0.06 (−0.09 to 0.2) | −0.2 (−0.9 to 0.5) |
Passive smoke | 0.8 * (0.3 to 1.4) | 0.36 (−0.07 to 0.8) | 0.09 (−0.2 to 0.4) | 0.2 (−0.2 to 0.5) | 1.0 (−0.2 to 2.2) |
Consumption of locally grown vegetables | 0.1 (−0.06 to 0.3) | 0.04 (−0.08 to 0.2) | −0.008 (−0.08 to 0.07) | 0.09 (0.01 to 0.2) | 0.005 (−0.4 to 0.4) |
Constant | 0.05 (−0.1 to 0.2) | −0.2 (−0.5 to −0.1) | −0.59 (−0.7 to −0.5) | −0.5 (−0.6 to −0.4) | −0.04 (−0.6 to 0.5) |
Ba | Mn | Ni | Cu | V | |
Ba | - | 0.45 | 0.36 | 0.23 | 0.13 |
- | <0.000001 | <0.000001 | 0.0006 | 0.059 | |
Mn | 0.45 | - | 0.36 | 0.37 | 0.09 |
<0.000001 | - | <0.000001 | <0.000001 | 0.17 | |
Ni | 0.36 | 0.36 | - | 0.23 | 0.09 |
<0.000001 | <0.000001 | - | 0.0006 | 0.18 | |
Cu | 0.23 | 0.37 | 0.23 | - | 0.02 |
0.0006 | <0.000001 | 0.0006 | - | 0.82 | |
V | 0.13 | 0.09 | 0.09 | 0.02 | - |
0.059 | 0.16 | 0.18 | 0.82 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Ciaula, A.; Gentilini, P.; Diella, G.; Lopuzzo, M.; Ridolfi, R. Biomonitoring of Metals in Children Living in an Urban Area and Close to Waste Incinerators. Int. J. Environ. Res. Public Health 2020, 17, 1919. https://doi.org/10.3390/ijerph17061919
Di Ciaula A, Gentilini P, Diella G, Lopuzzo M, Ridolfi R. Biomonitoring of Metals in Children Living in an Urban Area and Close to Waste Incinerators. International Journal of Environmental Research and Public Health. 2020; 17(6):1919. https://doi.org/10.3390/ijerph17061919
Chicago/Turabian StyleDi Ciaula, Agostino, Patrizia Gentilini, Giusy Diella, Marco Lopuzzo, and Ruggero Ridolfi. 2020. "Biomonitoring of Metals in Children Living in an Urban Area and Close to Waste Incinerators" International Journal of Environmental Research and Public Health 17, no. 6: 1919. https://doi.org/10.3390/ijerph17061919
APA StyleDi Ciaula, A., Gentilini, P., Diella, G., Lopuzzo, M., & Ridolfi, R. (2020). Biomonitoring of Metals in Children Living in an Urban Area and Close to Waste Incinerators. International Journal of Environmental Research and Public Health, 17(6), 1919. https://doi.org/10.3390/ijerph17061919