Regional Aquifer Vulnerability and Pollution Sensitivity Analysis of Drastic Application to Dahomey Basin of Nigeria
Abstract
:1. Introduction
1.1. Study Area
1.2. Hydrogeology
2. Materials and Methods
2.1. DRASTIC Parameters
2.2. Sensitivity Analysis
3. Results and Discussion
3.1. DRASTIC Vulnerability Parameters
3.2. Depth-to-Water Table
3.3. Net Recharge
3.4. Aquifer Media
3.5. Soil Media
3.6. Topography
3.7. Impact of Vadose Zone
3.8. Hydraulic Conductivity
3.9. DRASTIC Map
3.10. Sensitivity of the Map
3.11. Map Removal Sensitivity
3.12. Single-Parameter Sensitivity
3.13. Parameter Correlation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nkhuwa, D.; Abiye, T.; Oga, M.; Adelana, S.; Tindimugaya, C. Urban Groundwater Management and Protection in Sub-Saharan Africa. In IAH—Selected Papers on Hydrogeology; Adelana, S.M.A., MacDonald, A.M., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 171–197. [Google Scholar]
- National Research Council (NRC). Groundwater Vulnerability Assessment, Contamination Potential Underconditions of Uncertainty; National Academy Press: Washington, DC, USA, 1993. [Google Scholar]
- Stigter, T.; Ribeiro, L.; Dill, A.C. Evaluation of an intrinsic and a specific vulnerability assessment method in comparison with groundwater salinisation and nitrate contamination levels in two agricultural regions in the south of Portugal. Hydrogeol. J. 2005, 14, 79–99. [Google Scholar] [CrossRef]
- Mendoza, A.; Barmen, G. Assessment of groundwater vulnerability in the Río Artiguas basin, Nicaragua. Environ. Earth Sci. 2006, 50, 569–580. [Google Scholar] [CrossRef]
- Margat, J. Vulnerabilite des Nappes Deau Souterraine a la Pollution: Bases de la Cartographie; Document 68 SGL 198 HYD; Bureau de Recherches Geologiques et Minieres: Orleans, France, 1968. [Google Scholar]
- Foster, S.S.D. Fundamental Concepts in Aquifer Vulnerability, Pollution Risk and Protection Strategy. In Vulnerability of Soil and Groundwater to Pollutants; van Duijvenboden, W., van Waegeningh, H.G., Eds.; Netherlands Organization for Applied Scientific Research: The Hague, The Netherlands, 1987; pp. 69–86. [Google Scholar]
- Van Stempvoort, D.R.; Ewert, L.; Wassenaar, L.I. Aquifer vulnerability index: A GIS compatible method for groundwater vulnerability mapping. Can. Water Resour. J. 1993, 18, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Civita, M. Le Carte Della Vulnerabilita Degli Acquiferiall Inquinamento, Teoria and Practica (Aquifer Vulnerability Maps to Pollution); Pitagora: Bologna, Italy, 1994. [Google Scholar]
- Oke, S.A.; Vermeulen, D.; Gomo, M. Aquifer vulnerability assessment of the Dahomey Basin using the RTt method. Environ. Earth Sci. 2016, 75, 964. [Google Scholar] [CrossRef]
- Doerfliger, N.; Jeannin, P.-Y.; Zwahlen, F. Water vulnerability assessment in karst environments: A new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environ. Earth Sci. 1999, 39, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Aller, L.; Bennett, T.; Lehr, J.; Petty, R.; Hackett, G. DRASTIC: A Standardised System for Evaluating Ground Water Pollution Potentialusing Hydrogeologic Settings; National Water Well Association: Dublin, OH, USA, 1987. [Google Scholar]
- Babiker, I.S.; Mohammed, M.A.A.; Hiyama, T.; Kato, K. A GIS-Based DRATIC Model for Assessing Aquifer Vulnerability in Kakamigahara Heights, Gifu Prefecture, Central Japan. Sci. Total Environ. 2005, 345, 127–140. [Google Scholar] [CrossRef]
- Vias, J.M.; Andreo, B.; Perles, M.J.; Carrasco, F. A comparative study of four schemes for groundwater vulnerability mapping in a diffuse flow carbonate aquifer under Mediterranean climatic conditions. Environ. Geol. 2005, 47, 586–595. [Google Scholar] [CrossRef]
- Panagopoulos, G.P.; Antonakos, A.K.; Lambrakis, N.J. Optimization of the DRASTIC method for groundwater vulnerability assessment via the use of simple statistical methods and GIS. Hydrogeol. J. 2006, 14, 894–911. [Google Scholar] [CrossRef]
- Mende, A.; Astorga, A.; Neumann, D. Strategy for groundwater management in developing countries: A case study in northern Costa Rica. J. Hydrol. 2007, 334, 109–124. [Google Scholar] [CrossRef]
- Rahman, A. A GIS based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Aligarh, India. Appl. Geogr. 2008, 28, 32–53. [Google Scholar] [CrossRef]
- Saidi, S.; Bouri, S.; Ben Dhia, H.; Anselme, B. Assessment of groundwater risk using intrinsic vulnerability and hazard mapping: Application to Souassi aquifer, Tunisian Sahel. Agric. Water Manag. 2011, 98, 1671–1682. [Google Scholar] [CrossRef]
- Edet, A. An aquifer vulnerability assessment of the Benin Formation aquifer, Calabar, southeastern Nigeria, using DRASTIC and GIS approach. Environ. Earth Sci. 2013, 71, 1747–1765. [Google Scholar] [CrossRef]
- Ghosh, A.; Tiwari, A.K.; Das, S. A GIS based DRASTIC model for assessing groundwater vulnerability of Katri Watershed, Dhanbad, India. Model. Earth Syst. Environ. 2015, 1, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, A.K.; Singh, P.K.; De Maio, M. Evaluation of aquifer vulnerability in a coal mining of India by using GIS-based DRASTIC model. Arab. J. Geosci. 2016, 9, 1–15. [Google Scholar] [CrossRef]
- Goldscheider, N.; Klute, M.; Sturm, S.; Hötzl, H. The PI method: A GIS-based approach to mapping groundwater vulnerability with special consideration of karst aquifers. Z. Angew Geol. 2000, 46, 157–166. [Google Scholar]
- Oke, S.A. An Overview of Aquifer Vulnerability; Aquifers: Properties, Roles and Research; Bailey, H., Ed.; Nova Science Publishers: New York, NY, USA, 2017; pp. 1–56. [Google Scholar]
- Abdullahi, U. Evaluation of models for assessing groundwater vulnerability to pollution in Nigeria. Bayero J. Pure Appl. Sci. 2011, 2, 138–142. [Google Scholar] [CrossRef] [Green Version]
- Oke, S.A.; Fourie, F. Guidelines to groundwater vulnerability mapping for Sub-Saharan Africa. Groundw. Sustain. Dev. 2017, 5, 168–177. [Google Scholar] [CrossRef]
- Daly, D.; Drew, D. Irish Methodologies for Karst Aquifer Protection. In Hydrogeology and Engineering Geology of Sinkholes and Karst; Beck, B., Ed.; Balkema: Rotterdam, The Netherlands, 1999; pp. 267–272. [Google Scholar]
- Liggett, J.E.; Talwar, S. Groundwater vulnerability assessments and integrated water resource management. Watershed Manag. Bull. 2009, 13, 18–29. [Google Scholar]
- Shirazi, S.; Imran, H.; Akib, S. GIS-based DRASTIC method for groundwater vulnerability assessment: A review. J. Risk Res. 2012, 15, 991–1011. [Google Scholar] [CrossRef]
- Jamrah, A.; Al-Futaisi, A.; Rajmohan, N.; Al Yaarubi, S. Assessment of groundwater vulnerability in the coastal region of Oman using DRASTIC index method in GIS environment. Environ. Monit. Assess. 2007, 147, 125–138. [Google Scholar] [CrossRef]
- Lobo-Ferreira, J.P.; Oliveira, M.M. DRASTIC Groundwater Vulnerability Mapping of Portugal, Groundwater: An Endangered Resource. In Proceedings of the 27th Congress of the International Association for Hydraulic Research, San Francisco, CA, USA, 10–15 August 1997; pp. 132–137. [Google Scholar]
- Fritch, T.G.; McKnight, C.L.; Yelderman, J.C.; Arnold, J.G. Aquifer Vulnerability Assessment of the Paluxy Aquifer, Central Texas, USA, using GIS and a modified DRASTIC approach. Environ. Manag. 2000, 25, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Shirazi, S.; Imran, H.; Akib, S.; Yusop, Z.; Harun, Z.B. Groundwater vulnerability assessment in the Melaka State of Malaysia using DRASTIC and GIS techniques. Environ. Earth Sci. 2013, 70, 2293–2304. [Google Scholar] [CrossRef]
- National Population Commission (NPC). Nigeria and ICF International Nigeria Demographic and Health Survey 2013; NPC and ICF International: Rockville, MD, USA, 2014. [Google Scholar]
- Ojuri, O.; Bankole, O.T. Groundwater Vulnerability Assessment and Validation for a Fast Growing City in Africa: A Case Study of Lagos, Nigeria. J. Environ. Prot. 2013, 4, 454–465. [Google Scholar] [CrossRef] [Green Version]
- Adegoke, O.S. Eocene stratigraphy of Southern Nigeria. Bur. Rech. Geol. Min. Mem. 1969, 68, 23–47. [Google Scholar]
- Jones, H.A.; Hockey, R.D. The geology of parts of southwestern Nigeria. Geol. Surv. Nigeria Bull. 1964, 31, 87. [Google Scholar]
- Omatsola, M.E.; Adegoke, O.S. Tectonic evolution of the Cretaceous stratigraphy of the Dahomey Basin. J. Min. Geol. 1981, 15, 78–83. [Google Scholar]
- Offodile, M.E. Hydrogeology: Groundwater Study and Development in Nigeria, 3rd ed.; Mecon Geology & Engineering Services Ltd.: Jos, Nigeria, 2014; pp. 485–514. [Google Scholar]
- Onwuka, M.O. Groundwater Resources of Lagos State. Master’s Thesis, Department of Geology, University of Ibadan, Ibadan, Nigeria, 1990; p. 144. [Google Scholar]
- Voudouris, K.; Kazakis, N.; Polemio, M.; Kareklas, K. Assessment of Intrinsic Vulnerability Using DRASTIC Model and GIS in Kiti Aquifer Cyprus. Eur. Water Athens 2010, 30, 13–24. [Google Scholar]
- Fagbami, A.A.; Shogunle, E.A.A. Nigeria: Reference Soils of the Coastal Swamps near Ikorodu (Lagos State); Soil Brief Nigeria 2; University of Ibadan: Ibadan, Nigeria, 1995; p. 17. [Google Scholar]
- Egwuonwu, C.C.; Okafor, V.C.; Ezeanya, N.C.; Nzediegwu, C.; Okorafor, O.O. A comparison of the reliability of six evapotranspiration computing models for Abeokuta in SW Nigeria. Greener J. Phys. Sci. 2012, 2, 64–69. [Google Scholar]
- Oke, M.; Martins, O.; Idowu, O.; Aiyelokun, O. Comparative Analysis of Empirical Formulae Used in Groundwater Recharge in Ogun – Oshun River Basins. J. Sci. Res. Rep. 2013, 2, 692–710. [Google Scholar] [CrossRef]
- Evan, B.M.; Myers, W.L. A GIS-based approach to evaluating regional groundwater pollution impacts in a protected peri-urban area. Environ Earth Sci. 1990, 45, 242–245. [Google Scholar]
- Rosén, L. A Study of the DRASTIC Methodology with Emphasis on Swedish Conditions. Ground Water 1994, 32, 278–285. [Google Scholar] [CrossRef]
- Napolitano, P.; Fabbri, A.G. Single-Parameter Sensitivity Analysis for Aquifer Vulnerability Assessment Using DRASTIC and SINTACS. In Application of Geographic Information Systems in Hydrology and Water Resources Management; Kovar, K., Nachtnebel, H.P., Eds.; IAHS Press: Wallingford, UK, 1996; pp. 559–566. [Google Scholar]
- Lodwick, W.A.; Monson, W.; Svoboda, L. Attribute error and sensitivity analysis of map operations in geographical informations systems: Suitability analysis. Int. J. Geogr. Inf. Syst. 1990, 4, 413–428. [Google Scholar] [CrossRef]
- Adeaga, O. Climate Variability and Change—Hydrological Impact; IAHS Publication: Wallingford, UK, 2006; p. 308. [Google Scholar]
- Ufoegbune, G.C.; Yussuf, H.O.; Eruola, A.O.; Awomeso, J.A. Estimation of water balance of Oyan lake in northwestern region of Abeokuta, Nigeria. Br. J. Environ. Clim. Chang. 2011, 1, 13–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwugo, K.O.; Arcy, B.A.; Andoh, R. Aspect of Land-Based Pollution of an African Coastal Megacity of Lagos. In Proceedings of the Diffuse Pollution Conference, Dublin, Ireland, 17–21 August 2003. [Google Scholar]
- Muhammad, A.M.; Zhonghua, T.; Dawood, A.; Earl, B. Evaluation of local groundwater vulnerability based on DRASTIC index method in Lahore, Pakistan. Geofísica Int. 2015, 54, 67–81. [Google Scholar] [CrossRef] [Green Version]
- Neshat, A.; Pradhan, B.; Pirasteh, S.; Shafri, H.Z.M. Estimating groundwater vulnerability to pollution using a modified DRASTIC model in the Kerman agricultural area, Iran. Environ. Earth Sci. 2013, 71, 3119–3131. [Google Scholar] [CrossRef]
- Barber, C.; Bates, L.E.; Barron, R.; Allison, H. Assessment of the relative vulnerability of groundwater to pollution: A review and background paper for the conference workshop on vulnerability assessment. J. Austr. Geol. Geophys. 1992, 14, 1147–1154. [Google Scholar]
- Merchant, J.W. GIS-based groundwater pollution hazard assessment: A critical review of the DRASTIC model. Photogramm. Eng. Remote Sens. 1994, 60, 1117–1127. [Google Scholar]
- Khan, M.M.A.; Umar, R.; Lateh, H. Assessment of aquifer vulnerability in parts of Indo Gangetic plain, India. Int. J. Phys. Sci. 2010, 5, 1711–1720. [Google Scholar]
Parameters | Description | Source |
---|---|---|
Depth–to–water | Represents the depth from the ground surface to the water table. Deeper water table implies lesser chance for pollution to occur. | Data were generated from the study area and from local drillers’ directories. |
Net recharge | Represents the amount of water that penetrates the vadose zone and reaches the water table. Recharge water represents the vehicle for transporting pollutants. | Generated from rainfall data from Nigeria’s Metrological Agency and previous calculated evaporation and run-off. |
Aquifer media | Refers to the saturated zone material properties, which controls the pollutants’ attenuation processes. | Field studies and interpretation of geological map of Nigeria on scale 1:50,000. |
Soil media | Represents the uppermost weathered portion of the vadose zone and controls the amount of recharge that can infiltrate downwards. | Generated from field and laboratory studies. |
Topography | Refers to the slope of the land surface. It indicates whether the run-off will remain on the surface to allow pollutant percolation to the saturated zone. | Digital Elevation Model (DEM) of the basin available at the Global Land Cover Facility (GLCF) of Maryland University and topography map. |
Impact of vadose zone | This is defined by the vadose zone material, which controls the passage and attenuation of the contaminated material to the saturated zone. The vadose zone and aquifer media are the same materials. | Interpretation of the geological map of Nigeria from NGSA. |
Hydraulic conductivity | Indicates the ability of the aquifer to transmit water, thus determining the rate of flow of the contaminants within the ground water system. | Derived from previous literature as well as reported drillers’ records. |
Depth-to-water × 5 | DRASTIC rating | DI |
1.5–4.5 m | 9 | 45 |
4.5–9 m | 7 | 35 |
9–15 m | 5 | 25 |
15–23 m | 3 | 15 |
23–31 m | 2 | 10 |
>31 m | 1 | 5 |
Net recharge × 4 | Rating | DI |
>250 mm/y | 10 | 40 |
50–100 mm/y | 3 | 12 |
0–50 mm/y | 1 | 4 |
Aquifer media × 3 | Rating | DI |
Sand and gravel | 8 | 24 |
Massive sandstone | 7 | 21 |
Bedded sandstone and limestone | 6 | 18 |
Soil media × 2 | Rating | DI |
Sandstone | 9 | 18 |
Alluvium | 7 | 14 |
Sandy loam | 6 | 12 |
Loam | 5 | 10 |
Topography × 1 | Rating | DI |
3–4 m | 8 | 8 |
4–5 m | 7 | 7 |
5–6 m | 6 | 6 |
6–10 m | 5 | 5 |
10–12 m | 4 | 4 |
12–16 m | 3 | 3 |
16–18 m | 2 | 2 |
>18 m | 1 | 1 |
Impact of vadose zone × 5 | Rating | DI |
Sand and gravel | 8 | 40 |
Gravel sand | 7 | 35 |
Limestone, gravel sand and clay | 6 | 30 |
Sandy silt | 5 | 25 |
Gravel and sandstone | 4 | 20 |
Hydraulic conductivity × 3 | Rating | DI |
>2000 gpd/ft2 | 10 | 30 |
1000–2000 gpd/ft2 | 8 | 24 |
Location | Dahomey Recharge | DRASTIC Rating | DI × 4 |
---|---|---|---|
Lagos | 81 | 5 | 20 |
Ijebu-Ode | 276 | 10 | 40 |
Abeokuta | 18.4 | 2 | 8 |
Descriptive Statistics | Parameters | ||||||
---|---|---|---|---|---|---|---|
D | R | A | S | T | I | C | |
Min | 5 | 8 | 18 | 10 | 1 | 15 | 12 |
Max | 45 | 40 | 24 | 18 | 8 | 40 | 30 |
Mean | 21.6 | 30 | 21 | 15.5 | 3.6 | 31.6 | 26.7 |
SD | 15.7 | 12 | 1.9 | 2.7 | 2.8 | 8.4 | 6.3 |
CV | 72.7% | 40% | 91% | 17.4% | 77.8% | 26.6% | 23.6% |
Co-Efficient of Variation | |||||
---|---|---|---|---|---|
Parameters | Mean | Min | Max | SD | CV |
D | 12.12 | 10.14 | 13.74 | 1.26 | 10.4% |
R | 11.01 | 8.10 | 13.24 | 1.25 | 11.3% |
A | 11.76 | 9.94 | 12.29 | 0.61 | 5.1% |
S | 12.48 | 11.58 | 13.12 | 0.46 | 3.6% |
T | 13.92 | 13.55 | 14.18 | 0.24 | 1.7% |
I | 10.73 | 8.28 | 11.83 | 0.93 | 8.6% |
C | 11.31 | 10.22 | 12.22 | 0.48 | 4.2% |
Effective Weight | ||||||
---|---|---|---|---|---|---|
Parameters | DRASTIC Weight | % DRASTIC Weight | Mean | Min | Max | SD |
D | 5 | 21.7 | 13 | 3.2 | 24.8 | 7.5 |
R | 4 | 17.4 | 19.7 | 6.2 | 37.1 | 7.5 |
A | 3 | 13 | 15.2 | 11.9 | 26 | 3.6 |
S | 2 | 8.7 | 10.8 | 6.9 | 16.2 | 2.7 |
T | 1 | 4.3 | 2.2 | 0.6 | 4.4 | 1.4 |
I | 5 | 21.7 | 21.5 | 14.7 | 36 | 5.5 |
C | 3 | 13 | 17.8 | 12.3 | 24.3 | 2.9 |
Parameters | Mean | SD | D | R | A | S | T | I | C |
---|---|---|---|---|---|---|---|---|---|
D | 13.01 | 7.57 | 1.00 | ||||||
R | 19.74 | 7.51 | 0.38 | 1.00 | |||||
A | 15.24 | 3.68 | 0.45 | 0.14 | 1.00 | ||||
S | 10.86 | 2.80 | −0.35 | −0.02 | 0.34 | 1.00 | |||
T | 2.21 | 1.42 | 0.92 | 0.43 | 0.47 | −0.30 | 1.00 | ||
I | 21.50 | 5.54 | 0.27 | 0.06 | 0.89 | 0.52 | 0.19 | 1.00 | |
C | 17.88 | 2.91 | 0.52 | 0.47 | 0.39 | 0.49 | 0.45 | 0.44 | 1.00 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oke, S.A. Regional Aquifer Vulnerability and Pollution Sensitivity Analysis of Drastic Application to Dahomey Basin of Nigeria. Int. J. Environ. Res. Public Health 2020, 17, 2609. https://doi.org/10.3390/ijerph17072609
Oke SA. Regional Aquifer Vulnerability and Pollution Sensitivity Analysis of Drastic Application to Dahomey Basin of Nigeria. International Journal of Environmental Research and Public Health. 2020; 17(7):2609. https://doi.org/10.3390/ijerph17072609
Chicago/Turabian StyleOke, Saheed Adeyinka. 2020. "Regional Aquifer Vulnerability and Pollution Sensitivity Analysis of Drastic Application to Dahomey Basin of Nigeria" International Journal of Environmental Research and Public Health 17, no. 7: 2609. https://doi.org/10.3390/ijerph17072609
APA StyleOke, S. A. (2020). Regional Aquifer Vulnerability and Pollution Sensitivity Analysis of Drastic Application to Dahomey Basin of Nigeria. International Journal of Environmental Research and Public Health, 17(7), 2609. https://doi.org/10.3390/ijerph17072609