Spatial Distribution of Land Surface Temperatures in Kuwait: Urban Heat and Cool Islands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Salamanca, F.; Georgescu, M.; Mahalov, A.; Moustaoui, M.; Wang, M. Anthropogenic heating of the urban environment due to air conditioning. J. Geophys. Res. Atmos. 2014, 119, 5949–5965. [Google Scholar] [CrossRef]
- Zoulia, I.; Santamouris, M.; Dimoudi, A. Monitoring the effect of urban green areas on the heat island in Athens. Environ. Monit. Assess. 2009, 156, 275–292. [Google Scholar] [CrossRef] [PubMed]
- Deilami, K.; Kamruzzaman, M.; Liu, Y. Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 30–42. [Google Scholar] [CrossRef]
- Harlan, S.L.; Brazel, A.J.; Prashad, L.; Stefanov, W.L.; Larsen, L. Neighborhood microclimates and vulnerability to heat stress. Soc. Sci. Med. 2006, 63, 2847–2863. [Google Scholar] [CrossRef] [PubMed]
- Goggins, W.B.; Chan, E.Y.Y.; Ng, E.; Ren, C.; Chen, L. Effect modification of the association between short-term meteorological factors and mortality by urban heat islands in Hong Kong. PLoS ONE 2012, 7, e38551. [Google Scholar] [CrossRef] [Green Version]
- Laaidi, K.; Zeghnoun, A.; Dousset, B.; Bretin, P.; Vandentorren, S.; Giraudet, E.; Beaudeau, P. The impact of heat islands on mortality in Paris during the August 2003 heat wave. Environ. Health Perspect. 2012, 120, 254–259. [Google Scholar] [CrossRef] [Green Version]
- Swamy, G.; Nagendra, S.M.S.; Schlink, U. Urban heat island (UHI) influence on secondary pollutant formation in a tropical humid environment. J. Air Waste Manag. Assoc. 2017, 67, 1080–1091. [Google Scholar] [CrossRef] [Green Version]
- Santamouris, M.; Cartalis, C.; Synnefa, A.; Kolokotsa, D. On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings—A review. Energy Build. 2015, 98, 119–124. [Google Scholar] [CrossRef]
- Guhathakurta, S.; Gober, P. The impact of the phoenix urban heat island on residential water use. J. Am. Plan. Assoc. 2007, 73, 317–329. [Google Scholar] [CrossRef]
- Yang, Y.; Shang, S.; Jiang, L. Remote sensing temporal and spatial patterns of evapotranspiration and the responses to water management in a large irrigation district of North China. Agric. For. Meteorol. 2012, 164, 112–122. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; Luo, Z.; Chan, P.W. The urban cool island phenomenon in a high-rise high-density city and its mechanisms. Int. J. Climatol. 2017, 37, 890–904. [Google Scholar] [CrossRef]
- Rasul, A.; Balzter, H.; Smith, C. Diurnal and Seasonal Variation of Surface Urban Cool and Heat Islands in the Semi-Arid City of Erbil, Iraq. Climate 2016, 4, 42. [Google Scholar] [CrossRef] [Green Version]
- Memon, R.A.; Leung, D.Y.C.; Liu, C.-H. An investigation of urban heat island intensity (UHII) as an indicator of urban heating. Atmos. Res. 2009, 94, 491–500. [Google Scholar] [CrossRef]
- Miao, S.; Chen, F.; LeMone, M.A.; Tewari, M.; Li, Q.; Wang, Y. An observational and modeling study of characteristics of urban heat island and boundary layer structures in beijing. J. Appl. Meteor. Climatol. 2009, 48, 484–501. [Google Scholar] [CrossRef]
- Gedzelman, S.D.; Austin, S.; Cermak, R.; Stefano, N.; Partridge, S.; Quesenberry, S.; Robinson, D.A. Mesoscale aspects of the Urban Heat Island around New York City. Theor. Appl. Climatol. 2003, 75, 29–42. [Google Scholar] [CrossRef]
- Merlone, A.; Al-Dashti, H.; Faisal, N.; Cerveny, R.S.; AlSarmi, S.; Bessemoulin, P.; Brunet, M.; Driouech, F.; Khalatyan, Y.; Peterson, T.C.; et al. Temperature extreme records: World Meteorological Organization metrological and meteorological evaluation of the 54.0 °C observations in Mitribah, Kuwait and Turbat, Pakistan in 2016/2017. Int. J. Climatol. 2019. [Google Scholar] [CrossRef]
- Pal, J.S.; Eltahir, E.A.B. Future temperature in southwest Asia projected to exceed a threshold for human adaptability. Nat. Clim. Chang. 2015, 6, 197–200. [Google Scholar] [CrossRef]
- Alahmad, B.; Shakarchi, A.; Alseaidan, M.; Fox, M. The effects of temperature on short-term mortality risk in Kuwait: A time-series analysis. Environ. Res. 2019, 171, 278–284. [Google Scholar]
- Alahmad, B.; Khraishah, H.; Shakarchi, A.F.; Albaghdadi, M.; Rajagopalan, S.; Koutrakis, P.; Jaffer, F. Cardiovascular mortality and exposure to heat in an inherently hot region: Implications for climate change. Circulation 2020, 141, 1271–1273. [Google Scholar] [CrossRef]
- Alshalfan, S. The Right to Housing in Kuwait: An Urban Injustice in a Socially Just System. Available online: http://eprints.lse.ac.uk/55012/ (accessed on 26 April 2020).
- Hulley, G.C.; Ghent, D.; Göttsche, F.M.; Guillevic, P.C.; Mildrexler, D.J.; Coll, C. Land Surface Temperature. In Taking the Temperature of the Earth; Elsevier: Amsterdam, The Netherlands, 2019; pp. 57–127. [Google Scholar]
- Basu, R. High ambient temperature and mortality: A review of epidemiologic studies from 2001 to 2008. Environ. Health 2009, 8, 40. [Google Scholar] [CrossRef] [Green Version]
- Gasparrini, A.; Guo, Y.; Hashizume, M.; Lavigne, E.; Zanobetti, A.; Schwartz, J.; Tobias, A.; Tong, S.; Rocklöv, J.; Forsberg, B.; et al. Mortality risk attributable to high and low ambient temperature: A multicountry observational study. Lancet 2015, 386, 369–375. [Google Scholar] [CrossRef]
- Wang, C.; Myint, S.; Wang, Z.; Song, J. Spatio-Temporal Modeling of the Urban Heat Island in the Phoenix Metropolitan Area: Land Use Change Implications. Remote Sens. 2016, 8, 185. [Google Scholar] [CrossRef] [Green Version]
- Nasrallah, H.A.; Brazel, A.J.; Balling, R.C. Analysis of the Kuwait city urban heat island. Int. J. Climatol. 1990, 10, 401–405. [Google Scholar] [CrossRef]
- Al-Awadhi, J.M.; Al-Helal, A.; Al-Enezi, A. Sand drift potential in the desert of Kuwait. J. Arid Environ. 2005, 63, 425–438. [Google Scholar] [CrossRef]
- PACI. The Public Authority for Civil Information; Government of Kuwait: Kuwait City, Kuwait, 2017.
- Omar, S.A.S.; Misak, R.; Minkarah, H. Land-use mapping for the State of Kuwait using the Geographical Information System (GIS). Arab Gulf J. Sci. Res. 2001, 19, 59–65. [Google Scholar]
- Kuwait Meteorological Department Climate of Kuwait; Directorate General of Civil Aviation, Government of Kuwait: Kuwait City, Kuwait, 2019.
- Wan, S.H.Z. MOD11A2 MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1km SIN Grid V006. NASA EOSDIS Land Processes DAAC 2015. [Google Scholar] [CrossRef]
- Hulley, G.C.; Hook, S.J. Intercomparison of versions 4, 4.1 and 5 of the MODIS Land Surface Temperature and Emissivity products and validation with laboratory measurements of sand samples from the Namib desert, Namibia. Remote Sens. Environ. 2009, 113, 1313–1318. [Google Scholar] [CrossRef]
- Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ. 2014, 140, 36–45. [Google Scholar] [CrossRef]
- Coll, C.; Wan, Z.; Galve, J.M. Temperature-based and radiance-based validations of the V5 MODIS land surface temperature product. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Zhang, T.; Wang, T.; Zhou, X. Evaluation of Collection-6 MODIS Land Surface Temperature Product Using Multi-Year Ground Measurements in an Arid Area of Northwest China. Remote Sens. 2018, 10, 1852. [Google Scholar] [CrossRef] [Green Version]
- Haashemi, S.; Weng, Q.; Darvishi, A.; Alavipanah, S. Seasonal Variations of the Surface Urban Heat Island in a Semi-Arid City. Remote Sens. 2016, 8, 352. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wang, X.; Wang, X.; Ma, W.; Zhang, H. Remote sensing evaluation of urban heat island and its spatial pattern of the Shanghai metropolitan area, China. Ecol. Complex. 2009, 6, 413–420. [Google Scholar] [CrossRef]
- Freitas, E.D.; Rozoff, C.M.; Cotton, W.R.; Dias, P.L.S. Interactions of an urban heat island and sea-breeze circulations during winter over the metropolitan area of São Paulo, Brazil. Bound. Layer Meteorol. 2007, 122, 43–65. [Google Scholar] [CrossRef]
- Chow, W.T.L.; Brennan, D.; Brazel, A.J. Urban heat island research in phoenix, arizona: Theoretical contributions and policy applications. Bull. Am. Meteor. Soc. 2012, 93, 517–530. [Google Scholar] [CrossRef] [Green Version]
- Lazzarini, M.; Marpu, P.R.; Ghedira, H. Temperature-land cover interactions: The inversion of urban heat island phenomenon in desert city areas. Remote Sens. Environ. 2013, 130, 136–152. [Google Scholar] [CrossRef]
- Frey, C.M.; Rigo, G.; Parlow, E. Urban radiation balance of two coastal cities in a hot and dry environment. Int. J. Remote Sens. 2007, 28, 2695–2712. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Met. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Hart, M.A.; Sailor, D.J. Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island. Theor. Appl. Climatol. 2009, 95, 397–406. [Google Scholar] [CrossRef]
- Al-Hemoud, A.; Al-Sudairawi, M.; Al-Rashidi, M.; Behbehani, W.; Al-Khayat, A. Temperature inversion and mixing height: Critical indicators for air pollution in hot arid climate. Nat. Hazards 2019, 97, 139–155. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Y. Water bodies’ cooling effects on urban land daytime surface temperature: Ecosystem service reducing heat island effect. Sustainability 2019, 11, 787. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, Y.; Ishikawa, H. Influence of urban spatial configuration and sea breeze on land surface temperature on summer clear-sky days. Urban Clim. 2020, 31, 100578. [Google Scholar] [CrossRef]
- Synnefa, A.; Santamouris, M.; Apostolakis, K. On the development, optical properties and thermal performance of cool colored coatings for the urban environment. Solar Energy 2007, 81, 488–497. [Google Scholar] [CrossRef]
- Akbari, H.; Konopacki, S. Energy effects of heat-island reduction strategies in Toronto, Canada. Energy 2004, 29, 191–210. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Berardi, U.; Akbari, H. Comparing the effects of urban heat island mitigation strategies for Toronto, Canada. Energy Build. 2016, 114, 2–19. [Google Scholar] [CrossRef]
- Sailor, D.J. A review of methods for estimating anthropogenic heat and moisture emissions in the urban environment. Int. J. Climatol. 2011, 31, 189–199. [Google Scholar] [CrossRef]
- Millward, A.A.; Sabir, S. Benefits of a forested urban park: What is the value of Allan Gardens to the city of Toronto, Canada? Landsc. Urban Plan. 2011, 100, 177–188. [Google Scholar] [CrossRef]
- Ng, E.; Chen, L.; Wang, Y.; Yuan, C. A study on the cooling effects of greening in a high-density city: An experience from Hong Kong. Build. Environ. 2012, 47, 256–271. [Google Scholar] [CrossRef]
- Berardi, U.; GhaffarianHoseini, A.; GhaffarianHoseini, A. State-of-the-art analysis of the environmental benefits of green roofs. Appl. Energy 2014, 115, 411–428. [Google Scholar] [CrossRef]
- Santamouris, M. Cooling the cities—A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar Energy 2014, 103, 682–703. [Google Scholar] [CrossRef]
Governorate | Mean | SD | Median | IQR | Min | Max |
---|---|---|---|---|---|---|
Daytime LST (°C) | ||||||
Rural Governorates | ||||||
Al Ahmadi | 36.91 | 0.89 | 36.93 | 1.08 | 29.9 | 39.32 |
Al Jahrah | 37.24 | 1.10 | 37.30 | 0.90 | 25.56 | 40.25 |
Urban/Suburban Governorates | ||||||
Al Farwaniyah | 37.20 | 1.30 | 37.17 | 1.76 | 34.92 | 40.4 |
Al Kuwait (Capital City) | 33.74 | 3.06 | 33.27 | 3.63 | 28.55 | 40.37 |
Hawalli | 35.10 | 2.74 | 34.69 | 4.03 | 29.12 | 39.72 |
Mubarak Al-Kabeer | 34.86 | 1.05 | 34.93 | 1.02 | 31.27 | 36.92 |
Nighttime LST (°C) | ||||||
Rural Governorates | ||||||
Al Ahmadi | 18.57 | 1.06 | 18.44 | 1.36 | 16.82 | 23.22 |
Al Jahrah | 18.25 | 0.94 | 18.15 | 1.23 | 16.68 | 22.25 |
Urban/Suburban Governorates | ||||||
Al Farwaniyah | 21.52 | 1.02 | 21.61 | 1.72 | 19.67 | 23.50 |
Al Kuwait (Capital City) | 22.40 | 0.52 | 22.38 | 0.81 | 21.14 | 23.38 |
Hawalli | 23.05 | 0.46 | 23.13 | 0.58 | 21.89 | 23.80 |
Mubarak Al-Kabeer | 22.19 | 0.51 | 22.35 | 0.59 | 20.82 | 22.98 |
Rural Governorates | Urban/Suburban Governorates | |||||
---|---|---|---|---|---|---|
Al Ahmadi | Al Jahrah | Al Farwaniyah | Al Kuwait (Captial City) | Hawalli | Mubarak Al−Kabeer | |
Absolute Difference in Daytime LST (°C), row minus column (95% CI) | ||||||
Rural Governorates | ||||||
Al Ahmadi | −0.29 | −0.32 | 3.17 | 1.81 | 2.06 | |
(−0.09, −0.49) | (−0.27, −0.37) | (3.59, 2.75) | (2.20, 1.42) | (2.40, 1.71) | ||
Al Jahrah | 0.32 | 0.03 | 3.49 | 2.13 | 2.38 | |
(0.27, 0.37) | (−0.16, 0.23) | (3.91, 3.08) | (2.52, 1.74) | (2.72, 2.04) | ||
Urban/Suburban Governorates | ||||||
Al Farwaniyah | 0.29 | −0.03 | 3.46 | 2.10 | 2.35 | |
(0.09, 0.49) | (0.16, −0.23) | (3.92, 3.00) | (2.53, 1.67) | (2.74, 1.96) | ||
Al Kuwait (Captial City) | −3.17 | −3.49 | −3.46 | −1.36 | −1.12 | |
(−3.59, −2.75) | (−3.91, −3.08) | (−3.92, −3.00) | (−0.79, −1.93) | (−0.58, −1.65) | ||
Hawalli | −1.81 | −2.13 | −2.10 | 1.36 | 0.25 | |
(−2.20, −1.42) | (−2.52, −1.74) | (−2.53, −1.67) | (0.79, 1.93) | (0.76, −0.27) | ||
Mubarak Al-Kabeer | −2.06 | −2.38 | −2.35 | 1.12 | −0.25 | |
(−2.40, −1.71) | (−2.72, −2.04) | (−2.74, −1.96) | (0.58, 1.65) | (−0.76, 0.27) | ||
Absolute Difference in Nighttime LST (°C), row minus column (95% CI) | ||||||
Rural Governorates | ||||||
Al Ahmadi | −2.95 | 0.32 | −3.82 | −4.48 | −3.62 | |
(−2.77, −3.13) | (0.36, 0.28) | (−3.44, −4.84) | (−4.13, −4.84) | (−3.31, −3.39) | ||
Al Jahrah | −0.32 | −3.27 | −4.14 | −4.8 | −3.94 | |
(−0.36, −0.28) | (−3.45, −3.09) | (−3.76, −4.53) | (−4.45, −5.16) | (−3.63, −4.25) | ||
Urban/Suburban Governorates | ||||||
Al Farwaniyah | 2.95 | 3.27 | −0.87 | −1.53 | −0.67 | |
(2.77, 3.13) | (3.45, 3.09) | (−0.45, −1.29) | (−1.14, −1.93) | (−0.31, −1.02) | ||
Al Kuwait (Capital City) | 3.82 | 4.14 | 0.87 | −0.66 | 0.20 | |
(3.44, 4.84) | (3.76, 4.53) | (0.45, 1.29) | (−0.14, −1.18) | (0.70, −0.29) | ||
Hawalli | 4.48 | 4.8 | 1.53 | 0.66 | 0.86 | |
(4.13, 4.84) | (4.45, 5.16) | (1.14, 1.93) | (0.14, 1.18) | (1.33, 0.39) | ||
Mubarak Al-Kabeer | 3.62 | 3.94 | 0.67 | −0.20 | −0.86 | |
(3.31, 3.39) | (3.63, 4.25) | (0.31, 1.02) | (−0.70, 0.29) | (−1.33, −0.39) |
Difference | 95% CI | p-Value | Urban Effect | |
---|---|---|---|---|
Difference in Daytime LST (°C) | ||||
TUrban/Suburban – TRural | −1.07 | −1.17, −0.96 | <0.001 | Surface urban cool island |
Difference in Nighttime LST (°C) | ||||
TUrban/Suburban – TRural | 3.62 | 3.53, 3.71 | <0.001 | Surface urban heat island |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alahmad, B.; Tomasso, L.P.; Al-Hemoud, A.; James, P.; Koutrakis, P. Spatial Distribution of Land Surface Temperatures in Kuwait: Urban Heat and Cool Islands. Int. J. Environ. Res. Public Health 2020, 17, 2993. https://doi.org/10.3390/ijerph17092993
Alahmad B, Tomasso LP, Al-Hemoud A, James P, Koutrakis P. Spatial Distribution of Land Surface Temperatures in Kuwait: Urban Heat and Cool Islands. International Journal of Environmental Research and Public Health. 2020; 17(9):2993. https://doi.org/10.3390/ijerph17092993
Chicago/Turabian StyleAlahmad, Barrak, Linda Powers Tomasso, Ali Al-Hemoud, Peter James, and Petros Koutrakis. 2020. "Spatial Distribution of Land Surface Temperatures in Kuwait: Urban Heat and Cool Islands" International Journal of Environmental Research and Public Health 17, no. 9: 2993. https://doi.org/10.3390/ijerph17092993
APA StyleAlahmad, B., Tomasso, L. P., Al-Hemoud, A., James, P., & Koutrakis, P. (2020). Spatial Distribution of Land Surface Temperatures in Kuwait: Urban Heat and Cool Islands. International Journal of Environmental Research and Public Health, 17(9), 2993. https://doi.org/10.3390/ijerph17092993