Skinfold Thickness Distribution in Recreational Marathon Runners
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Statistical and Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Salinero, J.J.; Soriano, M.L.; Lara, B.; Gallo-Salazar, C.; Areces, F.; Ruiz-Vicente, D.; Abian-Vicen, J.; Gonzalez-Millan, C.; Del Coso, J. Predicting race time in male amateur marathon runners. J. Sports Med. Phys. Fit. 2017, 57, 1169–1177. [Google Scholar]
- McKelvie, S.J.; Valliant, P.M.; Asu, M.E. Physical training and personality factors as predictors of marathon time and training injury. Percept. Mot. Skills 1985, 60, 551–566. [Google Scholar] [CrossRef]
- Tanda, G. Prediction of marathon performance time on the basis of training indices. J. Hum. Sport Exerc. 2011, 6, 511–520. [Google Scholar] [CrossRef] [Green Version]
- Vickers, A.J.; Vertosick, E.A. An empirical study of race times in recreational endurance runners. BMC Sports Sci. Med. Rehabil. 2016, 8, 26. [Google Scholar] [CrossRef] [Green Version]
- Till, E.S.; Armstrong, S.A.; Harris, G.; Maloney, S. Predicting marathon time using exhaustive graded exercise test in marathon runners. J. Strength Cond. Res. 2016, 30, 512–517. [Google Scholar] [CrossRef]
- Tanda, G.; Knechtle, B. Marathon performance in relation to body fat percentage and training indices in recreational male runners. Open Access J. Sports Med. 2013, 4, 141–149. [Google Scholar]
- Vernillo, G.; Schena, F.; Berardelli, C.; Rosa, G.; Galvani, C.; Maggioni, M.; Agnello, L.; Torre, A.L.A. Anthropometric characteristics of top-class Kenyan marathon runners. J. Sports Med. Phys. Fit. 2013, 53, 403–408. [Google Scholar]
- Nikolaidis, P.T.; Knechtle, B. Pacing strategies in the ‘Athens Classic Marathon’: Physiological and psychological aspects. Front. Physiol. 2018, 9, 1539. [Google Scholar] [CrossRef]
- Ashwell, M. Obesity in men and women. Int. J. Obes. 1994, 18, S1–S7. [Google Scholar]
- Clemente-Suarez, V.J.; Nikolaidis, P.T. Use of bioimpedianciometer as predictor of mountain marathon performance. J. Med Syst. 2017, 41, 73. [Google Scholar] [CrossRef]
- Avlonitou, E.; Georgiou, E.; Douskas, C.; Louizi, A. Estimation of body composition in competitive swimmers by means of three different techniques. Int. J. Sports Med. 1997, 18, 363–368. [Google Scholar] [CrossRef]
- Barandun, U.; Knechtle, B.; Knechtle, P.; Klipstein, A.; Rust, C.A.; Rosemann, T.; Lepers, R. Running speed during training and percent body fat predict race time in recreational male marathoners. Open Access J. Sports Med. 2012, 3, 51–58. [Google Scholar]
- Athens Authentic Marathon. Available online: https://www.athensauthenticmarathon.gr/site/index.php/en/results-en/491-results-2017-marathon (accessed on 2 April 2020).
- Hughes, V.A.; Roubenoff, R.; Wood, M.; Frontera, W.R.; Evans, W.J.; Fiatarone Singh, M.A. Anthropometric assessment of 10-y changes in body composition in the elderly. Am. J. Clin. Nutr. 2004, 80, 475–482. [Google Scholar] [CrossRef]
- Knechtle, B.; Wirth, A.; Knechtle, P.; Rosemann, T.; Rust, C.A.; Bescos, R. A comparison of fat mass and skeletal muscle mass estimation in male ultra-endurance athletes using bioelectrical impedance analysis and different anthropometric methods. Nutr. Hosp. 2011, 26, 1420–1427. [Google Scholar]
- Eston, R.; Reilly, T. Kinanthropometry and Exercise Physiology Laboratory Manual. Tests, Procedures and Data: Volume 1: Anthropometry, 3rd ed.; Routledge: London, UK, 2009; pp. 32–35. [Google Scholar]
- Rust, C.A.; Knechtle, B.; Knechtle, P.; Rosemann, T. Comparison of anthropometric and training characteristics between recreational male marathoners and 24-h ultramarathoners. Open Access J. Sports Med. 2012, 3, 121–129. [Google Scholar]
- Knechtle, B.; Knechtle, P.; Rosemann, T.; Senn, O. Sex differences in association of race performance, skin-fold thicknesses, and training variables for recreational half-marathon runners. Percept. Mot. Skills 2010, 111, 653–668. [Google Scholar] [CrossRef]
- Friedrich, M.; Rüst, C.A.; Rosemann, T.; Knechtle, P.; Barandun, U.; Lepers, R.; Knechtle, B. A comparison of anthropometric and training characteristics between female and male half-marathoners and the relationship to race time. Asian J. Sports Med. 2014, 5, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Purdom, T.; Kravitz, L.; Dokladny, K.; Mermier, C. Understanding the factors that effect maximal fat oxidation. J. Int. Soc. Sports Nutr. 2018, 15, 3. [Google Scholar] [CrossRef] [Green Version]
- Burke, L.M.; Jeukendrup, A.E.; Jones, A.M.; Mooses, M. Contemporary nutrition strategies to optimize performance in distance runners and race walkers. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 117–129. [Google Scholar] [CrossRef] [Green Version]
- Durkalec-Michalski, K.; Nowaczyk, P.M.; Podgorski, T.; Kusy, K.; Osinski, W.; Jeszka, J. Relationship between body composition and the level of aerobic and anaerobic capacity in highly trained male rowers. J. Sports Med. Phys. Fit. 2019, 59, 1526–1535. [Google Scholar] [CrossRef]
- Siegel-Tike, P.; Rosales-Soto, G.; Herrera Valenzuela, T.; Duran Aguero, S.; Yanez Sepulveda, R. Body composition parametersand relationship with maximal aerobic power in recreational cyclists. Nutr. Hosp. 2015, 32, 2223–2227. [Google Scholar]
- Barbieri, D.; Zaccagni, L.; Babic, V.; Rakovac, M.; Misigoj-Durakovic, M.; Gualdi-Russo, E. Body composition and size in sprint athletes. J. Sports Med. Phys. Fit. 2017, 57, 1142–1146. [Google Scholar]
- Durkalec-Michalski, K.; Podgórski, T.; Sokołowski, M.; Jeszka, J. Relationship between body composition indicators and physical capacity of the combat sports athletes. Arch. Budo 2016, 12, 247–256. [Google Scholar]
- Byrd, M.T.; Switalla, J.R.; Eastman, J.E.; Wallace, B.J.; Clasey, J.L.; Bergstrom, H.C. Contributions of body-composition characteristics to critical power and anaerobic work capacity. Int. J. Sports Physiol. Perform. 2018, 13, 189–193. [Google Scholar] [CrossRef]
- Leão, C.; Camões, M.; Clemente, F.M.; Nikolaidis, P.T.; Lima, R.; Bezerra, P.; Rosemann, T.; Knechtle, B. Anthropometric profile of soccer players as a determinant of position specificity and methodological issues of body composition estimation. Int. J. Environ. Res. Public Health 2019, 16, 2386. [Google Scholar] [CrossRef] [Green Version]
- Knechtle, B.; Di Gangi, S.; Rust, C.A.; Nikolaidis, P.T. Performance Differences between the Sexes in the Boston Marathon from 1972 to 2017. J. Strength Cond. Res. 2020, 34, 566–576. [Google Scholar] [CrossRef] [Green Version]
- Vitti, A.; Nikolaidis, P.T.; Villiger, E.; Onywera, V.; Knechtle, B. The “New York City Marathon”: Participation and performance trends of 1.2M runners during half-century. Res. Sports Med. 2020, 28, 121–137. [Google Scholar] [CrossRef]
- Young, H.J.; Southern, W.M.; McCully, K.K. Comparisons of ultrasound-estimated intramuscular fat with fitness and health indicators. Muscle Nerve 2016, 54, 743–749. [Google Scholar] [CrossRef]
Variable | Women (n = 32) | Men (n = 134) | Cohen’s d |
---|---|---|---|
Age (years) | 40.1 ± 9.0 | 44.3 ± 8.8 * | −0.47 |
Anthropometry | |||
Height (cm) | 162.3 ± 6.5 | 176.1 ± 5.8 ** | −2.24 |
Body mass (kg) | 57.7 ± 7.5 | 76.8 ± 9.2 ** | −2.28 |
BMI (kg·m−2) | 21.8 ± 2.2 | 24.7 ± 2.6 ** | −1.20 |
BF (%) | 19.6 ± 4.7 | 17.7 ± 4.0 * | 0.44 |
Skinfold | Women (n = 32) | Men (n = 134) | %Difference | p | Cohen’s d |
---|---|---|---|---|---|
Cheek (mm) | 7.6 ± 1.7 | 8.0 ± 1.9 | −5.5 | 0.250 | −0.22 |
Chin (mm) | 6.8 ± 2.7 | 6.8 ± 2.1 | 0.7 | 0.915 | 0 |
Triceps (mm) | 13.5 ± 4.0 | 8.7 ± 2.9 | 35.8 | <0.001 | 1.37 |
Subscapular (mm) | 13.5 ± 5.3 | 13.6 ± 5.0 | −0.8 | 0.918 | −0.02 |
Pectoral (mm) | 7.7 ± 3.4 | 10.3 ± 5.6 | −34.0 | 0.012 | −0.56 |
Chest II (mm) | 11.5 ± 3.9 | 11.4 ± 4.6 | 0.8 | 0.921 | 0.02 |
Abdomen (mm) | 18.2 ± 6.4 | 22.1 ± 8.4 | −21.3 | 0.016 | −0.52 |
Iliac crest (mm) | 14.9 ± 5.8 | 18.0 ± 7.1 | −20.9 | 0.022 | −0.48 |
Patella (mm) | 13.0 ± 3.4 | 9.9 ± 2.9 | 23.4 | <0.001 | 0.98 |
Proximal calf (mm) | 10.6 ± 3.4 | 7.2 ± 2.5 | 31.7 | <0.001 | 1.14 |
Biceps (mm) | 7.0 ± 3.0 | 5.0 ± 1.9 | 27.9 | <0.001 | 0.80 |
Variable | Performance Group | p | Cohen’s d | |
---|---|---|---|---|
<4:30 h:min (n = 15) | ≥4:30 h:min (n = 17) | |||
Finished marathons (n) | 4.2 ± 4.8 | 2.5 ± 2.1 | 0.199 | 0.46 |
Training days (wk−1) | 4.4 ± 1.7 | 3.8 ± 1.2 | 0.221 | 0.41 |
Training distance (km·wk−1) | 55.2 ± 23.2 | 40.7 ± 20.4 | 0.096 | 0.66 |
BF (%) | 20.7 ± 2.9 | 18.6 ± 5.7 | 0.204 | 0.46 |
Skinfolds | ||||
Cheek (mm) | 8.1 ± 1.7 | 7.2 ± 1.6 | 0.132 | 0.55 |
Chin (mm) | 7.4 ± 2.7 | 6.3 ± 2.6 | 0.250 | 0.42 |
Triceps (mm) | 13.9 ± 2.5 | 13.2 ± 5.0 | 0.660 | 0.18 |
Subscapular (mm) | 13.1 ± 3.8 | 13.8 ± 6.5 | 0.738 | −0.13 |
Pectoral (mm) | 7.5 ± 2.2 | 7.8 ± 4.3 | 0.828 | −0.09 |
Chest II (mm) | 11.1 ± 2.5 | 11.8 ± 5.0 | 0.665 | −0.18 |
Abdomen (mm) | 19.0 ± 4.5 | 17.5 ± 7.8 | 0.875 | 0.24 |
Iliac crest (mm) | 15.1 ± 3.8 | 14.8 ± 7.2 | 0.875 | 0.05 |
Patella (mm) | 13.8 ± 3.0 | 12.2 ± 3.6 | 0.197 | 0.48 |
Proximal calf (mm) | 11.0 ± 3.0 | 10.2 ± 3.7 | 0.530 | 0.24 |
Biceps (mm) | 7.7 ± 3.3 | 6.4 ± 2.6 | 0.231 | 0.44 |
Variable | Performance Group | p | η2 | |||
---|---|---|---|---|---|---|
<3:30 h:min (n = 32) | 3:30–4:00 h:min (n = 33) | 4:00–4:30 h:min (n = 36) | >4:30 h:min (n = 33) | |||
Finished marathons (n) | 7.7 ± 6.2 | 8.9 ± 9.5 | 3.6 ± 2.5 | 2.5 ± 1.6 | <0.001 | 0.182 |
Training days (wk−1) | 5.3 ± 1.2 | 4.5 ± 1.2 | 4.1 ± 0.7 | 3.6 ± 1.1 | <0.001 | 0.261 |
Training distance (km·wk−1) | 68.0 ± 23.7 | 58.2 ± 20.7 | 45.7 ± 12.3 | 40.4 ± 15.8 | <0.001 | 0.254 |
BF (%) | 14.2 ± 3.9 | 18.1 ± 3.6 | 18.0 ± 2.9 | 20.0 ± 3.5 | <0.001 | 0.273 |
Skinfolds | ||||||
Cheek (mm) | 7.1 ± 1.3 | 8.3 ± 2.1 | 7.7 ± 1.6 | 8.9 ± 2.0 | 0.001 | 0.128 |
Chin (mm) | 5.6 ± 1.5 | 7.1 ± 2.4 | 6.6 ± 1.6 | 7.6 ± 2.3 | 0.001 | 0.121 |
Triceps (mm) | 7.4 ± 2.7 | 8.6 ± 2.4 | 8.6 ± 2.8 | 10.0 ± 2.7 | 0.003 | 0.113 |
Subscapular (mm) | 10.9 ± 3.9 | 13.4 ± 5.0 | 13.5 ± 3.8 | 16.5 ± 6.1 | <0.001 | 0.151 |
Pectoral (mm) | 6.4 ± 2.9 | 10.6 ± 5.4 | 9.9 ± 4.3 | 14.1 ± 6.6 | <0.001 | 0.236 |
Chest II (mm) | 8.5 ± 3.2 | 11.5 ± 4.4 | 11.6 ± 4.0 | 13.8 ± 5.2 | <0.001 | 0.160 |
Abdomen (mm) | 15.3 ± 6.9 | 22.9 ± 7.7 | 22.6 ± 6.3 | 27.1 ± 8.3 | <0.001 | 0.241 |
Iliac crest (mm) | 12.5 ± 6.1 | 18.0 ± 6.1 | 18.5 ± 5.6 | 22.7 ± 6.8 | <0.001 | 0.256 |
Patella (mm) | 9.0 ± 2.5 | 9.6 ± 2.5 | 9.7 ± 3.0 | 11.1 ± 3.0 | 0.026 | 0.072 |
Proximal calf (mm) | 6.2 ± 2.4 | 7.3 ± 2.0 | 7.2 ± 2.4 | 7.9 ± 2.8 | 0.050 | 0.061 |
Biceps (mm) | 4.0 ± 1.3 | 5.0 ± 2.1 | 5.1 ± 1.5 | 5.9 ± 2.1 | <0.001 | 0.134 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolaidis, P.T.; Rosemann, T.; Knechtle, B. Skinfold Thickness Distribution in Recreational Marathon Runners. Int. J. Environ. Res. Public Health 2020, 17, 2978. https://doi.org/10.3390/ijerph17092978
Nikolaidis PT, Rosemann T, Knechtle B. Skinfold Thickness Distribution in Recreational Marathon Runners. International Journal of Environmental Research and Public Health. 2020; 17(9):2978. https://doi.org/10.3390/ijerph17092978
Chicago/Turabian StyleNikolaidis, Pantelis Theodoros, Thomas Rosemann, and Beat Knechtle. 2020. "Skinfold Thickness Distribution in Recreational Marathon Runners" International Journal of Environmental Research and Public Health 17, no. 9: 2978. https://doi.org/10.3390/ijerph17092978
APA StyleNikolaidis, P. T., Rosemann, T., & Knechtle, B. (2020). Skinfold Thickness Distribution in Recreational Marathon Runners. International Journal of Environmental Research and Public Health, 17(9), 2978. https://doi.org/10.3390/ijerph17092978