The Role of Corneal Biomechanics for the Evaluation of Ectasia Patients
Abstract
:1. Introduction
1.1. THE ORA (Ocular Response Analyzer)
1.2. Brillouin Spectroscopy
1.3. Corneal Visualization with Scheimpflug Technology: The Corvis ST
1.4. The Corneal/corvis Biomechanical Index—CBI
1.5. The Tomographic Biomechanical Index—TBI
2. Methods
3. Results
4. Conclusions
4.1. Clinical Example 1
4.2. Clinical Example 2
4.3. Clinical Example 3
5. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Luz, A.; Faria-Correia, F.; Salomao, M.Q.; Lopes, B.T.; Ambrosio, R., Jr. Corneal biomechanics: Where are we? J. Curr. Ophthalmol. 2016, 28, 97–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, C.J.; Dupps, W.J., Jr. Biomechanics of corneal ectasia and biomechanical treatments. J. Cataract. Refract. Surg. 2014, 40, 991–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogbuehi, K.C.; Osuagwu, U.L. Corneal biomechanical properties: Precision and influence on tonometry. Contact Lens Anterior Eye J. Br. Contact Lens Assoc. 2014, 37, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Roberts, C.J. Influence of corneal biomechanical properties on intraocular pressure measurement: Quantitative analysis. J. Cataract. Refract. Surg. 2005, 31, 146–155. [Google Scholar] [CrossRef]
- Blackburn, B.J.; Jenkins, M.W.; Rollins, A.M.; Dupps, W.J. A review of structural and biomechanical changes in the cornea in aging, disease, and photochemical crosslinking. Front. Bioeng. Biotechnol. 2019, 7, 66. [Google Scholar] [CrossRef] [Green Version]
- Hashemi, H.; Ambrosio, R., Jr.; Vinciguerra, R.; Vinciguerra, P.; Roberts, C.J.; Ghaffari, R.; Asgari, S. Two-year changes in corneal stiffness parameters after accelerated corneal cross-linking. J. Biomech. 2019, 93, 209–212. [Google Scholar] [CrossRef]
- Vinciguerra, R.; Romano, V.; Arbabi, E.M.; Brunner, M.; Willoughby, C.E.; Batterbury, M.; Kaye, S.B. In vivo early corneal biomechanical changes after corneal cross-linking in patients with progressive keratoconus. J. Refract. Surg. 2017, 33, 840–846. [Google Scholar] [CrossRef] [Green Version]
- Vinciguerra, R.; Tzamalis, A.; Romano, V.; Arbabi, E.M.; Batterbury, M.; Kaye, S.B. Assessment of the association between in vivo corneal biomechanical changes after corneal cross-linking and depth of demarcation line. J. Refract. Surg. 2019, 35, 202–206. [Google Scholar] [CrossRef]
- Ambrosio, R., Jr.; Nogueira, L.P.; Caldas, D.L.; Fontes, B.M.; Luz, A.; Cazal, J.O.; Alves, M.R.; Belin, M.W. Evaluation of corneal shape and biomechanics before LASIK. Int. Ophthalmol. Clin. 2011, 51, 11–38. [Google Scholar] [CrossRef]
- Salomao, M.Q.; Hofling-Lima, A.L.; Faria-Correia, F.; Lopes, B.T.; Rodrigues-Barros, S.; Roberts, C.J.; Ambrosio, R. Dynamic corneal deformation response and integrated corneal tomography. Indian J. Ophthalmol. 2018, 66, 373–382. [Google Scholar] [CrossRef]
- Ambrosio, R., Jr.; Correia, F.F.; Lopes, B.; Salomao, M.Q.; Luz, A.; Dawson, D.G.; Elsheikh, A.; Vinciguerra, R.; Vinciguerra, P.; Roberts, C.J. Corneal biomechanics in ectatic diseases: Refractive surgery implications. Open Ophthalmol. J. 2017, 11, 176–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binder, P.S. Ectasia after laser in situ keratomileusis. J. Cataract Refract. Surg. 2003, 29, 2419–2429. [Google Scholar] [CrossRef] [PubMed]
- Seiler, T.; Quurke, A.W. Iatrogenic keratectasia after LASIK in a case of forme fruste keratoconus. J. Cataract. Refract. Surg. 1998, 24, 1007–1009. [Google Scholar] [CrossRef]
- Wollensak, G.; Spoerl, E.; Seiler, T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am. J. Ophthalmol. 2003, 135, 620–627. [Google Scholar] [CrossRef]
- Da Paz, A.C.; Bersanetti, P.A.; Salomao, M.Q.; Ambrosio, R., Jr.; Schor, P. Theoretical basis, laboratory evidence, and clinical research of chemical surgery of the cornea: Cross-linking. J. Ophthalmol. 2014, 2014, 890823. [Google Scholar] [CrossRef] [Green Version]
- Wilson, S.E.; Ambrosio, R. Computerized corneal topography and its importance to wavefront technology. Cornea 2001, 20, 441–454. [Google Scholar] [CrossRef]
- Maeda, N.; Klyce, S.D.; Tano, Y. Detection and classification of mild irregular astigmatism in patients with good visual acuity. Surv. Ophthalmol. 1998, 43, 53–58. [Google Scholar] [CrossRef]
- Ambrosio, R., Jr.; Belin, M.W. Imaging of the cornea: Topography vs tomography. J. Refract. Surg. (Thorofare, N.J.: 1995) 2010, 26, 847–849. [Google Scholar] [CrossRef] [Green Version]
- Ambrosio, R., Jr.; Valbon, B.F.; Faria-Correia, F.; Ramos, I.; Luz, A. Scheimpflug imaging for laser refractive surgery. Curr. Opin. Ophthalmol. 2013, 24, 310–320. [Google Scholar] [CrossRef]
- Smadja, D.; Touboul, D.; Cohen, A.; Doveh, E.; Santhiago, M.R.; Mello, G.R.; Krueger, R.R.; Colin, J. Detection of subclinical keratoconus using an automated decision tree classification. Am. J. Ophthalmol. 2013, 156, 237–246.e1. [Google Scholar] [CrossRef]
- Chandapura, R.; Salomao, M.Q.; Ambrosio, R., Jr.; Swarup, R.; Shetty, R.; Sinha Roy, A. Bowman’s topography for improved detection of early ectasia. J. Biophotonics 2019, e201900126. [Google Scholar] [CrossRef] [PubMed]
- Ambrosio, R., Jr.; Randleman, J.B. Screening for ectasia risk: What are we screening for and how should we screen for it? J. Refract. Surg. (Thorofare, N.J.: 1995) 2013, 29, 230–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, J.A.; Tan, D.; Rapuano, C.J.; Belin, M.W.; Ambrosio, R., Jr.; Guell, J.L.; Malecaze, F.; Nishida, K.; Sangwan, V.S.; Group of Panelists for the Global Delphi Panel Panel of Keratoconus and Ectatic Diseases. Global consensus on keratoconus and ectatic diseases. Cornea 2015, 34, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Luce, D.A. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J. Cataract Refract. Surg. 2005, 31, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Laiquzzaman, M.; Bhojwani, R.; Mantry, S.; Cunliffe, I. Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes. Investig. Ophthalmol. Vis. Sci. 2007, 48, 3026–3031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fontes, B.M.; Ambrosio Junior, R.; Jardim, D.; Velarde, G.C.; Nose, W. Ability of corneal biomechanical metrics and anterior segment data in the differentiation of keratoconus and healthy corneas. Arq. Bras. Oftalmol. 2010, 73, 333–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fontes, B.M.; Ambrosio, R., Jr.; Jardim, D.; Velarde, G.C.; Nose, W. Corneal biomechanical metrics and anterior segment parameters in mild keratoconus. Ophthalmology 2010, 117, 673–679. [Google Scholar] [CrossRef]
- Hallahan, K.M.; Sinha Roy, A.; Ambrosio, R., Jr.; Salomao, M.; Dupps, W.J., Jr. Discriminant value of custom ocular response analyzer waveform derivatives in keratoconus. Ophthalmology 2014, 121, 459–468. [Google Scholar] [CrossRef] [Green Version]
- Ventura, B.V.; Machado, A.P.; Ambrosio, R., Jr.; Ribeiro, G.; Araujo, L.N.; Luz, A.; Lyra, J.M. Analysis of waveform-derived ORA parameters in early forms of keratoconus and normal corneas. J. Refract. Surg. (Thorofare, N.J.: 1995) 2013, 29, 637–643. [Google Scholar] [CrossRef]
- Luz, A.; Fontes, B.M.; Lopes, B.; Ramos, I.; Schor, P.; Ambrósio, R., Jr. ORA waveform-derived biomechanical parameters to distinguish normal from keratoconic eyes. Arq. Bras. dOftalmol. 2013, 76, 111–117. [Google Scholar] [CrossRef] [Green Version]
- Luz, A.; Lopes, B.; Hallahan, K.M.; Valbon, B.; Ramos, I.; Faria-Correia, F.; Schor, P.; Dupps, W.J., Jr.; Ambrosio, R., Jr. Enhanced combined tomography and biomechanics data for distinguishing forme fruste keratoconus. J. Refract. Surg. (Thorofare, N.J.: 1995) 2016, 32, 479–494. [Google Scholar] [CrossRef] [PubMed]
- Seiler, T.G.; Shao, P.; Eltony, A.; Seiler, T.; Yun, S.H. Brillouin spectroscopy of normal and keratoconus corneas. Am. J. Ophthalmol. 2019, 202, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Shao, P.; Seiler, T.G.; Eltony, A.M.; Ramier, A.; Kwok, S.J.J.; Scarcelli, G.; Ii, R.P.; Yun, S.H. Effects of corneal hydration on brillouin microscopy in vivo. Investig. Ophthalmol. Vis. Sci. 2018, 59, 3020–3027. [Google Scholar] [CrossRef]
- Scarcelli, G.; Pineda, R.; Yun, S.H. Brillouin optical microscopy for corneal biomechanics. Investig. Ophthalmol. Vis. Sci. 2012, 53, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Besner, S.; Scarcelli, G.; Pineda, R.; Yun, S.H. In vivo brillouin analysis of the aging crystalline lens. Investig. Ophthalmol. Vis. Sci. 2016, 57, 5093–5100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwok, S.J.J.; Kim, M.; Lin, H.H.; Seiler, T.G.; Beck, E.; Shao, P.; Kochevar, I.E.; Seiler, T.; Yun, S.H. Flexible optical waveguides for uniform periscleral cross-linking. Investig. Ophthalmol. Vis. Sci. 2017, 58, 2596–2602. [Google Scholar] [CrossRef]
- Scarcelli, G.; Besner, S.; Pineda, R.; Yun, S.H. Biomechanical characterization of keratoconus corneas ex vivo with Brillouin microscopy. Investig. Ophthalmol. Vis. Sci. 2014, 55, 4490–4495. [Google Scholar] [CrossRef] [Green Version]
- Naderan, M.; Rajabi, M.T.; Zarrinbakhsh, P. Intereye asymmetry in bilateral keratoconus, keratoconus suspect and normal eyes and its relationship with disease severity. Br. J. Ophthalmol. 2017, 101, 1475–1482. [Google Scholar] [CrossRef]
- Shao, P.; Eltony, A.M.; Seiler, T.G.; Tavakol, B.; Pineda, R.; Koller, T.; Seiler, T.; Yun, S.H. Spatially-resolved Brillouin spectroscopy reveals biomechanical abnormalities in mild to advanced keratoconus in vivo. Sci. Rep. 2019, 9, 7467. [Google Scholar] [CrossRef]
- Ambrósio, R., Jr.; Ramos, I.; Luz, A.; Faria, F.C.; Steinmueller, A.; Krug, M.; Belin, M.W.; Roberts, C.J. Dynamic ultra high speed Scheimpflug imaging for assessing corneal biomechanical properties. Rev. Bras. Oftalmol. 2013, 72, 99–102. [Google Scholar] [CrossRef] [Green Version]
- Kuebler, A.G.; Wiecha, C.; Reznicek, L.; Klingenstein, A.; Halfter, K.; Priglinger, S.; Hintschich, C. Comparison of different devices to measure the intraocular pressure in thyroid-associated orbitopathy. Graefe’s Arch. Clin. Exp. Ophthalmol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Pillunat, K.R.; Herber, R.; Spoerl, E.; Erb, C.; Pillunat, L.E. A new biomechanical glaucoma factor to discriminate normal eyes from normal pressure glaucoma eyes. Acta Ophthalmol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Roberts, C.J.; Ambrosio, R., Jr.; Elsheikh, A.; Kang, D.S.Y.; Kim, T.I. Effect of accelerated corneal crosslinking combined with transepithelial photorefractive keratectomy on dynamic corneal response parameters and biomechanically corrected intraocular pressure measured with a dynamic Scheimpflug analyzer in healthy myopic patients. J. Cataract. Refract. Surg. 2017, 43, 937–945. [Google Scholar] [CrossRef] [PubMed]
- Salomão, M.Q.; Faria-Correa, F.; Ramos, I.; Luz, A.; Ambrósio, R.J. Corneal deformation response with dynamic ultra-high-speed scheimpflug imaging for detecting ectatic corneas. Int. J. Keratoconus Ectatic Corneal Dis. 2016, 5, 1–5. [Google Scholar]
- Valbon, B.F.; Ambrosio, R., Jr.; Fontes, B.M.; Alves, M.R. Effects of age on corneal deformation by non-contact tonometry integrated with an ultra-high-speed (UHS) Scheimpflug camera. Arq. Bras. dOftalmol. 2013, 76, 229–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faria-Correia, F.; Ramos, I.; Valbon, B.; Luz, A.; Roberts, C.J.; Ambrosio, R., Jr. Scheimpflug-based tomography and biomechanical assessment in pressure-induced stromal keratopathy. J. Refract. Surg. (Thorofare, N.J.: 1995) 2013, 29, 356–358. [Google Scholar] [CrossRef]
- Ali, N.Q.; Patel, D.V.; McGhee, C.N. Biomechanical responses of healthy and keratoconic corneas measured using a noncontact scheimpflug-based tonometer. Investig. Ophthalmol. Vis. Sci. 2014, 55, 3651–3659. [Google Scholar] [CrossRef]
- Steinberg, J.; Casagrande, M.K.; Frings, A.; Katz, T.; Druchkiv, V.; Richard, G.; Linke, S.J. Screening for subclinical keratoconus using swept-source fourier domain anterior segment optical coherence tomography. Cornea 2015, 34, 1413–1419. [Google Scholar] [CrossRef]
- Tian, L.; Huang, Y.F.; Wang, L.Q.; Bai, H.; Wang, Q.; Jiang, J.J.; Wu, Y.; Gao, M. Corneal biomechanical assessment using corneal visualization scheimpflug technology in keratoconic and normal eyes. J. Ophthalmol. 2014, 2014, 147516. [Google Scholar] [CrossRef] [Green Version]
- Pena-Garcia, P.; Peris-Martinez, C.; Abbouda, A.; Ruiz-Moreno, J.M. Detection of subclinical keratoconus through non-contact tonometry and the use of discriminant biomechanical functions. J. Biomech. 2016, 49, 353–363. [Google Scholar] [CrossRef]
- Sedaghat, M.R.; Momeni-Moghaddam, H.; Ambrosio, R., Jr.; Heidari, H.R.; Maddah, N.; Danesh, Z.; Sabzi, F. Diagnostic ability of corneal shape and biomechanical parameters for detecting frank keratoconus. Cornea 2018, 37, 1025–1034. [Google Scholar] [CrossRef]
- Kataria, P.; Padmanabhan, P.; Gopalakrishnan, A.; Padmanaban, V.; Mahadik, S.; Ambrosio, R., Jr. Accuracy of Scheimpflug-derived corneal biomechanical and tomographic indices for detecting subclinical and mild keratectasia in a South Asian population. J. Cataract. Refract. Surg. 2018. [Google Scholar] [CrossRef] [PubMed]
- Roberts, C.J.; Mahmoud, A.M.; Bons, J.P.; Hossain, A.; Elsheikh, A.; Vinciguerra, R.; Vinciguerra, P.; Ambrosio, R., Jr. Introduction of two novel stiffness parameters and interpretation of air puff-induced biomechanical deformation parameters with a dynamic scheimpflug analyzer. J. Refract. Surg. (Thorofare, N.J.: 1995) 2017, 33, 266–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinciguerra, R.; Ambrosio, R., Jr.; Elsheikh, A.; Roberts, C.J.; Lopes, B.; Morenghi, E.; Azzolini, C.; Vinciguerra, P. Detection of keratoconus with a new biomechanical index. J. Refract. Surg. (Thorofare, N.J.: 1995) 2016, 32, 803–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambrosio, R., Jr.; Lopes, B.T.; Faria-Correia, F.; Salomao, M.Q.; Buhren, J.; Roberts, C.J.; Elsheikh, A.; Vinciguerra, R.; Vinciguerra, P. Integration of scheimpflug-based corneal tomography and biomechanical assessments for enhancing ectasia detection. J. Refract. Surg. (Thorofare, N.J.: 1995) 2017, 33, 434–443. [Google Scholar] [CrossRef] [Green Version]
- Sedaghat, M.R.; Momeni-Moghaddam, H.; Ambrosio, R., Jr.; Roberts, C.J.; Yekta, A.A.; Danesh, Z.; Reisdorf, S.; Khabazkhoob, M.; Heidari, H.R.; Sadeghi, J. Long-term evaluation of corneal biomechanical properties after corneal cross-linking for keratoconus: A 4-year longitudinal study. J. Refract. Surg. (Thorofare, N.J.: 1995) 2018, 34, 849–856. [Google Scholar] [CrossRef]
- Ferreira-Mendes, J.; Lopes, B.T.; Faria-Correia, F.; Salomao, M.Q.; Rodrigues-Barros, S.; Ambrosio, R., Jr. Enhanced ectasia detection using corneal tomography and biomechanics. Am. J. Ophthalmol. 2019, 197, 7–16. [Google Scholar] [CrossRef]
- Ambrosio, R., Jr.; Ramos, I.; Lopes, B.; Santhiago, M.R.; Faria-Correia, F.; Belin, M.; Binder, P.S. Ectasia susceptibility before laser vision correction. J. Cataract. Refract. Surg. 2015, 41, 1335–1336. [Google Scholar] [CrossRef]
- Luz, A.; Lopes, B.; Salomao, M.; Ambrosio, R. Application of corneal tomography before keratorefractive procedure for laser vision correction. J. Biophotonics 2016, 9, 445–453. [Google Scholar] [CrossRef]
- Lopes, B.T.; Ramos, I.C.; Salomao, M.Q.; Guerra, F.P.; Schallhorn, S.C.; Schallhorn, J.M.; Vinciguerra, R.; Vinciguerra, P.; Price, F.W., Jr.; Price, M.O.; et al. Enhanced tomographic assessment to detect corneal ectasia based on artificial intelligence. Am. J. Ophthalmol. 2018, 195, 223–232. [Google Scholar] [CrossRef]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Salomão, M.; Hoffling-Lima, A.L.; Lopes, B.; Belin, M.W.; Sena, N.; Dawson, D.G.; Ambrósio, R. Recent developments in keratoconus diagnosis. Expert Rev. Ophthalmol. 2018, 13, 329–341. [Google Scholar] [CrossRef]
- Guerra, G.; Ferreira, I.; Ramos, I.; Belin, M.W.; Ambrósio, R.J. Subclinical keratoconus detection in identical twins. Int. J. Ker. Cor. Ect. Dis. 2016, 5, 35–39. [Google Scholar]
- Ramos, I.C.; Reinstein, D.Z.; Archer, T.J.; Gobbe, M.; Salomao, M.Q.; Lopes, B.; Luz, A.; Faria-Correia, F.; Gatinel, D.; Belin, M.W.; et al. Unilateral Ectasia characterized by Advanced Diagnostic Tests. Int. J. Ker. Cor. Ect. Dis. 2016, 5, 40–51. [Google Scholar]
1st Applanation |
Moment of first applanation of the cornea during the air puff (in milliseconds). In parenthesis is the length of the applanation at this moment (in millimeters). |
Highest Concavity |
The instant that the cornea assumes its maximum concavity during the air puff (in milliseconds). In parenthesis is the length of the distance between the two peaks of the cornea at this moment (in millimeters). |
2nd Applanation |
The second applanation of the cornea during the air puff (in milliseconds). In parenthesis is the length of the applanation at this moment (in millimeters). |
Maximum Deformation |
Measurement (in millimeters) of the maximum cornea deformation during the air puff. |
Wing Distance |
The length of the distance between the two peaks of the cornea at this moment (in millimeters). |
Maximum Velocity (in) |
Maximum velocity during the ingoing phase (in meters per seconds (m/s)). |
Maximum Velocity (out) |
The maximum velocity during the outgoing phase (in meters per seconds (m/s)). |
Curvature Radius Normal |
Radius curvature of the cornea in its natural state (in millimeters). |
Curvature Radius HC |
Radius of curvature of the cornea at the time of maximum concavity during the air puff (in millimeters). |
Cornea Thickness |
Measurement of the corneal thickness (in millimeters). |
Integrated Inverse Radius |
Inverse of the radius of curvature during the concave phase of the deformation. |
Deformation Amplitude Ratio 1 or 2 mm |
The central cornea deformation divided by an average of the deformation 1 or 2 mm at either side of the center with maximum value just before 1st applanation |
IOP Measurement of the intraocular pressure (in millimeters of mercury (mmHg)). |
bIOP Biomechanically-corrected IOP |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salomão, M.Q.; Hofling-Lima, A.L.; Gomes Esporcatte, L.P.; Lopes, B.; Vinciguerra, R.; Vinciguerra, P.; Bühren, J.; Sena, N., Jr.; Luz Hilgert, G.S.; Ambrósio, R., Jr. The Role of Corneal Biomechanics for the Evaluation of Ectasia Patients. Int. J. Environ. Res. Public Health 2020, 17, 2113. https://doi.org/10.3390/ijerph17062113
Salomão MQ, Hofling-Lima AL, Gomes Esporcatte LP, Lopes B, Vinciguerra R, Vinciguerra P, Bühren J, Sena N Jr., Luz Hilgert GS, Ambrósio R Jr. The Role of Corneal Biomechanics for the Evaluation of Ectasia Patients. International Journal of Environmental Research and Public Health. 2020; 17(6):2113. https://doi.org/10.3390/ijerph17062113
Chicago/Turabian StyleSalomão, Marcella Q., Ana Luisa Hofling-Lima, Louise Pellegrino Gomes Esporcatte, Bernardo Lopes, Riccardo Vinciguerra, Paolo Vinciguerra, Jens Bühren, Nelson Sena, Jr., Guilherme Simões Luz Hilgert, and Renato Ambrósio, Jr. 2020. "The Role of Corneal Biomechanics for the Evaluation of Ectasia Patients" International Journal of Environmental Research and Public Health 17, no. 6: 2113. https://doi.org/10.3390/ijerph17062113
APA StyleSalomão, M. Q., Hofling-Lima, A. L., Gomes Esporcatte, L. P., Lopes, B., Vinciguerra, R., Vinciguerra, P., Bühren, J., Sena, N., Jr., Luz Hilgert, G. S., & Ambrósio, R., Jr. (2020). The Role of Corneal Biomechanics for the Evaluation of Ectasia Patients. International Journal of Environmental Research and Public Health, 17(6), 2113. https://doi.org/10.3390/ijerph17062113