Screening of Heavy Metal-Immobilizing Bacteria and Its Effect on Reducing Cd2+ and Pb2+ Concentrations in Water Spinach (Ipomoea aquatic Forsk.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Analysis
2.2. Isolation of Culturable Bacteria from Water Spinach Rhizosphere Soil
2.3. Determination of Cd and Pb Adsorption Capacity of the Strains
2.4. Determination of Biological Characteristics of Heavy Metal-Immobilizing Strains
2.5. Hydroponic Experiment
2.6. Analysis of Samples
2.7. Statistical Analysis
3. Results
3.1. Physical and Chemical Properties of the Soil Samples
3.2. Effects of Different Contents of Cd and Pb on Culturable Bacterial Communities in Water Spinach Rhizosphere Soil
3.3. Comparison of Cd2+ and Pb2+ Removal Ability by Culturable Bacteria in Water Spinach Rhizosphere
3.4. Growth Promotion Characteristics and Heavy Metal Resistance of Heavy Metal-Immobilizing Bacteria
3.5. Effects of Heavy Metal-Immobilizing Bacteria on the Growth and Enrichment of Cd2+ and Pb2+ in Water Spinach
3.6. Effects of Strains on the Soluble Protein and Vc Contents of Water Spinach
4. Discussion
4.1. High Concentration Heavy Metals Increased the Proportion of Heavy Metal-Immobilizing Bacteria in Water Spinach Rhizosphere Soil
4.2. Heavy Metal-Immobilizing Bacteria Inhibit the Absorption of Heavy Metals in Water Spinach
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kim, S.W.; Chae, Y.; Moon, J.; Kim, D.; Cui, R.; An, G.; Jeong, S.W.; An, Y.J. In situ evaluation of crop productivity and bioaccumulation of heavy metals in paddy soils after remediation of metal-contaminated soils. J. Agric. Food Chem. 2017, 65, 1239–1246. [Google Scholar] [CrossRef] [PubMed]
- Cai, K.; Li, C. Street dust heavy metal pollution source apportionment and sustainable management in a typical city—Shijiazhuang, China. Int. J. Environ. Res. Public Health 2019, 16, 2625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, Y.A.; Camara, A.Y.; Yu, Y.; Wang, Q.; Guo, T.L.; Zhu, L.N.; Li, H.F. Cadmium dynamics in soil pore water and uptake by rice: Influences of soil-applied selenite with different water managements. Environ. Pollut. 2018, 240, 523–533. [Google Scholar] [CrossRef]
- El-Meihy, R.M.; Abou-Aly, H.E.; Youssef, A.M.; Tewfike, T.A.; El-Alkshar, E.A. Efficiency of heavy metals-tolerant plant growth promoting bacteria for alleviating heavy metals toxicity on sorghum. Environ. Exp. Bot. 2019, 162, 295–301. [Google Scholar] [CrossRef]
- Yang, U.J.; Yoon, S.R.; Chung, J.H.; Kim, Y.J.; Park, K.H.; Park, T.S.; Shim, S.M. Water spinach (Ipomoea aquatic Forsk.) reduced the absorption of heavy metals in an in vitro bio-mimicking model system. Food Chem. Toxicol. 2012, 50, 3862–3866. [Google Scholar] [CrossRef] [PubMed]
- Chonokhuu, S.; Batbold, C.; Chuluunpurev, B.; Battsengel, E.; Dorjsuren, B.; Byambaa, B. Contamination and health risk assessment of heavy metals in the soil of major cities in mongolia. Int. J. Environ. Res. Public Health 2019, 16, 2552. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Li, H.J.; Sun, Z.Q. Correlation analysis of Cd pollution in vegetables and soils and the soil pollution threshold. Trans. CSAE 2006, 22, 149–153. [Google Scholar]
- Burger, J. Assessment and management of risk to wildlife from cadmium. Sci. Total Environ. 2008, 389, 37–45. [Google Scholar] [CrossRef]
- Wang, G.Y.; Zhang, S.R.; Zhong, Q.M.; Peijnenburg, W.; Vijver, M.G. Feasibility of Chinese cabbage (Brassica bara) and lettuce (Lactuca sativa) cultivation in heavily metals-contaminated soil after washing with biodegradable chelators. J. Clean Prod. 2018, 197, 479–490. [Google Scholar] [CrossRef] [Green Version]
- León-Cañedo, J.A.; Alarcón-Silvas, S.G.; Fierro-Sañudo, J.F.; Rodríguez-Montes de Oca, G.A.; Partida-Ruvalcaba, L.; Díaz-Valdés, T.; Páez-Osuna, F. Mercury and other trace metals in lettuce (Lactuca sativa) grown with two low-salinity shrimp effluents: Accumulation and human health risk assessment. Sci. Total Environ. 2019, 650, 2535–2544. [Google Scholar] [CrossRef]
- Rehman, M.Z.U.; Rizwan, M.; Hussain, A.; Saqib, M.; Ali, S.; Sohail, M.I.; Shafiq, M.; Hafeez, F. Alleviation of cadmium (Cd) toxicity and minimizing its uptake in wheat (Triticum aestivum) by using organic carbon sources in Cd-Spiked soil. Environ. Pollut. 2018, 241, 557–565. [Google Scholar] [CrossRef]
- Jalilvand, N.; Akhgar, A.; Alikhan, H.A.; Rahmani, H.A.; Rejali, F. Removal of heavy metals Zinc, Lead, and Cadmium by biomineralization of urease-producing bacteria isolated from Iranian Mine Calcareous soils. J. Soil Sci. Plant Nut. 2020, 20, 206–219. [Google Scholar] [CrossRef]
- Etesami, H. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: Mechanisms and future prospects. Ecol. Environ. Sci. 2018, 147, 175–191. [Google Scholar] [CrossRef]
- Yuan, J.H.; Xu, R.K. Progress of the research on the properties of biochars and their influence on soil environmental functions. Ecol. Environ. Sci. 2011, 20, 779–785. [Google Scholar]
- Wang, D.F.; Zhang, G.L.; Zhou, L.L.; Cai, D.Q.; Wu, Z.Y. Immobilizing arsenic and copper ions in manure using a nanocomposite. J. Agric. Food Chem. 2017, 65, 8999–9005. [Google Scholar] [CrossRef] [PubMed]
- Udeigwe, T.K.; Eze, P.N.; Teboh, J.M.; Stietiya, M.H. Application, chemistry, and environmental implications of contaminant-immobilization amendments on agricultural soil and water quality. Environ. Int. 2011, 37, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Sheng, X.F.; Hu, J.W.; He, L.Y.; Wang, Q. Metal-Immobilizing Serratia liquefaciens CL-1 and Bacillus thuringiensis X30 increase biomass and reduce heavy metal accumulation of radish under field conditions. Ecotoxicol. Environ. Saf. 2018, 161, 526–533. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.Q.; Wang, M.; Wang, H.; Tang, D.; Huang, J.; Sun, Y. Study on the remediation of Cd pollution by the biomineralization of Urease-Producing bacteria. Int. J. Environ. Res. Public Health 2019, 16, 268. [Google Scholar] [CrossRef] [Green Version]
- Teng, Z.D.; Shao, W.; Zhang, K.Y.; Huo, Y.Q.; Li, M. Characterization of phosphate solubilizing bacteria isolated from heavy metal contaminated soils and their potential for lead immobilization. J. Environ. Manag. 2019, 231, 189–197. [Google Scholar] [CrossRef]
- Han, H.; Wang, Q.; He, L.Y.; Sheng, X.F. Increased biomass and reduced rapeseed Cd accumulation of oilseed rape in the presence of Cd-Immobilizing and Polyamine-Producing bacteria. J. Hazard. Mater. 2018, 353, 280–289. [Google Scholar] [CrossRef]
- Li, Y.; Pang, H.D.; He, L.Y.; Wang, Q.; Sheng, X.F. Cd immobilization and reduced tissue Cd accumulation of rice (Oryza sativa wuyun-23) in the presence of heavy metal-resistant bacteria. Ecotoxicol. Environ. Saf. 2017, 138, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.G.; Wang, P.; Yue, X.Y.; Wang, J.T.; Ren, B.Z.; Qu, L.B.; Han, H. Effects of Bacillus thuringiensis HC-2 combined with biochar on the growth and Cd and Pb accumulation of radish in a heavy metal-contaminated farmland under field conditions. Int. J. Environ. Res. Public Health 2019, 16, 3676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Jiang, Y.; Huang, H.; Mou, L.; Ru, J.; Zhao, J.; Xiao, S. Long-term and high-concentration heavy-metal contamination strongly influences the microbiome and functional genes in Yellow River sediments. Sci. Total Environ. 2018, 637–638, 1400–1412. [Google Scholar] [CrossRef] [PubMed]
- Noisangiam, R.; Nuntagij, A.; Pongsilp, N.; Boonkerd, N.; Denduangboripant, J.; Ronson, C.; Teaumroong, N. Heavy metal tolerant Metalliresistens boonkerdii gen. nov., sp. nov., a new genus in the family Bradyrhizobiaceae isolated from soil in Thailand. Syst. Appl. Microbiol. 2011, 34, 166–168. [Google Scholar] [CrossRef]
- Ke, X.B.; Feng, S.; Wang, J.; Lu, W.; Zhang, W.; Chen, M.; Lin, M. Effect of inoculation with nitrogen-fixing bacterium Pseudomonas stutzeri A1501 on maize plant growth and the microbiome indigenous to the rhizosphere. Syst. Appl. Microbiol. 2019, 42, 248–260. [Google Scholar] [CrossRef]
- Hesse, E.; O’Brien, S.; Tromas, N.; Bayer, F.; Lujan, A.M.; van Veen, E.M.; Hodgson, D.J.; Buckling, A. Ecological selection of siderophore-producing microbial taxa in response to heavy metal contamination. Ecol. Lett. 2018, 21, 117–127. [Google Scholar] [CrossRef] [Green Version]
- SSICA. Physical and Chemical Analyses of Soils; Shanghai Academic Press: Shanghai, China; China Soil Sci. Ch. Acad.: Beijing, China, 1980. (In Chinese) [Google Scholar]
- Kjeldahl, J. A new method for the determination of nitrogen in organic matter. Z. für Anal. Chem. 1883, 22, 366–382. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, F.S.; Olsen, S.R. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from thesoil. Soil Sci. Soc. Am. J. 1965, 29, 677–678. [Google Scholar] [CrossRef]
- Chen, L.; He, L.Y.; Wang, Q.; Sheng, X.F. Synergistic effects of plant growth-promoting Neorhizobium huautlense T1-17 and immobilizers on the growth and heavy metal accumulation of edible tissues of hot pepper. J. Hazard. Mater. 2016, 312, 123–131. [Google Scholar] [CrossRef]
- Kannan, S.K.; Mahadevan, S.; Krishnamoorthy, R. Characterization of a mercury-reducing Bacillus cereus strain isolated from the Pulicat Lake sediments, south east coast of India. Arch. Microbiol. 2006, 185, 202–211. [Google Scholar] [CrossRef]
- Goswami, D.; Thakker, J.N.; Dhandhukia, P.C. Simultaneous detection and quantification of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) produced by rhizobacteria from L-tryptophan (Trp) using HPTLC. J. Microbiol. Meth. 2015, 110, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, M.; Ae, N.; Prasad, M.N.V.; Freitas, H. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol. 2010, 28, 142–149. [Google Scholar] [CrossRef]
- Zornoza, P.; Millán, R.; Sierra, M.J.; Seco, A.; Esteban, E. Efficiency of white lupin in the removal of mercury from contaminated soils: Soil and hydroponic experiments. J. Environ. Sci. 2010, 22, 421–427. [Google Scholar] [CrossRef]
- Chen, J.; Kang, S.; Du, T.; Qiu, R.; Guo, P.; Chen, R. Quantitative response of greenhouse tomato yield and quality to water deficit at different growth stages. Agric. Water Manag. 2003, 129, 152–162. [Google Scholar] [CrossRef]
- Masih, L.; Roginski, H.; Premier, R.; Tomkins, B.; Ajlouni, S. Soluble protein content in minimally processed vegetables during storage. Food Res. Int. 2002, 35, 697–702. [Google Scholar] [CrossRef]
- Torsvik, V.; Øvreås, L. Microbial diversity and function in soil: from genes to ecosystems. Curr. Opin. Microbiol. 2002, 5, 240–245. [Google Scholar] [CrossRef]
- Blakely, J.K.; Neher, D.A.; Spongberg, A.L. Soil invertebrate and microbial communities, and decomposition as indicators of polycyclic aromatic hydrocarbon contamination. Appl. Soil Ecol. 2002, 21, 71–88. [Google Scholar] [CrossRef]
- Cankovic, M.; Zucko, J.; Radic, I.D.; Janekovic, I.; Petric, I.; Ciglenecki, I.; Collins, G. Microbial diversity and long-term geochemical trends in the euxinic zone of a marine, meromictic lake. Syst. Appl. Microbiol. 2019, 42, 13. [Google Scholar] [CrossRef]
- Deng, W.; Zhang, A.; Chen, S.; He, X.; Jin, L.; Yu, X.; Yang, S.; Li, B.; Fan, L.; Ji, L.; et al. Heavy metals, antibiotics and nutrients affect the bacterial community and resistance genes in chicken manure composting and fertilized soil. J. Environ. Manag. 2002, 257, 109980. [Google Scholar] [CrossRef]
- Liao, M.; Xie, X.M. Effect of heavy metals on substrate utilization pattern, biomass, and activity of microbial communities in a reclaimed mining wasteland of red soil area. Ecotoxicol. Environ. Saf. 2007, 66, 217–223. [Google Scholar] [CrossRef]
- Yao, H.; Xu, J.; Huang, C. Substrate utilization pattern, biomass and activity of microbial communities in a sequence of heavy metal-polluted paddy soils. Geoderma 2003, 115, 139–148. [Google Scholar] [CrossRef]
- Zhang, C.; Nie, S.; Liang, J.; Zeng, G.; Wu, H.; Hua, S.; Liu, J.; Yuan, Y.; Xiao, H.; Deng, L.; et al. Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure. Sci. Total Environ. 2016, 557–558, 785–790. [Google Scholar] [CrossRef] [PubMed]
- Azarbad, H.; Niklinska, M.; Laskowski, R.; van Straalen, N.M.; van Gestel, C.A.M.; Zhou, J.Z.; He, Z.L.; Wen, C.Q.; Roling, W.F.M. Microbial community composition and functions are resilient to metal pollution along two forest soil gradients. FEMS Microbiol. Ecol. 2015, 91, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pishchik, V.N.; Vorob’ev, N.I.; Provorov, N.A.; Khomyakov, Y.V. Mechanisms of plant and microbial adaptation to heavy metals in plant-microbial systems. Microbiology 2016, 85, 257–271. [Google Scholar] [CrossRef]
- Wood, J.L.; Zhang, C.; Mathews, E.R.; Tang, C.; Franks, A.E. Microbial community dynamics in the rhizosphere of a cadmium hyper-accumulator. Sci. Rep. 2016, 6, 10. [Google Scholar] [CrossRef]
- Idris, R.; Trifonova, R.; Puschenreiter, M.; Wenzel, W.W.; Sessitsch, A. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl. Environ. Microbiol. 2004, 70, 2667–2677. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Hou, H.; ShangGuan, Y.X.; Li, J.N.; Li, F.S. Genetic diversity of endophytic bacteria of the manganese-hyperaccumulating plant Phytolacca americana growing at a manganese mine. Eur. J Soil Biol. 2014, 62, 15–21. [Google Scholar] [CrossRef]
- Rajkumar, M.; Ae, N.; Freitas, H. Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 2009, 77, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, F.A.; Smith, S.R.; Alloway, B.J.; Carlton-Smith, C.; Chambers, B.J. An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci. Total Environ. 2003, 311, 205–219. [Google Scholar] [CrossRef]
- Banik, A.; Pandya, P.; Patel, B.; Rathod, C.; Dangar, M. Characterization of halotolerant, pigmented, plant growth promoting bacteria of groundnut rhizosphere and its in-vitro evaluation of plant-microbe protocooperation to withstand salinity and metal stress. Sci. Total Environ. 2018, 630, 231–242. [Google Scholar] [CrossRef]
- Han, H.; Cai, H.; Wang, X.Y.; Hu, X.M.; Chen, Z.J.; Yao, L.G. Heavy metal-immobilizing bacteria increase the biomass and reduce the Cd and Pb uptake by pakchoi (Brassica chinensis L.) in heavy metalcontaminated soil. Ecotoxicol. Environ. Saf. 2020, 195, 110375. [Google Scholar] [CrossRef]
- Wheaton, G.; Counts, J.; Mukherjee, A.; Kruh, J.; Kelly, R. The confluence of heavy metal biooxidation and heavy metal resistance: implications for bioleaching by extreme thermoacidophiles. Minerals 2015, 5, 397–451. [Google Scholar] [CrossRef]
- Xu, Q.R.; Pan, W.; Zhang, R.R.; Lu, Q.; Xue, W.L.; Wu, C.N.; Song, B.X.; Du, S.T. Inoculation with Bacillus subtilis and Azospirillum brasilense produces abscisic acid that reduces Irt1-Mediated cadmium uptake of roots. J. Agric. Food Chem. 2018, 66, 5229–5236. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Marwa, N.; Mishra, S.K.; Mishra, J.; Verma, P.C.; Rathaur, S.; Singh, N. Brevundimonas diminuta mediated alleviation of arsenic toxicity and plant growth promotion in Oryza sativa L. Ecotoxicol. Environ. Saf. 2016, 125, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.; Asghar, H.N.; Zahir, Z.A.; Shahid, M. Impact of lead tolerant plant growth promoting rhizobacteria on growth, physiology, antioxidant activities, yield and lead content in sunflower in lead contaminated soil. Chemosphere 2018, 195, 606–614. [Google Scholar] [CrossRef] [PubMed]
- FAO/WHO. Joint FAO/WHO Food Standards Programme Codex Committee on Contaminants in Foods, Food CF/5 INF/1; Fifth Session; FAO/WHO: The Hague, The Netherlands, 2011. [Google Scholar]
Sample | DTPA-Extractable Contents (mg kg−1) | pH | Organic Matter g·kg−1 | Total P g·kg−1 | Total N g·kg−1 | Total K g·kg−1 | Total Number of Bacteria CFU g−1 | |
---|---|---|---|---|---|---|---|---|
Cd | Pb | |||||||
CQ | 4.35 ± 5.3a | 22.5 ± 2.67a | 6.22 ± 0.03c | 18.4 ± 1.1b | 3.4 ± 0.28b | 5.2 ± 0.3b | 5.4 ± 0.52b | 6.1 × 103 ± 543c |
JZ | 1.62 ± 0.32b | 11.7 ± 1.16b | 6.42 ± 0.05b | 25.4 ± 2.1a | 6.1 ± 0.81a | 7.1 ± 0.5b | 7.5 ± 0.73a | 1.65 × 105 ± 1740b |
NF | 0.12 ± 0.03c | 3.75 ± 0.21c | 6.97 ± 0.04a | 22.6 ± 1.7a | 5.6 ± 0.32a | 8.9 ± 0.2a | 8.1 ± 0.34a | 1.28 × 106 ± 7854a |
Strain | MICs of Cd2+ (mg L−1) | MICs of Pb2+ (mg L−1) | IAA (mg L−1) | Siderophores |
---|---|---|---|---|
CQ-2 | 200 | 1500 | 23.65 ± 1.87 | +++ |
CQ-7 | 700 | 2200 | 87.61 ± 4.32 | +++++ |
CQ-8 | 300 | 1800 | 33.57 ± 2.12 | ++ |
CQ-12 | 300 | 1500 | 49.65 ± 2.89 | +++ |
CQ-19 | 400 | 1500 | 38.64 ± 2.23 | ++ |
CQ-30 | 400 | 1800 | 69.65 ± 3.57 | +++++ |
CQ-33 | 600 | 2200 | 71.63 ± 3.99 | +++++ |
CQ-39 | 300 | 1800 | 33.54 ± 1.85 | +++ |
CQ-53 | 200 | 1500 | 29.68 ± 1.64 | ++ |
CQ-59 | 300 | 1800 | 45.87 ± 2.46 | ++ |
CQ-83 | 400 | 1500 | 32.85 ± 1.87 | +++ |
CQ-123 | 300 | 1500 | 42.98 ± 2.14 | +++ |
CQ-169 | 600 | 2000 | 58.63 ± 2.76 | +++++ |
CQ-203 | 400 | 1800 | 48.35 ± 2.43 | +++ |
CQ-243 | 300 | 1500 | 29.64 ± 1.34 | ++ |
CQ-295 | 500 | 1500 | 54.28 ± 2.54 | +++ |
CQ-363 | 200 | 1800 | 34.75 ± 1.56 | +++ |
JZ-17 | 200 | 1500 | 54.18 ± 2.65 | ++ |
JZ-33 | 300 | 1500 | 28.64 ± 1.45 | +++ |
JZ-68 | 200 | 1500 | 65.27 ± 3.56 | ++ |
JZ-83 | 200 | 1500 | 38.54 ± 2.45 | +++ |
JZ-163 | 300 | 1800 | 48.61 ± 2.45 | ++ |
JZ-262 | 400 | 1800 | 55.27 ± 3.12 | ++++ |
JZ-263 | 200 | 1500 | 23.67 ± 1.32 | +++ |
JZ-311 | 200 | 1500 | 44.75 ± 2.11 | +++ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Wang, X.; Tian, W.; Yao, L.; Li, Y.; Chen, Z.; Han, H. Screening of Heavy Metal-Immobilizing Bacteria and Its Effect on Reducing Cd2+ and Pb2+ Concentrations in Water Spinach (Ipomoea aquatic Forsk.). Int. J. Environ. Res. Public Health 2020, 17, 3122. https://doi.org/10.3390/ijerph17093122
Wang T, Wang X, Tian W, Yao L, Li Y, Chen Z, Han H. Screening of Heavy Metal-Immobilizing Bacteria and Its Effect on Reducing Cd2+ and Pb2+ Concentrations in Water Spinach (Ipomoea aquatic Forsk.). International Journal of Environmental Research and Public Health. 2020; 17(9):3122. https://doi.org/10.3390/ijerph17093122
Chicago/Turabian StyleWang, Tiejun, Xiaoyu Wang, Wei Tian, Lunguang Yao, Yadong Li, Zhaojin Chen, and Hui Han. 2020. "Screening of Heavy Metal-Immobilizing Bacteria and Its Effect on Reducing Cd2+ and Pb2+ Concentrations in Water Spinach (Ipomoea aquatic Forsk.)" International Journal of Environmental Research and Public Health 17, no. 9: 3122. https://doi.org/10.3390/ijerph17093122
APA StyleWang, T., Wang, X., Tian, W., Yao, L., Li, Y., Chen, Z., & Han, H. (2020). Screening of Heavy Metal-Immobilizing Bacteria and Its Effect on Reducing Cd2+ and Pb2+ Concentrations in Water Spinach (Ipomoea aquatic Forsk.). International Journal of Environmental Research and Public Health, 17(9), 3122. https://doi.org/10.3390/ijerph17093122