Glomerular Filtration Rate in Former Extreme Low Birth Weight Infants over the Full Pediatric Age Range: A Pooled Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Stoll, B.J.; Hansen, N.I.; Bell, E.F.; Walsh, M.C.; Carlo, W.A.; Shankaran, S.; Laptook, A.R.; Sánchez, P.J.; Van Meurs, K.P.; Wyckoff, M.; et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993–2012. JAMA 2015, 314, 1039–1051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edstedt Bonamy, A.K.; Zeitlin, J.; Piedvache, A.; Maier, R.F.; van Heijst, A.; Varendi, H.; Manktelow, B.N.; Fenton, A.; Mazela, J.; Cuttini, M.; et al. Wide variation in severe neonatal morbidity among very preterm infants in European regions. Arch. Dis. Child. Fetal Neonatal Ed. 2019, 104, F36–F45. [Google Scholar] [CrossRef] [PubMed]
- Faa, G.; Gerosa, C.; Fanni, D.; Monga, G.; Zaffanello, M.; Van Eyken, P.; Fanos, V. Morphogenesis and molecular mechanisms involved in human kidney development. J. Cell. Physiol. 2012, 227, 1257–1268. [Google Scholar] [CrossRef] [PubMed]
- Low Birth Weight and Nephron Number Working Group. The impact of kidney development on the life course: A consensus document for action. Nephron 2017, 136, 3–49. [Google Scholar] [CrossRef] [PubMed]
- Luyckx, V.A.; Perico, N.; Somaschini, M.; Manfellotto, D.; Valensise, H.; Cetin, I.; Simeoni, U.; Allegaert, K.; Vikse, B.E.; Steegers, E.A.; et al. A developmental approach to the prevention of hypertension and kidney disease: A report from the Low Birth Weight and Nephron Number Working Group. Lancet 2017, 390, 424–428. [Google Scholar] [CrossRef] [Green Version]
- Farrance, I.; Badrick, T.; Frenkel, R. Uncertainty in measurement: A review of the procedures for determining uncertainty in measurement and its use in deriving the biological variation of the estimated glomerular filtration rate. Pract. Lab. Med. 2018, 12, e00097. [Google Scholar] [CrossRef] [PubMed]
- Murata, K.; Baumann, N.A.; Saenger, A.K.; Larson, T.S.; Rule, A.D.; Lieske, J.C. Relative performance of the MDRD and CKD-EPI equations for estimating glomerular filtration rate among patients with varied clinical presentations. Clin. J. Am. Soc. Nephrol. 2011, 6, 1963–1972. [Google Scholar] [CrossRef] [Green Version]
- Björk, J.; Nyman, U.; Berg, U.; Delanaye, P.; Dubourg, L.; Goffin, K.; Grubb, A.; Hansson, M.; Littmann, K.; Åsling-Monemi, K.; et al. Validation of standardized creatinine and cystatin C GFR estimating equations in a large multicenter European cohort of children. Pediatr. Nephrol. 2019, 34, 1087–1098. [Google Scholar] [CrossRef] [Green Version]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ 2015, 349, g7647. [Google Scholar] [CrossRef] [Green Version]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; STROBE Initiative. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. Int. J. Surg. 2014, 12, 1495–1499. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.; Zhang, Y.; Kwong, J.S.; Zhang, C.; Li, S.; Sun, F.; Niu, Y.; Du, L. The methodological quality assessment tools for preclinical and clinical studies, systematic review and meta-analysis, and clinical practice guideline: A systematic review. J. Evid. Based Med. 2015, 8, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Soriano, J.; Aguirre, M.; Oliveros, R.; Vallo, A. Long-term renal follow-up of extremely low birth weight infants. Pediatr. Nephrol. 2005, 20, 579–584. [Google Scholar] [CrossRef] [PubMed]
- Keijzer-Veen, M.G.; Schrevel, M.; Finken, M.J.; Dekker, F.W.; Nauta, J.; Hille, E.T.; Frölich, M.; van der Heijden, B.J.; Dutch POPS-19 Collaborative Study Group. Microalbuminuria and lower glomerular filtration rate at young adult age in subjects born very premature and after intrauterine growth retardation. J. Am. Soc. Nephrol. 2005, 16, 2762–2768. [Google Scholar]
- Starzec, K.; Klimek, M.; Grudzień, A.; Jagla, M.; Kwinta, P. Longitudinal assessment of renal size and function in extremely low birth weight children at 7 and 11 years of age. Pediatr. Nephrol. 2016, 31, 2119–2126. [Google Scholar] [CrossRef] [Green Version]
- Yamamura-Miyazaki, N.; Yamamoto, K.; Fujiwara, K.; Santo, Y.; Michigami, T.; Kitajima, H.; Satomura, K. Risk factors associated with a decreased estimated glomerular filtration rate based on cystatin C levels in school-age children with extremely low birthweight. Nephrology 2017, 22, 463–469. [Google Scholar] [CrossRef]
- Raaijmakers, A.; Zhang, Z.Y.; Claessens, J.; Cauwenberghs, N.; van Tienoven, T.P.; Wei, F.F.; Jacobs, L.; Levtchenko, E.; Pauwels, S.; Kuznetsova, T.; et al. Does extremely low birth weight predispose to low-renin hypertension? Hypertension 2017, 69, 443–449. [Google Scholar] [CrossRef]
- Vollsæter, M.; Halvorsen, T.; Markestad, T.; Øymar, K.; Ueland, P.M.; Meyer, K.; Midttun, Ø.; Bjørke-Monsen, A.L. Renal function and blood pressure in 11 year old children born extremely preterm or small for gestational age. PLoS ONE 2018, 13, e0205558. [Google Scholar] [CrossRef]
- Kwinta, P.; Klimek, M.; Drozdz, D.; Grudzień, A.; Jagla, M.; Zasada, M.; Pietrzyk, J.J. Assessment of long-term renal complications in extremely low birth weight children. Pediatr. Nephrol. 2011, 26, 1095–1103. [Google Scholar] [CrossRef] [Green Version]
- Bacchetta, J.; Harambat, J.; Dubourg, L.; Guy, B.; Liutkus, A.; Canterino, I.; Kassaï, B.; Putet, G.; Cochat, P. Both extrauterine and intrauterine growth restriction impair renal function in children born very preterm. Kidney Int. 2009, 76, 445–452. [Google Scholar] [CrossRef] [Green Version]
- Zaffanello, M.; Brugnara, M.; Bruno, C.; Franchi, B.; Talamini, G.; Guidi, G.; Cataldi, L.; Biban, P.; Mella, R.; Fanos, V. Renal function and volume of infants born with a very low birth-weight: A preliminary cross-sectional study. Acta Paediatr. 2010, 99, 1192–1198. [Google Scholar]
- Matsumura, K.; Matsuzaki, Y.; Hida, M.; Ikeda, K.; Awazu, M. Tubular dysfunction in extremely low birth weight survivors. Clin. Exp. Nephrol. 2019, 23, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Gilarska, M.; Raaijmakers, A.; Zhang, Z.Y.; Staessen, J.A.; Levtchenko, E.; Klimek, M.; Grudzień, A.; Starzec, K.; Allegaert, K.; Kwinta, P. Extremely low birth weight predisposes to impaired renal health: A pooled analysis. Kidney Blood Press. Res. 2019, 44, 897–906. [Google Scholar] [CrossRef] [PubMed]
Study | Number, Age | Assay, Formula | Results | Comments |
---|---|---|---|---|
Rodriguez-Soriano 2005 [12] | 40 cases (8.6, 6.1–12.4), 43 controls (8.5, 5.2–13) y. | modified Jaffé crea, with subsequent eGFR Schwartz. | cases vs. controls: 117 (17, range 86–152) vs. 131 (17, range 97–173) mL/min/1.73 m2 | single center, 40/75 ELBW cases included. Controls minor surgery cases. |
Keijzer-Veen 2007 [13] | 23/52 ELBW-SGA cases (20.7, SD 0.3); 30 controls (20.7, SD 0.8) y. | inulin clearance, at baseline and stimulated (protein rich lunch + low (2 µg/kg/min dopa). | cases vs. controls (baseline/stimulated): 104, SD 17/116, SD 27 vs. 120, SD 28 to 141, SD 34 mL/min; 107, SD 15 to 119, SD 23 vs. 112, SD 22, to 131, SD 26 mL/min/1.73 m2 | cases recruited from a population follow-up study former preterms (the Netherlands); controls volunteers. |
Kwinta 2011 [18] | 78 cases, mean age 6.5; 38 controls (6.9) y. | Cys C, nephelometric assay (ref value 4–10 y 0.53–0.95 mg/L). | cases vs. controls (7 y): Cys C 0.64 (0.07) vs. 0.59 (0.07) mg/L. Using the Hoek formula, equal to 121 vs 131 mL/min/1.73 m2. | single center, 78/89 cases included, controls from general practitioners’ offices. |
Starzec 2016 [14] | 64/78 cases re-studied at 10.7; 36/38 controls at 11 y. | Cys C + eGFR, based on Hoek formula; crea (assay ?) | cases vs. controls (11 y): Cys C 0.72 (SD 0.15) vs. 0.61 (SD 0.08) mg/L; eGFR 107.3 to 127.4 mL/min/1.73 m2; crea 43.2, SD 7.7 vs. 46.3, SD 7.6 µmol/L) | single center, 64/78 cases retained, controls from general practitioner offices. |
Yamamura-Miyazaki 2017 [15] | 48 cases, mean age 8.3 y, and 48 controls, 8.1 y. | Cys C, latex turbidimetry; Cys-eGFR (Uemura formula); Crea enzymatic; Crea-eGFR (assay ?) | Cases vs. controls: Cys C 1.08 (0.17) vs. 0.82 (0.09) mg/L, Cys-eGFR 90.6 (15.5) vs. 120.8 (14.5) mL/min/1.73 m2; crea 0.46 (0.09) vs. 0.37 (0.08) mg/dl; crea-eGFR 95.4 (15.5) vs. 123.9 (14.5) mL/min/1.73 m2 | single center, 48/86 cases included; controls were outpatient clinics cases. |
Raaij-makers 2017 [16] | 59 cases (11.3, SD 1.4); 71 controls (10.9, SD 1.3) y. | Cys C (turbidimetry), Cys-eGFR (CAPA formula) Crea (enzymatic), Crea-eGFR (Schwartz). | Cases vs. controls: Cys C 0.96 (0.12) vs. 0.87 (0.11) mg/L; Cys-eGFR 97.2 (13.6) vs. 108.7 (15.3) mL/min/1.73 m2; Crea 0.57 (0.1) vs. 0.56 (0.08) mg/dl; Crea-eGFR 111 (17) vs. 111 (15) mL/min/1.73 m2. | single center, 93/140 cases, but blood sampling in only 59 cases. Controls were volunteers. |
Vollsaeter 2018 [17] | 17 SGA cases (mean 11.3), and 45 controls (11.4) y. | Cys C (immuno-maldi); Crea (chromatography); eGFR Schwartz, Gao (crea), Zappitelli (crea+Cys C) | Cases vs. controls: Cys C 0.91 vs 0.86 mg/L; Cys-GFR; Crea 53.6 vs. 51 µmol/L; GFRSchw 99 vs. 110; GFRGao 98.4 va 105.6; GFRZapp 95.1 vs. 104.8 mL/min/1.73 m2. | regional cohort with 17 SGA-ELBW cases. Controls volunteers from same maternity. |
Study | Number, Age | Assay, Formula | Results | Comments |
---|---|---|---|---|
Bacchetta 2009 [19] | 50 cases, 7.6 (range 5.8–10.3) y. | inulin clearance | average GFR 112 (range 91–158 mL/min/1.73 m2) | single center study, 50/143 with GFR in 46/50 cases, 39 ELBW cases |
Zaffanello 2010 [20] | 26 ELBW cases. 5.3 (95% CI 5.2–6.3) y. | Cys C assay (nephelometry); crea (modified Jaffé); Schwartz (crea, crea/Cys-C/BUN) | Median Cys C 0.67 mg/L; crea 0.42 mg/dl; Schwartzcrea: 109 mL/min/1.73 m2; Schwartzcrea-CysC-BUN: 94.5 mL/min/1.73 m2 | single center study, recruited 69/97 contacted cases, but 1000–1500 g birth weight cases also recruited. |
Matsumura 2019 [21] | 43 cases with follow-up, 7 (range 2–22) y. | Crea, assay unknown; eGFR Japanese children. | only qualitative reporting: 12 (28%) had low GFR (<90 mL/min/1.73 m2). | single center, retrospective, cross sectional study. |
Questions Q1–Q8 Case-Control | Vollsaeter 2018 [17] | Raaijmakers 2017 [16] | Yamamura-Miyazaki 2017 [15] | Starzec 2016 [14] | Keyzer-Veen 2007 [13] | Rodriguez-Soriano 2005 [12] |
case definition adequate | + | + | + | + | + | + |
representativeness cases | + | + | + | + | unknown | + |
selection controls | + | + | outpatients | outpatients | + | minor surgery |
definition controls | + | + | outpatients | outpatients | + | minor surgery |
comparability cases-controls | + | + | + | + | + | + |
ascertainment exposure | + | + | + | + | + | + |
ascertainment method | + | + | + | + | + | + |
response rate * | +(93%) | +(66%) | +(55%) | +(82%) | unknown | +(84%) |
questions Q1–Q8 case cohort | Matsumura 2019 [21] | Zaffanello 2010 [20] | Bachetta 2009 [19] | |||
representativeness | + | + | + | |||
selection non-exposed | n.a. | n.a. | n.a. | |||
ascertainment exposure | + | + | + | |||
outcome of interest presence | + | + | + | |||
comparability | + | + | + | |||
outcome assessment | + | + | + | |||
follow-up, period | + | + | + | |||
follow-up, adequacy | +(81%) | +(71%) | +(35%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goetschalckx, E.; Mekahli, D.; Levtchenko, E.; Allegaert, K. Glomerular Filtration Rate in Former Extreme Low Birth Weight Infants over the Full Pediatric Age Range: A Pooled Analysis. Int. J. Environ. Res. Public Health 2020, 17, 2144. https://doi.org/10.3390/ijerph17062144
Goetschalckx E, Mekahli D, Levtchenko E, Allegaert K. Glomerular Filtration Rate in Former Extreme Low Birth Weight Infants over the Full Pediatric Age Range: A Pooled Analysis. International Journal of Environmental Research and Public Health. 2020; 17(6):2144. https://doi.org/10.3390/ijerph17062144
Chicago/Turabian StyleGoetschalckx, Elise, Djalila Mekahli, Elena Levtchenko, and Karel Allegaert. 2020. "Glomerular Filtration Rate in Former Extreme Low Birth Weight Infants over the Full Pediatric Age Range: A Pooled Analysis" International Journal of Environmental Research and Public Health 17, no. 6: 2144. https://doi.org/10.3390/ijerph17062144
APA StyleGoetschalckx, E., Mekahli, D., Levtchenko, E., & Allegaert, K. (2020). Glomerular Filtration Rate in Former Extreme Low Birth Weight Infants over the Full Pediatric Age Range: A Pooled Analysis. International Journal of Environmental Research and Public Health, 17(6), 2144. https://doi.org/10.3390/ijerph17062144