Assessment of Potential Health Risks Associated with the Intake of Heavy Metals in Fish Harvested from the Largest Estuary in Colombia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Fish Sampling and Chemical Analysis
2.3. Human Health Risk Assessment
2.3.1. Estimated Daily Intake
2.3.2. Hazard Quotient
2.3.3. Maximum Allowable Fish Consumption
2.3.4. Risk Associated with Methylmercury
2.4. Metal Pollution Index
2.5. Statistical Analysis
3. Results
3.1. Heavy Metals Concentrations in Fish
3.2. Health Risk Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barone, G.; Dambrosio, A.; Storelli, A.; Garofalo, R.; Busco, V.; Storelli, M. Estimated Dietary Intake of Trace Metals from Swordfish Consumption: A Human Health Problem. Toxics 2018, 6, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keshavarzi, B.; Hassanaghaei, M.; Moore, F.; Rastegari Mehr, M.; Soltanian, S.; Lahijanzadeh, A.R.; Sorooshian, A. Heavy metal contamination and health risk assessment in three commercial fish species in the Persian Gulf. Mar. Pollut. Bull. 2018, 129, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Thomas, L.D.K.; Hodgson, S.; Nieuwenhuijsen, M.; Jarup, L. Early Kidney Damage in a Population Exposed to Cadmium and Other Heavy Metals. Environ. Health Perspect. 2009, 117, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rodríguez, J.A.; Pineda, J.E.M.; Trujillo, L.V.P.; Rueda, M.; Ibarra-Gutiérrez, K.P. Ciénaga Grande de Santa Marta: The Largest Lagoon-Delta Ecosystem in the Colombian Caribbean. In The Wetland Book; Finlayson, C.M., Milton, G.R., Prentice, R.C., Davidson, N.C., Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 1–16. ISBN 978-94-007-6173-5. [Google Scholar]
- Khan, S.; Rauf, R.; Muhammad, S.; Qasim, M.; Din, I. Arsenic and heavy metals health risk assessment through drinking water consumption in the Peshawar District, Pakistan. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 581–596. [Google Scholar] [CrossRef]
- Unidad Administrativa Especial de del Sistema de Parques Nacional Naturales. Plan de Manejo Santuario de Fauna y Flora Ciénaga Grande de Santa Marta; Parques Nacionales de Colombia: Santa Marta, Colombia, 2015.
- Alonso, D.; Pineda, P.; Olivero, J.; González, H.; Campos, N. Mercury levels in muscle of two fish species and sediments from the Cartagena Bay and the Ciénaga Grande de Santa Marta, Colombia. Environ. Pollut. 2000, 109, 157–163. [Google Scholar] [CrossRef]
- Parra, J.P.; Espinosa, L.F. Distribución de metales pesados (Pb, Cd y Zn) en perfiles de sedimento asociado a rhizophora mangle en el río Sevilla - Ciénaga Grande de Santa Marta, Colombia. BIM 2016, 37, 95–110. [Google Scholar] [CrossRef]
- Fernandez-Maestre, R.; Johnson-Restrepo, B.; Olivero-Verbel, J. Heavy Metals in Sediments and Fish in the Caribbean Coast of Colombia: Assessing the Environmental Risk. Int. J. Environ. Res. 2018, 12, 289–301. [Google Scholar] [CrossRef]
- Mancera, J.E.; Botero, L. Estudio ecológico de la Ciénaga Grande de Santa Marta, delta exterior del Río Magdalena. In Informe de Proyecto Tercera Etapa; INVEMAR: Santa Marta, Colombia, 1993; 128p. [Google Scholar]
- Blanco, J.A.; Viloria, E.A.; Narváez, B.J.C. ENSO and salinity changes in the Ciénaga Grande de Santa Marta coastal lagoon system, Colombian Caribbean. Estuar. Coast. Shelf Sci. 2006, 66, 157–167. [Google Scholar] [CrossRef]
- UNEP; FAO; IOC; IAEA. Contaminant Monitoring Programmes Using Marine Organisms: Quality Assurance and Good Laboratory Practice; Reference Methods for Marine Pollution Studies N_57; 1990. [Google Scholar]
- USEPA. Mercury in Solids and Solutions by Thermal Decomposition, Amalgamation and Atomic Absorption Spectrophotometry (Method 7473); Washington, DC, USA,, 1998.
- Association of Official Analytical Chemist. Official Method 999.11. In AOAC Official Methods of Analysis; Gaithersburg, MD, USA, 2000. [Google Scholar]
- Szkoda, J.; Zmudzki, J.; Grzebalska, A. Determination of arsenic in biological material by hydride generation atomic absorption spectrometry method. Bull. Vet. Inst. Pulawy 2006, 50, 269–272. [Google Scholar]
- Standard Methods SM 3114. In Arsenic and Selenium by Hydride Generation/Atomic Absorption Spectrometry, 23rd ed.; Standard Methods for the Examination of Water and Wastewater; American Public Health Association, American Water Works Association, Water Environment Federation: Washington, DC, USA, 2017.
- Standard Methods SM 3113. In Metals by Electrothermal Atomic Absorption Spectrometry, 23rd ed.; Standard Methods for the Examination of Water and Wastewater; American Public Health Association, American Water Works Association, Water Environment Federation: Washington, DC, USA, 2017.
- Fuentes-Gandara, F.; Pinedo-Hernández, J.; Marrugo-Negrete, J.; Díez, S. Human health impacts of exposure to metals through extreme consumption of fish from the Colombian Caribbean Sea. Environ. Geochem. Health 2018, 40, 229–242. [Google Scholar] [CrossRef]
- Herrera-Herrera, C.; Fuentes-Gandara, F.; Zambrano-Arévalo, A.; Higuita, F.B.; Hernández, J.P.; Marrugo-Negrete, J. Health Risks Associated with Heavy Metals in Imported Fish in a Coastal City in Colombia. Biol. Trace Elem. Res. 2019, 190, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Kalia, K.; Khambholja, D.B. Arsenic Contents and Its Biotransformation in the Marine Environment. In Handbook of Arsenic Toxicology; Flora, S.J.S., Ed.; Academic Press: Cambridge, MA, USA, 2015; pp. 675–700. ISBN 978-0-12-418688-0. [Google Scholar]
- USEPA (US Environmental Protection Agency). Columbia River Basin Fish Contaminant Survey; 1996–1998; USEPA: Seattle, WA, USA, 2002.
- JECFA. Joint Food and Agriculture Organization/World Health Organization Expert Committee on Food Additives; Summary and Conclusions of the Meetings of the Joint FAO/WHO Expert Committee on Food Additives; Roma, Italy, 2015. [Google Scholar]
- U.S. EPA (U.S. Environmental Protection Agency). In Guidance for Assessing Chemical Contaminant Data for Use in fish Advisories. Assessment and Fish Consumption Limits, 3rd ed.; Risk Assessment and Fish Consumption Limits; Washington DC, USA, 2000; Volume 2.
- Agency for Toxic Substances and Disease Registry (ATSDR) Summary of public health Statements; Department of Health and Human Services in the US, Public Health Service: Atlanta, GA, USA, 2000. Available online: https://www.atsdr.cdc.gov/phs/index.asp (accessed on 20 January 2020).
- UNEP. Guidance for Identifying Populations at Risk from Mercury Exposure; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- JECFA. Safety Evaluation of Certain Food Additives and Contaminants, 67th ed.; Joint FAO/WHO Expert Committee on Food Additives; World Health Organization: Rome, Italy, 2006. [Google Scholar]
- Marrugo-Negrete, J.; Vargas-Licona, S.; Ruiz-Guzmán, J.A.; Marrugo-Madrid, S.; Bravo, A.G.; Díez, S. Human health risk of methylmercury from fish consumption at the largest floodplain in Colombia. Environ. Res. 2020, 182, 109050. [Google Scholar] [CrossRef] [PubMed]
- Usero, J. Trace metals in the bivalve molluscs Ruditapes decussatus and Ruditapes philippinarum from the Atlantic Coast of Southern Spain. Environ. Int. 1997, 23, 291–298. [Google Scholar] [CrossRef]
- Campos, N. Concentrations of trace metals in Ariopsis bonillai (Pisces: Siluriformes) of Santa Marta, Colombian Caribe. Rev. De Biol. Trop. 1992, 40, 179–183. [Google Scholar]
- Sierra-Gutiérrez, F. Contenido de Metales Pesados (Cobre, Cadmio y Zinc) en la lisa M. Incilis de la Ciénaga de Mallorquín (Atlántico); Universidad del Atlántico: Barranquilla, Colombia, 2003. [Google Scholar]
- INVEMAR. Technical Report about the Frist Monitor of Heavy Metals in Water, Sediments and Organisms of the Mallorquín Swamp; Report INVEMAR; Santa Marta, Colombia, 2005. [Google Scholar]
- Vázquez, F.; Florville-Alejandre, T.R.; Herrera, M.; Díaz de León, L.M. Metales pesados en tejido muscular del bagre Ariopsis felis en el sur del golfo de México (2001–2004). Lat. Am. J. Aquat. Res. 2008, 36, 223–233. [Google Scholar] [CrossRef]
- Medeiros, R.J.; dos Santos, L.M.G.; Freire, A.S.; Santelli, R.E.; Braga, A.M.C.B.; Krauss, T.M.; Jacob, S.D.C. Determination of inorganic trace elements in edible marine fish from Rio de Janeiro State, Brazil. Food Control 2012, 23, 535–541. [Google Scholar] [CrossRef] [Green Version]
- Mendoza-Carranza, M.; Sepúlveda-Lozada, A.; Dias-Ferreira, C.; Geissen, V. Distribution and bioconcentration of heavy metals in a tropical aquatic food web: A case study of a tropical estuarine lagoon in SE Mexico. Environ. Pollut. 2016, 210, 155–165. [Google Scholar] [CrossRef]
- Li, J.; Sun, C.; Zheng, L.; Jiang, F.; Wang, S.; Zhuang, Z.; Wang, X. Determination of trace metals and analysis of arsenic species in tropical marine fishes from Spratly islands. Mar. Pollut. Bullet. 2017, 122, 464–469. [Google Scholar] [CrossRef]
- Gallego Ríos, S.E.; Ramírez, C.M.; López, B.E.; Macías, S.M.; Leal, J.; Velásquez, C.M. Evaluation of Mercury, Lead, Arsenic, and Cadmium in Some Species of Fish in the Atrato River Delta, Gulf of Urabá, Colombian Caribbean. Water Air Soil Pollut 2018, 229, 275. [Google Scholar] [CrossRef]
- FAO; WHO. Codex Committee on Food Additives and Contaminants; Adopted in 1995 Revised in 1997, 2006, 2008, 2009 Amended in 2010, 2012, 2013, 2014, 2015, 2016, 2017; World Health Organization: The Hague, The Netherlands, 2017. [Google Scholar]
- European Union Commission. Health and Food Safety; Regulation (EC)No 1881/2006—Setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32006R1881&from=EN (accessed on 22 February 2020).
- MHSP. Resolution No. 122, the Colombian Ministry of Health and Social Protection; Bogotá, Colombia, 2012. Available online: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/resolucion-0122-de-2012.pdf (accessed on 22 February 2020).
- Ruiz-Guzmán, J.A.; Marrugo-Negrete, J.L.; Díez, S. Human Exposure to Mercury through Fish Consumption: Risk Assessment of Riverside Inhabitants of the Urrá Reservoir, Colombia. Hum. Ecol. Risk Assess. Int. J. 2014, 20, 1151–1163. [Google Scholar] [CrossRef]
- Marrugo-Negrete, J.; Benitez, L.N.; Olivero-Verbel, J. Distribution of Mercury in Several Environmental Compartments in an Aquatic Ecosystem Impacted by Gold Mining in Northern Colombia. Arch. Environ. Contam. Toxicol. 2008, 55, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Aytekin, T.; Kargın, D.; Çoğun, H.Y.; Temiz, Ö.; Varkal, H.S.; Kargın, F. Accumulation and health risk assessment of heavy metals in tissues of the shrimp and fish species from the Yumurtalik coast of Iskenderun Gulf, Turkey. Heliyon 2019, 5, e02131. [Google Scholar] [CrossRef] [PubMed]
- Ikemoto, T.; Tu, N.P.C.; Okuda, N.; Iwata, A.; Omori, K.; Tanabe, S.; Tuyen, B.C.; Takeuchi, I. Biomagnification of Trace Elements in the Aquatic Food Web in the Mekong Delta, South Vietnam Using Stable Carbon and Nitrogen Isotope Analysis. Arch. Environ. Contam. Toxicol. 2008, 54, 504–515. [Google Scholar] [CrossRef] [PubMed]
- Tadiso, T.M.; Borgstrøm, R.; Rosseland, B.O. Mercury concentrations are low in commercial fish species of Lake Ziway, Ethiopia, but stable isotope data indicated biomagnification. Ecotoxicol. Environ. Saf. 2011, 74, 953–959. [Google Scholar] [CrossRef]
- Agah, H.; Leermakers, M.; Elskens, M.; Fatemi, S.M.R.; Baeyens, W. Accumulation of trace metals in the muscle and liver tissues of five fish species from the Persian Gulf. Environ. Monit. Assess. 2009, 157, 499–514. [Google Scholar] [CrossRef]
- Abdallah, M.A.M. Trace element levels in some commercially valuable fish species from coastal waters of Mediterranean Sea, Egypt. J. Mar. Syst. 2008, 73, 114–122. [Google Scholar] [CrossRef]
- Néstor Hernando Campos, C. La Contaminacion por metales pesados en la cienaga grande de santa marta, caribe colombiano. Caldasia 1990, 16, 231–243. [Google Scholar]
- Türkmen, M.; Türkmen, A.; Tepe, Y.; Ateş, A.; Gökkuş, K. Determination of metal contaminations in sea foods from Marmara, Aegean and Mediterranean seas: Twelve fish species. Food Chem. 2008, 108, 794–800. [Google Scholar] [CrossRef]
- Bost, M.; Houdart, S.; Oberli, M.; Kalonji, E.; Huneau, J.-F.; Margaritis, I. Dietary copper and human health: Current evidence and unresolved issues. J. Trace Elem. Med. Biol. 2016, 35, 107–115. [Google Scholar] [CrossRef]
- Varol, M.; Sünbül, M.R. Macroelements and toxic trace elements in muscle and liver of fish species from the largest three reservoirs in Turkey and human risk assessment based on the worst-case scenarios. Environ. Res. 2020, 184, 109298. [Google Scholar] [CrossRef] [PubMed]
- Gbogbo, F.; Arthur-Yartel, A.; Bondzie, J.A.; Dorleku, W.-P.; Dadzie, S.; Kwansa-Bentum, B.; Ewool, J.; Billah, M.K.; Lamptey, A.M. Risk of heavy metal ingestion from the consumption of two commercially valuable species of fish from the fresh and coastal waters of Ghana. PLoS ONE 2018, 13, e0194682. [Google Scholar] [CrossRef]
- Rahman, M.S.; Molla, A.H.; Saha, N.; Rahman, A. Study on heavy metals levels and its risk assessment in some edible fishes from Bangshi River, Savar, Dhaka, Bangladesh. Food Chem. 2012, 134, 1847–1854. [Google Scholar] [CrossRef] [PubMed]
- Alipour, H.; Pourkhabbaz, A.; Hassanpour, M. Estimation of Potential Health Risks for Some Metallic Elements by Consumption of Fish. Water Qual. Expo. Health 2015, 7, 179–185. [Google Scholar] [CrossRef]
- Amirah, M.N.; Afiza, A.S.; Faizal, W.I.W.; Nurliyana, M.H.; Laili, S. Human Health Risk Assessment of Metal Contamination through Consumption of Fish. J. Environ. Pollut. Hum. Health 2013, 1, 1–5. [Google Scholar]
- United States Food and Drug Administration, USFDA. Guidance Document for Arsenic in Shellfish; US Food and Drug Administration: Washington, DC, USA, 1993.
- Bundschuh, J.; Nath, B.; Bhattacharya, P.; Liu, C.-W.; Armienta, M.A.; Moreno López, M.V.; Lopez, D.L.; Jean, J.-S.; Cornejo, L.; Lauer Macedo, L.F.; et al. Arsenic in the human food chain: The Latin American perspective. Sci. Total Environ. 2012, 429, 92–106. [Google Scholar] [CrossRef]
Scientific Name | N | Habit | Mean ± SD | MPI | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Total Length (cm) | Weight (g) | As | Cd | Hg | Pb | Zn * | Cu * | ||||
This study | |||||||||||
Cathorops mapale | 35 | C | 24.3 ± 5.6 | 117.8 ± 26.1 | 108.7 ± 44.8 | 8.7 ± 6.2 | 18.1 ± 14.6 | 38.4 ± 32.8 | 6.3 ± 1.2 | 8.7 ± 1.6 | 0.13 |
Centropomus undecimalis | 26 | C | 33.6 ± 3.9 | 330.0 ± 120.3 | 114.6 ± 48.0 | 13.6 ± 18.3 | 28.2 ± 10.1 | 31.4 ± 36.8 | 5.9 ± 0.9 | 9.8 ± 1.3 | 0.15 |
Elops smithi | 33 | C | 36.8 ± 2.2 | 284.4 ± 40.9 | 108.3 ± 56.7 | 7.9 ± 7.9 | 36.6 ± 44.0 | 49.3 ± 40.5 | 7.1 ± 2.9 | 18.1 ± 3.1 | 0.18 |
Eugerres plumieri | 33 | E | 27.0 ± 4.9 | 158.0 ± 37.9 | 94.2 ± 57.9 | 11.0 ± 6.8 | 13.1 ± 11.3 | 33.8 ± 16.4 | 9.2 ± 4.0 | 7.1 ± 1.5 | 0.12 |
Mugil incilis | 33 | D | 25.5 ± 3.5 | 113.0 ± 77.4 | 141.5 ± 109.3 | 20.8 ± 29.8 | 16.1 ± 21.4 | 36.3 ± 22.4 | 7.4 ± 2.1 | 9.4 ± 3.2 | 0.16 |
Species, country or site/Reference | |||||||||||
Ariopsis bonillai, CGSM, Colombia [29] | C | - | - | - | 2000–4200 | - | - | 18–109 | - | ||
Mugil incilis, CGSM, Colombia [7] | D | - | - | - | - | ND–51 | - | - | - | ||
Eugerres plumieri, CGSM, Colombia [7] | E | - | - | - | - | ND–68 | - | - | - | ||
Mugil incilis, Mallorquín swamp, Colombia [30] | D | - | - | - | 60–160 | - | - | 16.6–27.8 | 0.41–0.94 | ||
Mugil incilis, Mallorquín swamp, Colombia [31] | D | - | - | - | - | - | 650–2030 | 13.8–21.3 | 0.09–0.8 | ||
Ariopsis felis, Southern Gulf of Mexico [32] | C | - | - | - | - | - | 10–250 | - | - | ||
Sardinella brasiliensis, Rio de Janeiro, Brazil [33] | - | - | 700–1200 | 6–40 | - | 60–900 | 6.7–12 | 1.1–4.7 | |||
P. bifasciatus, San Pedrito Lagoon, Mexico [34] | D | 96.2 ± 12.7 | - | - | 410 | - | 28.59 | - | |||
C. undecimalis, Mallorquín swamp, Colombia [18] | C | 24.6 ± 4.1 | 119.0 ± 46 | - | 30–130 | 100–170 | 70–290 | 11.1–22.6 | 0.16–1 | ||
E. plumieris, Mallorquín swamp, Colombia [18] | E | 16.6 ± 0.9 | 57.3 ± 9.9 | - | 70–160 | 140–290 | 80–110 | 3–4.7 | 0.48–2.02 | ||
38 species of tropical marine fishes, Spratly Islands, China [35] | - | - | 20,850 | - | - | 140 | 21.95 | 1.57 | |||
C. undecimalis, Colombian Caribbean [36] | C | - | - | ND | ND | 86 | 1472 | - | - | ||
FAO/WHO a | - | 50 | 500 | 200 | 40 | - | |||||
Permissible limit | EU b | - | 50–100 | - | 300 | - | - | ||||
MHSP c | - | 100 | - | 300 | - | - |
Heavy Metals | RfD a | CHD | WCA | RP | |||
---|---|---|---|---|---|---|---|
EDI | CRlim | EDI | CRlim | EDI | CRlim | ||
As | 0.3 | 0.02 | 99.5 | 0.04 | 196.4 | 0.04 | 185.6 |
Cd | 1 | 0.02 | 3359.9 | 0.05 | 6629.0 | 0.04 | 6265.8 |
Hg | 0.1 | 0.04 | 189.8 | 0.09 | 374.5 | 0.08 | 353.9 |
Pb | 4 | 0.06 | 4005.1 | 0.14 | 7901.9 | 0.13 | 7468.9 |
Zn | 300 | 11.4 | 1582.6 | 27.4 | 3122.5 | 25.3 | 2951.4 |
Cu | 40 | 16.8 | 153.8 | 40.5 | 303.4 | 37.4 | 286.7 |
Potential risk by consumption of fish with methylmercury | |||||||
EWI (µg/kg/week) | MeHgPSL (µg/g) | MFW (kg) | |||||
CHD | 0.25 | 0.130 | 3.04 | ||||
WCA | 0.60 | 0.117 | 12.0 | ||||
RP | 0.55 | 0.108 | 11.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinzón-Bedoya, C.H.; Pinzón-Bedoya, M.L.; Pinedo-Hernández, J.; Urango-Cardenas, I.; Marrugo-Negrete, J. Assessment of Potential Health Risks Associated with the Intake of Heavy Metals in Fish Harvested from the Largest Estuary in Colombia. Int. J. Environ. Res. Public Health 2020, 17, 2921. https://doi.org/10.3390/ijerph17082921
Pinzón-Bedoya CH, Pinzón-Bedoya ML, Pinedo-Hernández J, Urango-Cardenas I, Marrugo-Negrete J. Assessment of Potential Health Risks Associated with the Intake of Heavy Metals in Fish Harvested from the Largest Estuary in Colombia. International Journal of Environmental Research and Public Health. 2020; 17(8):2921. https://doi.org/10.3390/ijerph17082921
Chicago/Turabian StylePinzón-Bedoya, Carlos H., Martha L. Pinzón-Bedoya, José Pinedo-Hernández, Iván Urango-Cardenas, and José Marrugo-Negrete. 2020. "Assessment of Potential Health Risks Associated with the Intake of Heavy Metals in Fish Harvested from the Largest Estuary in Colombia" International Journal of Environmental Research and Public Health 17, no. 8: 2921. https://doi.org/10.3390/ijerph17082921
APA StylePinzón-Bedoya, C. H., Pinzón-Bedoya, M. L., Pinedo-Hernández, J., Urango-Cardenas, I., & Marrugo-Negrete, J. (2020). Assessment of Potential Health Risks Associated with the Intake of Heavy Metals in Fish Harvested from the Largest Estuary in Colombia. International Journal of Environmental Research and Public Health, 17(8), 2921. https://doi.org/10.3390/ijerph17082921