Early Warning Method for Regional Water Resources Carrying Capacity Based on the Logical Curve and Aggregate Warning Index
Abstract
:1. Introduction
2. Theoretical Framework
3. Methodology
3.1. Identification of EWS for EWS-RWRCC
3.2. Determining EWSI Warning Limits
3.3. AWI Design for EWS-RWRCC
3.4. Study Area
4. Example of Application
4.1. Identification of EWSI in Anhui Province
4.1.1. Benchmark Index
4.1.2. Early Warning Sign Index
4.2. Determination of EWS Warning Limits in Anhui Province
4.3. AWI Design for EWS-RWRCC in Anhui Province
4.3.1. EWSI Performance Analysis
4.3.2. The Aggregate Warning Index
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tiwari, P.C.; Joshi, B. Environmental changes and sustainable development of water resources in the Himalayan Headwaters of India. Water Resour. Manag. 2012, 26, 883–907. [Google Scholar] [CrossRef]
- AI-Weshah, R. The role of UNESCO in sustainable water resources management in the Arab World. Desalination 2003, 152, 1–13. [Google Scholar] [CrossRef]
- Maier, H.R.; Kapelan, Z.; Kasprzyk, J.; Kollat, J.; Matott, L.S.; Cunha, M.; Dandy, G.C.; Gibbs, M.S.; Keedwell, E.C.; Marchi, A.; et al. Evolutionary algorithms and other metaheuristics in water resources: Current status, research challenges and future directions. Environ. Model. Softw. 2014, 62, 271–299. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, K.; Lebel, L.; Buizer, J.L.; Addams, C.L.; Matson, P.; Mccullough, E.; Garden, P.; Saliba, G.; Finan, T.J. Linking knowledge with action in the pursuit of sustainable water-resources management. Proc. Natl. Acad. Sci. USA 2010, 113, 4591–4596. [Google Scholar] [CrossRef] [Green Version]
- Claudia, P.W.; Margaret, P.; Keith, R. Enhancing water security for the benefits of humans and nature-the role of governance. Curr. Opin. Environ. Sustain. 2013, 5, 676–684. [Google Scholar] [CrossRef]
- Bogardi, J.J.; Dudgeon, D.; Lawford, R.; Flinkerbusch, E.; Meyn, A.; Pahi-Wostl, C.; Vielhauer, K.; Vörösmarty, C. Water security for a planet under pressure: Interconnected challenges of a changing world call for sustainable solutions. Curr. Opin. Environ. Sustain. 2012, 4, 35–43. [Google Scholar] [CrossRef]
- Grant, S.; Saphores, J.D.; Feldman, D.L.; Hamiton, A.J.; Fletcher, T.D.; COOK, P.L.M.; Stewardson, M.J.; Sanders, B.; Levin, L.A.; Ambrose, R.F.; et al. Taking the “waste” out of “wastewater” for human water security and ecosystem sustainability. Science 2012, 337, 681–686. [Google Scholar] [CrossRef] [Green Version]
- Cook, C.; Barker, K. Water security: Debating an emerging paradigm. Glob. Environ. Chang. 2012, 22, 94–102. [Google Scholar] [CrossRef]
- Wang, J.H.; Jiang, D.C.; Xiao, W.H.; Chen, Y.; Hu, P. Study on theoretical analysis of RWRCC: Definition and scientific topics. J. Hydraul. Eng. 2017, 48, 1399–1409. [Google Scholar]
- Cui, Y.; Feng, P.; Jin, J.L.; Liu, L. Regional water resources carrying capacity evaluation and diagnosis based on set pair analysis and improved entropy weight method. Entropy 2018, 20, 359. [Google Scholar] [CrossRef] [Green Version]
- Scheffer, M.; Bascompte, J.; Brock, W.A.; Brovkin, V.; Carpenter, S.R.; Dakos, V.; Held, H.; NES, E.H.; Rietkerk, M.; Sugihara, G. Early-warning signals for critical transitions. Nature 2009, 461, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Klein, P.A.; Moore, G.H. The leading indicator approach to economic forecasting--retrospect and prospect. J. Forecast. 1983, 2, 119–135. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Zhou, K.; Wang, Y.F. Basic points and progress in technical methods of early-warning of the national resource and environmental carrying capacity (V 2016). Prog. Geogr. 2017, 36, 266–276. [Google Scholar]
- Feng, Z.M.; Sun, T.; Yang, Y.Z.; Yan, H.M. The Progress of resources and environment carrying capacity: From single-factor carrying capacity research to comprehensive research. J. Resour. Ecol. 2018, 9, 125–134. [Google Scholar]
- Alfieri, L.; Burek, P.A.; Dutra, E.; Krzeminski, B.; Muraro, D.; Thielen, J.; Pappenberger, F. GloFAS—Global ensemble streamflow forecasting and flood early warning. Hydrol. Earth Syst. Sci. 2013, 17, 1161–1175. [Google Scholar] [CrossRef] [Green Version]
- Alfieri, L.; Pozo, J.T. A European precipitation index for extreme rain-storm and flash flood early warning. Meteorol. Appl. 2012, 22, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Koriche, S.A.; Rientjes, T.H.M. Application of satellite products and hydrological modeling for flood early warning. Phys. Chem. Earth Parts A/B/C 2016, 93, 12–23. [Google Scholar] [CrossRef]
- Tomperi, J.; Juuso, E.; Leiviska, K. Early warning of changing drinking water quality by trend analysis. J. Water Health 2016, 14, 433–442. [Google Scholar] [CrossRef]
- Ianis, D.; Mihai, F.; Rodriguez, M.J. Drinking water source monitoring using early warning systems based on data mining techniques. Water Resour. Manag. 2018, 33, 129–140. [Google Scholar] [CrossRef]
- Ding, X.; Zhang, J.; Jiang, G.; Zhang, S. Early warning and forecasting system of water quality safety for drinking water source areas in Three Gorges Reservoir Area, China. Water 2017, 9, 465. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Sun, Y.; Wu, J. Environmental warning system based on the DPSIR model: A practical and concise method for environmental assessment. Sustainability 2018, 10, 1728. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Bai, H. Risk prediction of rural public security environmental carrying capacity based on the risk entropy. Nat. Hazards 2018, 90, 157–171. [Google Scholar] [CrossRef]
- Tan, Y.Y.; Wang, X. An Early Warning System of Water Shortage in Basins Based on SD Model. Procediaenvironmental Sci. 2010, 2, 399–406. [Google Scholar] [CrossRef] [Green Version]
- Lane, M.C.; Dawes, L.A.; Grace, P. The essential parameters of a resource-based carrying capacity assessment model: An Australian case study. Ecol. Model. 2014, 272, 220–231. [Google Scholar] [CrossRef] [Green Version]
- Chen, X. Indices selection for the early warning system of tourism macroeconomic performance: Basing on time difference relation method. Ecol. Econ. 2013, 28, 87–89. [Google Scholar]
- Brockwell, P.J.; Davis, R.A. Time Series: Theory and Methods; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Jin, J.L.; Shen, S.X.; Li, J.Q.; Li, J.Q.; Cui, Y.; Wu, C.G. Assessment and diagnosis analysis method for RWRCC based on connection number. J. North China Univ. Water Resour. Electr. Power 2018, 39, 31–39. [Google Scholar]
- Li, H.; Jin, J.L.; Wu, C.G.; Zhang, L.B. Dynamic evaluation and diagnostic analysis for RWRCC in Anhui province based on connection number. South-North Water Transf. Water Sci. Technol. 2018, 16, 42–49. [Google Scholar]
- Ren, Y.T.; Lu, J.; Fu, Q. Sanjiang Plain water safety warning research system based of evaluation index. Yellow River 2017, 39, 75–80. [Google Scholar]
- Jin, G.Y. Stochastic Analysis of Hydrology and Water Resources; Press of University of Science and Technology of China: Hefei, China, 1993. [Google Scholar]
- Kaminsky, G.; Lizondo, S.; Reinhart, C.M. Leading indicators of currency crises. IMF Econ. Rev. 1998, 45, 1–48. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Gao, Y. A Study on KLR Financial Crisis Early-WarningModel. Front. Econ. China 2010, 5, 254–275. [Google Scholar] [CrossRef]
- Zou, L.L.; Jin, J.L.; Zhou, Y.L. Filtration model of integrated risk assessment index system of reservoir induced seismicity based on fuzzy analytic hierarchy process and accelerating genetic algorithm. Seismol. Geol. 2010, 32, 628–637. [Google Scholar]
- Jin, J.L.; Wu, K.Y.; Li, R.Z. Region water security evaluation method based on information entropy and improved fuzzy analytic hierarchy process. J. Hydroelectr. Eng. 2007, 26, 61–66. [Google Scholar]
- Jin, J.L.; Wei, Y.M.; Ding, J. Fuzzy comprehensive evaluation model based on improved analytic hierarchy process. J. Hydraul. Eng. 2004, 03, 65–70. [Google Scholar]
- Jin, J.L.; Dong, T.; Li, J.Q.; Zhang, L.B.; Li, H. RWRCC evaluation method under different carrying standards. Adv. Water Sci. 2018, 29, 31–39. [Google Scholar]
- Zhou, R.X.; Pan, Z.W.; Jin, J.L.; Li, C.H.; Ning, S.W. Forewarning model of regional water resources carrying capacity based on combination weights and entropy principles. Entropy 2017, 19, 574. [Google Scholar] [CrossRef] [Green Version]
- Poslad, S.; Middleton, S.E.; Chaves, F.; Tao, R.; Necmioglu, O.; Bügel, U. A Semantic IoT Early Warning System for Natural Environment Crisis Management. IEEE Trans. Emerg. Top. Comput. 2015, 3, 246–257. [Google Scholar] [CrossRef]
- Yoon, W.J.; Park, K.S. A study on the market instability index and risk warning levels in early warning system for economic crisis. Digit. Signal Process. 2014, 29, 35–44. [Google Scholar] [CrossRef]
- Fang, S.B.; Jia, R.F.; Tu, W.R.; Sun, Z.L. Research on the influencing factors of comprehensive water consumption by impulse response function analysis. Water 2017, 9, 18. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Cheng, J.H.; Zhu, Y.L.; Lu, P.X. Evaluation on the coupling coordination of resources and environment carrying capacity in Chinese mining economic zones. Resour. Policy 2017, 53, 20–25. [Google Scholar] [CrossRef]
- Rodríguez, J.; Mateos, A. Carrying capacity, carnivoran richness and hominin survival in Europe. J. Hum. Evol. 2018, 118, 72–88. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.L.; Chen, M.L.; Li, J.Q.; Zhang, L.B.; Wu, C.G. Advance in early warning of water resources carrying capacity. Adv. Water Sci. 2018, 29, 131–144. [Google Scholar] [CrossRef]
- Xu, W.H.; Yang, Y.Y.; Zhang, L.; Xiao, Y.; Wang, X.K.; Ouyang, Z.Y. Evaluation methods and case study of regional ecological carrying capacity for early-warning. Prog. Geogr. 2017, 36, 306–312. [Google Scholar]
- Xie, Y.Y.; Wu, H.; Cui, D.; Zeng, W.H. Chinese early warning of environmental carrying capacity based on the climate index method. China Environ. Sci. 2019, 39, 442–450. [Google Scholar] [CrossRef]
Crisis Occurs in the Next Year | No Crisis Occurs in the Next Year | |
---|---|---|
Index sends out signal | A | B |
Index does not send out signal | C | D |
Classification | Mark | Index | Calculation Method or Data Source |
---|---|---|---|
Water quantity | X1 | Water supply per capita, m3 | Water supply/population |
X2 | Surface water supply, 100 million m3 | Statistic yearbook | |
Water quality | X3 | Compliance rate of national water function zone, % | Statistic yearbook |
X4 | Compliance rate of drinking water source quality, % | Statistic yearbook | |
X5 | Rate of better river water quality (≥Grade III), % | Statistic yearbook | |
Economic development | X6 | GDP per capita, 10,000 yuan | GDP/total population |
X7 | Population density, person·km-2 | Population/land area | |
X8 | Percent of urban population, % | Urban population/total population | |
X9 | Percent of agricultural water consumption, % | Agricultural water consumption/total water consumption | |
Water utilization | X10 | Water consumption per capita, m3 | Water consumption/total population |
X11 | Water consumption per 10,000 yuan of GDP, m3 | Industrial water consumption/GDP | |
X12 | Water consumption of industrial added value, m3 | Statistic yearbook | |
X13 | Water consumption of farmland irrigation, m3 | Statistic yearbook | |
X14 | Ecological water consumption, % | Statistic yearbook | |
Water efficiency | X15 | Percent of effective irrigation, % | Effective irrigation area/cultivated area |
X16 | Repetitive use rate of industrial water, % | Statistic yearbook | |
X17 | Water consumption rate, % | Statistic yearbook | |
Resource matching | X18 | Water resources of farmland, m3/km2 | Total water resources/cultivated area |
X19 | Water resources per capita, m3 | Total water resources/population | |
Development degree | X20 | Annual water supply modulus, 104 m3/km2 | Annual water supply/land area |
X21 | Control rate of surface water, % | Project water storage/surface water resources amount | |
X22 | Percent of water-saving irrigation, % | Water-saving irrigation area /effective irrigation area | |
Water supply level | X23 | Average daily coefficient, m3/day | Statistic yearbook |
X24 | Groundwater supply capacity, % | Groundwater supply/total water supply | |
X25 | Tap water use rate in rural areas, % | Statistic yearbook |
Index | |R(i, l)| | l | Index | |R(i, l)| | l |
---|---|---|---|---|---|
X1 | 0.412 | 0 | X14 | 0.698 | 1 |
X2 | 0.603 | −1 | X15 | 0.713 | 0 |
X3 | 0.653 | 2 | X16 | 0.669 | −1 |
X4 | 0.775 | 0 | X17 | 0.433 | 0 |
X5 | 0.602 | 1 | X18 | 0.779 | 1 |
X6 | 0.664 | −1 | X19 | 0.736 | 1 |
X7 | 0.728 | 2 | X20 | 0.635 | 2 |
X8 | 0.684 | 0 | X21 | 0.602 | 0 |
X9 | 0.634 | 1 | X22 | 0.701 | 1 |
X10 | 0.769 | 1 | X23 | 0.651 | −1 |
X11 | 0.371 | 0 | X24 | 0.667 | 0 |
X12 | 0.462 | 0 | X25 | 0.717 | 2 |
X13 | 0.736 | 2 |
Classification | Mark | Type of Index |
---|---|---|
Water quantity | WS1 (X2) | Leading |
Water quality | WS2 (X4) | Synchronous |
Economic development | WS3 (X6) WS4 (X8) | Leading Synchronous |
Water efficiency | WS5 (X15) WS6 (X16) | Synchronous Leading |
Development degree | WS7 (X21) | Synchronous |
Water supply level | WS8 (X23) WS9 (X24) | Leading Synchronous |
Index | R2 | rc(i, t) | r1(i, t) | r2(i, t) | Warning limits | ||
---|---|---|---|---|---|---|---|
Loadable | Critical | Overload | |||||
WS1 | 0.947 | 0.048 | −0.186 | 0.283 | ≥0.09 | (0.09, 0.01] | <0.01 |
WS2 | 0.963 | 0.004 | −0.034 | 0.082 | ≥0.04 | (0.04, −0.01] | <−0.01 |
WS3 | 0.920 | 0.154 | −0.045 | 0.353 | <0.05 | [0.05, 0.25) | ≥0.25 |
WS4 | 0.932 | 0.037 | 0.016 | 0.059 | <0.03 | [0.03, 0.05) | ≥0.05 |
WS5 | 0.751 | 0.004 | −0.057 | 0.065 | ≥0.03 | (0.03, −0.06] | <−0.06 |
WS6 | 0.932 | 0.150 | −0.089 | 0.450 | ≥0.25 | (0.25, 0.05] | <0.05 |
WS7 | 0.941 | 0.041 | −0.379 | 0.461 | ≥0.25 | (0.25, −0.17] | <−0.17 |
WS8 | 0.800 | 0.102 | −0.110 | 0.248 | ≥0.18 | (0.18, 0.02] | <0.02 |
WS9 | 0.845 | 0.052 | −0.255 | 0.360 | ≥0.21 | (0.21, −0.10] | <−0.10 |
Index | A | B | C | D | A/(A + B) | (A + C)/(A + B + C + D) | B/(B + D)/A/(A + C) |
---|---|---|---|---|---|---|---|
WS1 | 2 | 3 | 2 | 2 | 0.40 | 0.44 | 1.20 |
WS2 | 2 | 4 | 2 | 1 | 0.33 | 0.44 | 1.60 |
WS3 | 4 | 3 | 0 | 2 | 0.57 | 0.44 | 0.60 |
WS4 | 3 | 4 | 1 | 1 | 0.43 | 0.44 | 1.07 |
WS5 | 3 | 4 | 1 | 1 | 0.43 | 0.44 | 1.07 |
WS6 | 4 | 3 | 0 | 2 | 0.57 | 0.44 | 0.60 |
WS7 | 3 | 4 | 1 | 1 | 0.43 | 0.44 | 1.07 |
WS8 | 4 | 3 | 0 | 2 | 0.57 | 0.44 | 0.60 |
WS9 | 3 | 4 | 1 | 1 | 0.43 | 0.44 | 1.07 |
Indexes | Weights | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
---|---|---|---|---|---|---|---|---|---|---|
WS1 | 0.0871 | 1 | 3 | 1 | 1 | 2 | 3 | 2 | 1 | 3 |
WS3 | 0.1739 | 3 | 3 | 3 | 2 | 3 | 1 | 2 | 3 | 1 |
WS4 | 0.0978 | 3 | 1 | 1 | 2 | 3 | 2 | 3 | 2 | 2 |
WS5 | 0.0978 | 3 | 1 | 2 | 3 | 2 | 3 | 1 | 2 | 2 |
WS6 | 0.1739 | 3 | 1 | 3 | 2 | 2 | 3 | 3 | 2 | 1 |
WS7 | 0.0978 | 1 | 3 | 3 | 2 | 2 | 1 | 3 | 2 | 2 |
WS8 | 0.1739 | 3 | 3 | 3 | 2 | 3 | 1 | 3 | 2 | 1 |
WS9 | 0.0978 | 1 | 3 | 2 | 1 | 3 | 3 | 3 | 3 | 2 |
AWIt | 2.4 | 2.2 | 2.4 | 1.9 | 2.5 | 2.0 | 2.5 | 2.1 | 1.5 | |
Signal light |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Jin, J.; Ning, S.; Zhou, Y.; Udmale, P. Early Warning Method for Regional Water Resources Carrying Capacity Based on the Logical Curve and Aggregate Warning Index. Int. J. Environ. Res. Public Health 2020, 17, 2206. https://doi.org/10.3390/ijerph17072206
Chen M, Jin J, Ning S, Zhou Y, Udmale P. Early Warning Method for Regional Water Resources Carrying Capacity Based on the Logical Curve and Aggregate Warning Index. International Journal of Environmental Research and Public Health. 2020; 17(7):2206. https://doi.org/10.3390/ijerph17072206
Chicago/Turabian StyleChen, Menglu, Juliang Jin, Shaowei Ning, Yuliang Zhou, and Parmeshwar Udmale. 2020. "Early Warning Method for Regional Water Resources Carrying Capacity Based on the Logical Curve and Aggregate Warning Index" International Journal of Environmental Research and Public Health 17, no. 7: 2206. https://doi.org/10.3390/ijerph17072206
APA StyleChen, M., Jin, J., Ning, S., Zhou, Y., & Udmale, P. (2020). Early Warning Method for Regional Water Resources Carrying Capacity Based on the Logical Curve and Aggregate Warning Index. International Journal of Environmental Research and Public Health, 17(7), 2206. https://doi.org/10.3390/ijerph17072206