Genotoxicity and Oxidative Stress in Experimental Hybrid Catfish Exposed to Heavy Metals in a Municipal Landfill Reservoir
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Fish and Experimental Design
2.3. Water Quality Parameters
2.4. Heavy Metal Measurements
2.5. Genotoxicity Study
2.6. Oxidative Stress Biomarkers
2.7. Statistical Analyses
3. Results
3.1. Water Quality Parameters
3.2. Heavy Metal Concentrations
3.3. Genotoxicity
3.4. Oxidative Stress Biomarkers
3.4.1. Malondialdehyde
3.4.2. Protein Carbonyl
4. Discussion
4.1. Water Quality Parameters
4.2. Heavy Metal Concentrations
4.3. Genotoxicity
4.4. Oxidative Stress Biomarker
4.4.1. Malondialdehyde
4.4.2. Protein Carbonyl
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pollution Control Department (PCD). Thailand State of Pollution Report 2014; Pollution Control Department, Ministry of Natural Resources: Bangkok, Thailand, 2014.
- Papadimitriou, E.P.; Loumbourdis, N.S. Copper kinetics and hepatic metallothionein levels in the frog Rana ridibunda, after exposure to CuCl2. Biometals 2003, 16, 271–277. [Google Scholar] [CrossRef]
- Pourret, O.; Hursthouse, A. It’s time to replace the term “heavy metal” with “potentially toxic elements” when reporting environmental research. Int. J. Environ. Res. Pub. Health. 2019, 16, 4446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pourret, O. On the necessity of banning the term “heavy metal” from the scientific literature. Sustainability 2018, 10, 2879. [Google Scholar] [CrossRef] [Green Version]
- Sarun, K. Analysis of Hazardous Waste Stream in Khon Kaen Metropolitan Municipality. Master’s Thesis, Environmental Engineering, Graduate School, Khon Kaen University, Khon Kaen, Thailand, 2004. [Google Scholar]
- Intamat, S.; Buasriyot, P.; Sriuttha, M.; Tengjaroenkul, B.; Neeratanaphan, L. Bioaccumulation of arsenic in aquatic plants and animals near a municipal landfill. Int. J. Environ. Studies. 2017, 74, 303–314. [Google Scholar] [CrossRef]
- Sriuttha, M.; Tengjaroenkul, B.; Intamat, S.; Phoonaploy, U.; Thanomsangad, P.; Neeratanaphan, L. Cadmium, chromium and lead accumulation in aquatic plants and animals from a municipal landfill. Hum. Ecol. Risk. Assess. 2017, 23, 350–363. [Google Scholar] [CrossRef]
- Oost, R.; Beyer, J.; Vermeulem, N.P.E. Fish bioaccumulation and biomarkers in environmental risk assessment: A review. Environ. Toxicol. Pharmacol. 2003, 13, 57–149. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Lead; Agency for Toxic Substances and Disease Registry: Washington DC, USA, 2007.
- Luoma, S.; Rainbow, P. Sources and Cycles of Trace Metals. In Metal Contamination in Aquatic Environments: Science and Lateral Management; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Kamunde, C.; Grosell, M.; Higgs, D.; Wood, C.M. Copper metabolism in actively growing rain bow trout (Oncorhynchus mykiss): Interactions between dietary and waterborne copper uptake. J. Experiment. Biol. 2002, 205, 279–290. [Google Scholar]
- Robinson, B.; Duwig, C.; Bolan, N.; Kannathasan, M.; Saravanan, A. Up take of arsenic by New Zealand watercress (Lepidium sativum). Sci. Total. Environ. 2003, 301, 67–73. [Google Scholar] [CrossRef]
- Godt, J.; Scheigig, F.; Grosse-Siestrup, C.; Esche, V.; Brandenburg, P.; Reich, A.; Groneberg, D.A. The toxicity of cadmium and resulting hazards for human health. J. Occupat. Med. Toxicol. 2006, 1, 22. [Google Scholar] [CrossRef] [Green Version]
- Livingstone, D. Oxidative stress in aquatic organism in relation to pollution and agriculture. Rev. de Med. Vet. 2003, 154, 427–430. [Google Scholar]
- Sevcikova, M.; Modra, H.; Slaninova, A.; Svobodova, Z. Metals as a cause of oxidative stress in fish: A review. Vet. Med. 2011, 56, 537–546. [Google Scholar] [CrossRef] [Green Version]
- Castano, A.; Becerril, C. In vitro assessment of DNA damage after short and long-term exposure to benzo (a) pyrene using RAPD and the RTG-2 fish cell line. Mutat. Res. 2004, 552, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Talas, Z.S.; Orun, I.; Ozdemir, I.; Erdogan, K.; Alkan, A.; Yilmaz, I. Antioxidative role of selenium against the toxic effect of heavy metals (Cd+2, Cr+3) on liver of rainbow trout (Oncorhynchus mykiss, Walbaum 1792). Fish. Physiol. Biochem. 2008, 34, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Velma, V.; Tchounwou, P.B. Oxidative stress and DNA damage induced by chromium in liver and kidney of goldfish, Carassius aurata, Biomark. Insights 2013, 8, 43–51. [Google Scholar]
- Vilela, C.L.S.; Bassin, J.P.; Peixoto, R.S. Water contamination by endocrine disruptors: Impacts, microbiological aspects and trends for environmental protection. Environ. Pollut. 2018, 235, 546–559. [Google Scholar] [CrossRef]
- Skorbiłowicz, E. Aquatic plants as bioindicators of contamination of upper Narew river and some of its tributaries with heavy metals. Environ. Prot. Eng. 2009, 35, 65–77. [Google Scholar]
- Burlibasa, L.; Gavrila, L. Amphibians as model organisms for study environmental genotoxicity. Appl. Ecol. Environ. Res. 2011, 9, 1–15. [Google Scholar] [CrossRef]
- Webb, D. Freshwater shrimp (Palaemonetes australis) as a potential bioindicator of crustacean health. Environ. Monit. Assess. 2011, 178, 537–544. [Google Scholar] [CrossRef]
- Authman, M.M.N.; Zaki, M.S.; Khallaf, E.A.; Abbas, H.H. Use of fish as bio-indicator of the effects of heavy metals pollution. J. Aquacult. Res. Develop. 2015, 6, 328. [Google Scholar] [CrossRef]
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington DC, USA, 2005. [Google Scholar]
- Neeratanaphan, L.; Khamlerd, C.; Chowrong, S.; Intamat, S.; Sriuttha, M.; Tengjaroenkul, B. Cytotoxic assessment of flying barb fish (Esomus metallicus) from a gold mine area with heavy metal contamination. Int. J. Environ. Studies 2017, 74, 613–624. [Google Scholar] [CrossRef]
- US Environmental Protection Agency (USEPA). Bioaccumulation Testing and Interpretation for the Purpose of Sediment Quality Assessment; Bioaccumulation Analysis Workgroup, US Environmental Protection Agency: Washington, DC, USA, 2000.
- Tengjaroenkul, B.; Intamat, S.; Thanomsangad, P.; Phoonaploy, U.; Neeratanaphan, L. Cytotoxic effect of sodium arsenite on the Nile tilapia (Oreochromis niloticus) in vivo. Int. J. Environ. Studies. 2018, 75, 580–591. [Google Scholar] [CrossRef]
- Rohlf, F.J. NTSYSpc: Numerical Taxonomy and Multivariate Analysis Version 2.2; Applied Biostatistics Inc.: New York, NY, USA, 2009. [Google Scholar]
- Luangaram, S.; Kukongviriyapan, U.; Pakdeechote, P.; Kukongviriyapan, V.; Pannangpetch, P. Protective effects of quercetin against phenylhydrazine-induced vascular dysfunction and oxidative stress in rats. Food Chem. Toxicol. 2007, 45, 448–455. [Google Scholar] [CrossRef]
- Nakmareong, S.; Kukongviriyapan, U.; Pakdeechote, P.; Donpunha, W.; Kukongviriyapan, V.; Kongyingyoes, B.; Sompamit, K.; Phisalaphong, C. Antioxidant and vascular protective effects of curcumin and tetrahydrocurcumin in rats with L-NAME-induced hypertension. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2011, 383, 519–529. [Google Scholar] [CrossRef] [PubMed]
- Pollution Control Department (PCD). Surface Water Quality Standards, Notification of the National Environmental Board, No. 8; Ministry of Natural Resources and Environment: Bangkok, Thailand, 1994.
- Pollution Control Department (PCD). Soil Quality Standards for Habitat and Agriculture, Notification of the National Environmental Board, No. 25; Ministry of Natural Resources and Environment: Bangkok, Thailand, 2004.
- Ministry of Public Health. Standard of Contaminants in Food, Notification of the Ministry of Public Health No. 273/2; Ministry of Public Health: Bangkok, Thailand, 2003.
- Jezierska, B.; Witeska, M. Metal toxicity to fish. Rev. Fish Biol. Fisher. 2001, 11, 279. [Google Scholar]
- Buet, A.; Banas, D.; Vollaire, Y.; Coulet, E.; Roche, H. Biomarker responses in European eel (Anguilla anguilla) esposed to persistent organic pollutants, A field study in the Vaccares lagoon (Camargue, France). Chemosphere 2006, 65, 1846–1858. [Google Scholar] [CrossRef] [PubMed]
- Da Rocha, A.M.; Salomao de Freitas, D.P.; Burns, M.; Vieira, J.P.; de la Torre, F.R.; Monserrat, J.M. Seasonal and organ variation in antioxidant capacity, detoxifying competence and oxidative damage in freshwater and estuarine fishes from southern Brazil. Comp. Biochem. Physiol. 2009, 150, 512–520. [Google Scholar] [CrossRef]
- Ip, Y.K.; Chew, S.F.; Randall, D.J. Ammonia Toxicity, Tolerance and Excretion. In Fish Physiology, Nitrogen Excretion; Hoar, W.S., Randall, D.J., Farrell, A.P., Eds.; Academic Press: San Diego, CA, USA, 2001; Volume 20. [Google Scholar]
- Promsid, P. Chromosomal Aberration Assessment of Fish in Reservoir Affected by Leachate in Municipal Landfill. Master’s Thesis, Department of Environmental Science, Graduate School, Khon Kaen University, Khon Kaen, Thailand, 2014. [Google Scholar]
- Chen, B.C.; Liao, C.M. Farmed tilapia Oreochromis mossambicus involved in transport and biouptake of arsenic in aquacultural ecosystems. Aquaculture 2004, 242, 365–380. [Google Scholar] [CrossRef]
- Cumberlidge, N.; Ng, P.K.L.; Yeo, D.C.J.; Magalhaes, C.; Campos, M.R.; Alvarez, F.; Naruse, T.; Daniels, S.R.; Esser, L.J.; Attipoe, F.Y.K.; et al. Freshwater crabs and the biodiversity crisis importance, threats, status, and conservation challenges. Biol. Conserv. 2009, 142, 665–1673. [Google Scholar] [CrossRef]
- Abdulali, T.; Shuhaimi-Othman, M.; Ahmad, A.K. Assessment of heavy metals in tilapia fish (Oreochromis niloticus) from the Langat River and engineering lake in Bangi, Malaysia, and evaluation of the health risk from tilapia consumption. Ecotoxicol. Environ. Safe. 2013, 93, 45–51. [Google Scholar]
- Abdel-mohsien, H.; Mahmoud, M. Accumulation of some heavy metals in Oreochromis niloticus from the Nile in Egypt: Potential hazards to fish and consumers. J. Environ. Prot. 2015, 6, 1003–1013. [Google Scholar] [CrossRef] [Green Version]
- Paul, N.; Chakraborty, S.; Sengupta, M. Lead toxicity on non-specific immune mechanisms of freshwater fish Channa punctatus. Aqua. Toxicol. 2014, 152, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Beheary, M.S.; Abu-Almaaty, A.H.; El-matary, F.A. Genetic polymorphism and changes in the concentration of heavy metals in Catfish Clarias gariepinus from different sites as a result of environmental contamination. Adv. Environ. Biol. 2015, 9, 20–32. [Google Scholar]
- Pereira, L.S.; Ribas, J.L.C.; Vicari, T. Effects of ecologically relevant concentrations of cadmium in a fresh water fish. Ecotoxicol. Environ. Safe. 2016, 130, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Abu-Almaaty, A.H.; Abdel-Basset, M.E.; Mohammad, A. Molecular genetic variations and phylogenetic relationship using random amplified polymorphic DNA of three species of Catfishes (Family: Schilbidae) in Upper Egypt. J. Pharmacy Biol. Sci. 2018, 9, 65–81. [Google Scholar]
- Opasola, O.A.; Adeolu, A.T.; Iyanda, A.Y.; Adewoye, S.O.; Olawale, S.A. Bioaccumulation of heavy metals by Clarias gariepinus (African Catfish) in Asa River, Ilorin, Kwara State. J. Health. Pollut. 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Agbosu, I.E.; Ekweozor, K.E.; Opuene, K. Survey of heavy metals in the catfish Clarias synodontis. Int. J. Environ. Sci. Tech. 2007, 4, 93–97. [Google Scholar] [CrossRef] [Green Version]
- Yujun, Y.; Zhifeng, Y.; Shanhong, Z. Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environ. Pollut. 2011, 159, 2575–2585. [Google Scholar]
- Orosun, M.M.; Tchokossa, P.; Orosun, R.O.; Akinyose, F.C.; Ige, S.O.; Oduh, V.O. Determination of selected heavy metals and human health risk assessment in fishes from Kiri dam and river Gongola, northeastern Nigeria. J. Phys. Chem. Biophys. 2016, 6, 5–11. [Google Scholar]
- William, S.H. Expert Opinion on Eating Tilapia and Catfish, Life Sciences and Medicine’s News Medical; Dundurn Press: Toronto, ON, Canada, 2008. [Google Scholar]
- Abu-Daabes, M.; Qdais, H.A.; Alsyouri, H. Assessment of heavy metals and organics in municipal solid waste leachates from landfills with different ages in Jordan. J. Environ. Prot. 2013, 4, 344–352. [Google Scholar] [CrossRef] [Green Version]
- Wood, R.D.; Mitchell, M.; Srouros, J.; Lindahi, T. Human DNA repair genes. Science 2001, 291, 1284–1289. [Google Scholar] [CrossRef] [Green Version]
- Monserrat, J.M.; Martinez, P.E.; Geracitano, L.; Amado, L.L.; Martins, C.; Pinho, G.L.L.; Chaves, I.S.; Cravo, M.F.; Ventura-Lima, J.; Biachini, A. Pollution biomarkers in estuarine animals: Critical review and new perspectives. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2007, 146, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Wise, S.S.; Holmes, A.L.; Wish, J.P. Hexavalent chromium-induced DNA damage and repair mechanisms. Rev. Environ. Health. 2008, 23, 39–57. [Google Scholar] [CrossRef] [PubMed]
- Arunachalam, K.D.; Annamalai, S.K.; KuruvaIn, J.K. In-vivo evaluation of hexavalent chromium induced DNA damage by alkaline comet assay and oxidative stress in Catla catla. Am. J. Environ. Sci. 2013, 9, 470–482. [Google Scholar] [CrossRef]
- Waalkes, M.P. Cadmium carcinogenesis. Mutat. Res. 2003, 533, 107–120. [Google Scholar] [CrossRef]
- Silbergeld, E.K. Facilitative mechanisms of lead as a carcinogen. Mutat. Res. 2003, 533, 121–133. [Google Scholar] [CrossRef]
- Bolognesi, C.; Hayashi, M. Micronucleus assay in aquatic animals. Mutagenesis 2011, 26, 205–213. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, S.; Widodo, M.A.; Kristianto, Y. Albumin and zinc content of snakehead fish (Channa striata) extract and its role in health. Int. J. Sci. Technol. 2012, 1, 1–18. [Google Scholar]
- Ngamniyom, A. Thai ricefish: A potential bio-indicator species for monitoring freshwater environment pollutions. Srinakharin. Sci. J. 2012, 28, 207–218. [Google Scholar]
- Ercal, N.; Gurer-Orhan, H.; Aykin-Burns, N. Toxic metals and oxidative stress part I: Mechanisms involved in metal-induced oxidative damage. Curr. Topics. Med. Chem. 2001, 1, 529–539. [Google Scholar] [CrossRef]
- Vlahogianni, T.; Dassenakis, M.; Scoullos, M.J.; Valavanidis, A. Integrated use of biomarkers (superoxide dismutase, catalase and lipid peroxidation) in mussels Mytilus galloprovincialis for assessing heavy metals pollution in coastal areas from the Saronikos Gulf of Greece. Mar. Pollut. Bull. 2007, 54, 1361–1371. [Google Scholar] [CrossRef]
- Calapoglu, M.; Sevinc, Z.; Togany, V.A.; Kalyoncu, H. Evaluation of oxidative stress and genotoxicity for environmental monitoring using farmed rainbow trout. Fresenius Environ. Bulletin. 2017, 26, 7105–7113. [Google Scholar]
- Farombi, E.O.; Adelowo, O.A.; Ajimoko, Y.R. Biomarkers of oxidative stress and heavy metal levels as indicators of environmental pollution in African Catfish (Clarias gariepinus) from Nigeria Ogun River. Int. J. Environ. Res. Pub. Health. 2007, 4, 158–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez, W.; Ait-Aissa, S.; Palluel, O.; Ditche, J.M.; Porcher, J.M. Preliminary investigation of multi-biomarker responses in three-spined stickleback (Gasterosteus aculeatus L.) sampled in contaminated streams. Ecotoxicology 2007, 16, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Bayir, A.; Bayir, M.; Sirkecioğlu, A.N.; Aras, N.M.; Haliloğlu, H.İ.; Aksakal, E.; Güneş, M.; Aras, N.M. Influence of season on antioxidant defense systems of Silurus glanis Linnaeus (Siluridae) and Barbus capito Güldenstädt (Cyprinidae). Fresenius Environ. Bulletin. 2011, 20, 3–11. [Google Scholar]
- Hebert, N.; Gagne, F.; Cejka, P.; Cyr, D.; Marcogliese, D.J.; Blaise, C.; Pellerin, J.; Fournier, M. The effects of a primary-treated municipal effluent on the immune system of rainbow trout (Oncorhynchus mykiss): Exposure duration and contribution of suspended particles. Comp. Biochem. Physiol. Part C Comp. Pharmacol. 2008, 148, 258–264. [Google Scholar] [CrossRef]
- Requena, J.R.; Levine, R.L.; Stadtman, E.R. Recent advances in the analysis of oxidized proteins. Amino Acids 2003, 25, 221–226. [Google Scholar] [CrossRef]
- Grune, T. Oxidative stress, aging and the proteasomal system. Biogerontology 2000, 1, 31–40. [Google Scholar] [CrossRef]
- Parvez, S.; Raisuddin, S. Protein carbonyls: Novel biomarkers of exposure to oxidative stress-inducing pesticides in freshwater fish Channa punctata (Bloch). Environ. Toxicol. Pharmacol. 2005, 20, 112–117. [Google Scholar] [CrossRef]
- Dalle-Donne, I.; Aldini, G.; Carini, M.; Colombo, R.; Rossi, R.; Milzani, A. Protein carbonylation, cellular dysfunction, and disease progression. J. Cell. Molec. Med. 2006, 10, 389–406. [Google Scholar] [CrossRef]
- Craig, P.M.; Wood, C.M.; McClell, G.B. Oxidative stress response and gene expression with acute copper exposure in zebrafish (Danio rerio). Am. J. Physiol. Regul. Integrat. Comp. Physiol. 2007, 293, 1882–1892. [Google Scholar] [CrossRef] [Green Version]
Water Quality Parameters | Analytical Methods |
---|---|
Dissolved oxygen | DO meter, Model 966, Mettler Toledo |
pH | pH meter, Model EcoScan pH 5, Eutech |
Temperature | Thermometer |
Total dissolved solids | Total dissolved solids, Model CH-8603, Mettler Toledo |
Electro-conductivity Total ammonia nitrogen | EC meter, Model CH-8603, Mettler Toledo Titration method |
No. | Nucleotide Sequences | Total Bands | Monomorphic Band | Polymorphic Band |
---|---|---|---|---|
1 | CTCTCTCTCTCTCTCTAC | 55 | 1 | 9 |
2 | CTCTCTCTCTCTCTCTGC | 112 | 7 | 9 |
3 | CACACACACACAAC | 50 | 1 | 9 |
4 | CACACACACACAGT | 105 | 5 | 8 |
5 | CACACACACACAAG | 109 | 7 | 9 |
6 | CACACACACACAGG | 110 | 5 | 10 |
7 | GAGAGAGAGAGAGG | 79 | 6 | 5 |
8 | GAGAGAGAGAGACC | 115 | 7 | 8 |
9 | CACCACCACGC | 110 | 6 | 11 |
10 | GAGGAGGAGGC | 133 | 11 | 5 |
11 | CTCCTCCTCGC | 73 | 6 | 3 |
12 | GTGGTGGTGGC | 103 | 8 | 4 |
13 | ACTGACTGACTGACTG | 89 | 3 | 12 |
14 | GACAGACAGACAGACA | 97 | 8 | 2 |
15 | CCCCGTGTGTGTGTGT | 136 | 10 | 7 |
16 | GAGAGAGAGA | 105 | 8 | 6 |
17 | AGAGAGAGAGAGAGCTGCT | 130 | 10 | 8 |
18 | CTCTCTCTCTCTCTCTTG | 113 | 7 | 8 |
19 | AGAGAGAGAGAGAGAA | 85 | 6 | 5 |
20 | AGAGAGAGAGAGAGAGC | 134 | 8 | 8 |
21 | AGAGAGAGAGAGAGAGT | 152 | 9 | 10 |
22 | AGAGAGAGAGAGAGAAA | 91 | 6 | 7 |
23 | AGAGAGAGAGAGAGAAC | 102 | 5 | 9 |
24 | AGAGAGAGAGAGAGAAG | 110 | 7 | 8 |
25 | AGAGAGAGAGAGAGAAT | 115 | 7 | 8 |
Total | 2613 | 164 | 188 |
Samples | Parameters | |||||
---|---|---|---|---|---|---|
DO (mg/L) | pH | Temperature (°C) | TDS (mg/L) | EC (µSm−1/s) | NH3-N (mg/L) | |
Reference reservoir | 5.31 ± 0.76 | 7.02 ± 0.02 | 25.96 ± 0.55 | 0.44 ± 0.03 | 304.33 ± 7.37 | 0.72 ± 0.04 |
Landfill reservoir | 4.79 ± 0.44 | 6.72 ± 0.07 | 26.18 ± 0.53 | 0.57 ± 0.03 | 452.67 ± 17.51 | 0.94 ± 0.04 |
Samples | Individual Number | Cr | Cd | Pb |
---|---|---|---|---|
Water (mg/L) | 9 | ND | ND | ND |
Standard (mg/L) | 0.005 a | 0.05 a | 0.05 a | |
Sediment (mg/kg) | 9 | 4.95 ± 0.27 | 0.07 ± 0.01 | ND |
Standard (mg/kg) | 100 b | 1 b | 100 b | |
Fish Muscles (mg/kg) | 9 | 0.72 ± 0.12 | ND | ND |
Standard (mg/kg) | 2 c | 0.5 c | 0.5 c |
Samples | Individual Number | Cr | Cd | Pb |
---|---|---|---|---|
Water (mg/L) | 9 | 16.73 ± 1.32 | 0.66 ± 0.32 | 17.85 ± 4.28 |
Standard (mg/L) | 0.005 a | 0.05 a | 0.05 a | |
Sediment (mg/kg) | 9 | 33.82 ± 7.79 | 2.60 ± 1.07 | 16.61 ± 9.47 |
Standard (mg/kg) | 100 b | 1 b | 100 b | |
Fish Muscles (mg/kg) | 9 | 1.41 ± 0.29 | 0.03 ± 0.01 | 0.12 ± 0.02 |
Standard (mg/kg) | 2 c | 0.5 c | 0.5 c |
1.1 | 1.2 | 1.3 | 1.4 | 1.5 | 2.1 | 2.2 | 2.3 | 2.4 | 2.5 | |
---|---|---|---|---|---|---|---|---|---|---|
1.1 | 1.00 | |||||||||
1.2 | 0.96 | 1.00 | ||||||||
1.3 | 0.93 | 0.92 | 1.00 | |||||||
1.4 | 0.90 | 0.92 | 0.92 | 1.00 | ||||||
1.5 | 0.92 | 0.91 | 0.93 | 0.91 | 1.00 | |||||
2.1 | 0.72 | 0.72 | 0.70 | 0.71 | 0.71 | 1.00 | ||||
2.2 | 0.69 | 0.67 | 0.68 | 0.68 | 0.70 | 0.86 | 1.00 | |||
2.3 | 0.71 | 0.69 | 0.69 | 0.68 | 0.68 | 0.86 | 0.86 | 1.00 | ||
2.4 | 0.68 | 0.67 | 0.66 | 0.65 | 0.68 | 0.80 | 0.80 | 0.84 | 1.00 | |
2.5 | 0.69 | 0.68 | 0.67 | 0.66 | 0.66 | 0.80 | 0.79 | 0.86 | 0.86 | 1.00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neeratanaphan, L.; Kamollerd, C.; Suwannathada, P.; Suwannathada, P.; Tengjaroenkul, B. Genotoxicity and Oxidative Stress in Experimental Hybrid Catfish Exposed to Heavy Metals in a Municipal Landfill Reservoir. Int. J. Environ. Res. Public Health 2020, 17, 1980. https://doi.org/10.3390/ijerph17061980
Neeratanaphan L, Kamollerd C, Suwannathada P, Suwannathada P, Tengjaroenkul B. Genotoxicity and Oxidative Stress in Experimental Hybrid Catfish Exposed to Heavy Metals in a Municipal Landfill Reservoir. International Journal of Environmental Research and Public Health. 2020; 17(6):1980. https://doi.org/10.3390/ijerph17061980
Chicago/Turabian StyleNeeratanaphan, Lamyai, Chuchart Kamollerd, Pimchanok Suwannathada, Pongthorn Suwannathada, and Bundit Tengjaroenkul. 2020. "Genotoxicity and Oxidative Stress in Experimental Hybrid Catfish Exposed to Heavy Metals in a Municipal Landfill Reservoir" International Journal of Environmental Research and Public Health 17, no. 6: 1980. https://doi.org/10.3390/ijerph17061980
APA StyleNeeratanaphan, L., Kamollerd, C., Suwannathada, P., Suwannathada, P., & Tengjaroenkul, B. (2020). Genotoxicity and Oxidative Stress in Experimental Hybrid Catfish Exposed to Heavy Metals in a Municipal Landfill Reservoir. International Journal of Environmental Research and Public Health, 17(6), 1980. https://doi.org/10.3390/ijerph17061980