Ambient Air Pollution Exposure Association with Anaemia Prevalence and Haemoglobin Levels in Chinese Older Adults
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Exposure Assessment
2.3. Outcome Assessment
2.4. Covariates
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pasricha, S.-R. Anemia: A comprehensive global estimate. Blood 2014, 123, 611–612. [Google Scholar] [CrossRef] [Green Version]
- McLean, E.; Cogswell, M.; Egli, I.; Wojdyla, D.; de Benoist, B. Worldwide prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993–2005. Public Health Nutr. 2008, 12, 444–454. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- Cappellini, M.D.; Motta, I. Anemia in Clinical Practice—Definition and Classification: Does Hemoglobin Change with Aging? Semin. Hematol. 2015, 52, 261–269. [Google Scholar] [CrossRef]
- Price, E.A.; Mehra, R.; Holmes, T.H.; Schrier, S.L. Anemia in older persons: Etiology and evaluation. Blood Cells Mol. Dis. 2011, 46, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Stevens, G.A.; Finucane, M.M.; De-Regil, L.M.; Paciorek, C.J.; Flaxman, S.R.; Branca, F.; Peña-Rosas, J.P.; Bhutta, Z.A.; Ezzati, M.; Nutrition Impact Model Study Group. Global, regional, and national trends in haemoglobin concentration and prevalence of total and severe anaemia in children and pregnant and non-pregnant women for 1995–2011: A systematic analysis of population-representative data. Lancet Glob. Health 2013, 1, e16–e25. [Google Scholar] [CrossRef] [Green Version]
- United Nations. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables; World Population Prospects; UN: New York, NY, USA, 2017.
- Li, L.; Luo, R.; Medina, A.; Rozelle, S. The prevalence of anemia in Central and Eastern China: Evidence from the China health and nutrition survey. Southeast Asian J. Trop. Med. Public Health 2015, 46, 306–321. [Google Scholar] [PubMed]
- Luo, R.; Wang, X.; Zhang, L.; Liu, C.; Shi, Y.; Miller, G.; Rozelle, S.; Yu, E.; Martorell, R. High anemia prevalence in western China. Southeast Asian J. Trop. Med. Public Health 2011, 42, 1204–1213. [Google Scholar]
- Chaves, P.H.; Xue, Q.L.; Guralnik, J.M.; Ferrucci, L.; Volpato, S.; Fried, L.P. What constitutes normal hemoglobin concentration in community--dwelling disabled older women? J. Am. Geriatr. Soc. 2004, 52, 1811–1816. [Google Scholar] [CrossRef]
- Den Elzen, W.P.; Willems, J.M.; Westendorp, R.G.; de Craen, A.J.; Assendelft, W.J.; Gussekloo, J. Effect of anemia and comorbidity on functional status and mortality in old age: Results from the Leiden 85-plus Study. Can. Med. Assoc. J. 2009, 181, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Zakai, N.A.; French, B.; Arnold, A.M.; Newman, A.B.; Fried, L.F.; Robbins, J.; Chaves, P.; Cushman, M. Hemoglobin decline, function, and mortality in the elderly: The cardiovascular health study. Am. J. Hematol. 2013, 88, 5–9. [Google Scholar] [CrossRef] [Green Version]
- Patel, K.V.; Guralnik, J.M. Epidemiology of anemia in older adults. Semin. Hematol. 2008, 45, 210–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaskell, H.; Derry, S.; Moore, R.A.; McQuay, H.J. Prevalence of anaemia in older persons: Systematic review. BMC Geriatr. 2008, 8, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tettamanti, M.; Lucca, U.; Gandini, F.; Recchia, A.; Mosconi, P.; Apolone, G.; Nobili, A.; Tallone, M.V.; DeToma, P.; Giacomin, A.; et al. Prevalence, incidence and types of mild anemia in the elderly: The “Health and Anemia” population-based study. Haematology 2010, 95, 1849–1856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bach, V.; Schruckmayer, G.; Sam, I.; Kemmler, G.; Stauder, R. Prevalence and possible causes of anemia in the elderly: A cross-sectional analysis of a large European university hospital cohort. Clin. Interv. Aging 2014, 9, 1187–1196. [Google Scholar] [PubMed] [Green Version]
- Salive, M.E.; Cornoni-Huntley, J.; Guralnik, J.M.; Phillips, C.L.; Wallace, R.B.; Ostfeld, A.M.; Cohen, H.J. Anemia and Hemoglobin Levels in Older Persons: Relationship with Age, Gender, and Health Status. J. Am. Geriatr. Soc. 1992, 40, 489–496. [Google Scholar] [CrossRef]
- Inelmen, E.M.; D’Alessio, M.; Gatto, M.; Baggio, M.B.; Jimenez, G.; Bizzotto, M.G.; Enzi, G. Descriptive analysis of the prevalence of anemia in a randomly selected sample of elderly people living at home: Some results of an italian multicentric study. Aging Clin. Exp. Res. 1994, 6, 81–89. [Google Scholar] [CrossRef]
- Guralnik, J.M.; Eisenstaedt, R.S.; Ferrucci, L.; Klein, H.G.; Woodman, R.C. Prevalence of anemia in persons 65 years and older in the United States: Evidence for a high rate of unexplained anemia. Blood 2004, 104, 2263–2268. [Google Scholar] [CrossRef] [Green Version]
- Anía, B.J.; Suman, V.J.; Fairbanks, V.F.; Melton, L.J. Prevalence of Anemia in Medical Practice: Community Versus Referral Patients. Mayo Clin. Proc. 1994, 69, 730–735. [Google Scholar] [CrossRef]
- De Amicis, M.M.; Poggiali, E.; Motta, I.; Minonzio, F.; Fabio, G.; Hu, C.; Cappellini, M.D. Anemia in elderly hospitalized patients: Prevalence and clinical impact. Intern. Emerg. Med. 2015, 10, 581–586. [Google Scholar] [CrossRef]
- Stauder, R.; Valent, P.; Theurl, I. Anemia at older age: Etiologies, clinical implications, and management. Blood 2018, 131, 505–514. [Google Scholar] [CrossRef]
- Fried, L.P.; Guralnik, J.M. Disability in older adults: Evidence regarding significance, etiology, and risk. J. Am. Geriatr. Soc. 1997, 45, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Sarnak, M.; Tighiouart, H.; Manjunath, G.; MacLeod, B.; Griffith, J.; Salem, D.; Levey, A.S. Anemia as a risk factor for cardiovascular disease in The Atherosclerosis Risk in Communities (ARIC) study. J. Am. Coll. Cardiol. 2002, 40, 27–33. [Google Scholar] [CrossRef]
- Denny, S.D.; Kuchibhatla, M.N.; Cohen, H.J. Impact of anemia on mortality, cognition, and function in community-dwelling elderly. Am. J. Med. 2006, 119, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.H.; Falvey, C.; Harris, T.B.; Simonsick, E.M.; Satterfield, S.; Ferrucci, L.; Metti, A.L.; Patel, K.V.; Yaffe, K.C. Anemia and risk of dementia in older adults: Findings from the Health ABC study. Neurology 2013, 81, 528–533. [Google Scholar] [CrossRef] [Green Version]
- Chen-Edinboro, L.P.; Murray-Kolb, L.E.; Simonsick, E.M.; Ferrucci, L.; Allen, R.; Payne, M.E.; Spira, A.P. Association Between Non-Iron-Deficient Anemia and Insomnia Symptoms in Community-Dwelling Older Adults: The Baltimore Longitudinal Study of Aging. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 2017, 73, 380–385. [Google Scholar] [CrossRef] [Green Version]
- Onder, G.; Penninx, B.W.J.H.; Cesari, M.; Bandinelli, S.; Lauretani, F.; Bartali, B.; Gori, A.M.; Pahor, M.; Ferrucci, L. Anemia is associated with depression in older adults: Results from the InCHIANTI study. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 2005, 60, 1168–1172. [Google Scholar] [CrossRef] [Green Version]
- Penninx, B.W.J.H.; Pahor, M.; Cesari, M.; Corsi, A.M.; Woodman, R.C.; Bandinelli, S.; Guralnik, J.; Ferrucci, L. Anemia Is Associated with Disability and Decreased Physical Performance and Muscle Strength in the Elderly. J. Am. Geriatr. Soc. 2004, 52, 719–724. [Google Scholar] [CrossRef]
- Vanasse, G.J.; Berliner, N. Anemia in elderly patients: An emerging problem for the 21st century. Hematology/the Education Program of the American Society of Hematology American Society of Hematology Education Program. Hematology 2010, 2010, 271–275. [Google Scholar] [CrossRef]
- Lee, Y.-G.; Chang, Y.; Kang, J.; Koo, D.-H.; Lee, S.-S.; Ryu, S.; Oh, S. Risk factors for incident anemia of chronic diseases: A cohort study. PLoS ONE 2019, 14, e0216062. [Google Scholar] [CrossRef] [Green Version]
- Balcı, Y.I.; Karabulut, A.; Gürses, D.; Çövüt, İ.E. Prevalence and risk factors of anemia among adolescents in Denizli, Turkey. Iran. J. Pediatr. 2012, 22, 77. [Google Scholar]
- Johnson-Wimbley, T.D.; Graham, D.Y. Diagnosis and management of iron deficiency anemia in the 21st century. Ther. Adv. Gastroenterol. 2011, 4, 177–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, A.; Anderson, H.R.; Ostro, B.; Pandey, K.D.; Krzyzanowski, M.; Künzli, N.; Gutschmidt, K.; Pope, A.; Romieu, I.; Samet, J.M.; et al. The Global Burden of Disease Due to Outdoor Air Pollution. J. Toxicol. Environ. Health Part A 2005, 68, 1301–1307. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Zhang, J.J.; Day, D. Urban air pollution and health in developing countries. In Air Pollution and Health Effects; Elsevier: Amsterdam, The Netherlands, 2015; pp. 355–380. [Google Scholar]
- Mannucci, P.M.; Franchini, M. Health effects of ambient air pollution in developing countries. Int. J. Environ. Res. Public Health 2017, 14, 1048. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.C.T. Outdoor air pollution: A global perspective. J. Occup. Environ. Med. 2014, 56, S3–S7. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.Y.; Liu, Z. Fiscal Decentralization and Economic Growth in China. Econ. Dev. Cult. Change 2000, 49, 1–21. [Google Scholar] [CrossRef]
- Liang, W.; Yang, M. Urbanization, economic growth and environmental pollution: Evidence from China. Sustain. Comput. Inf. Syst. 2019, 21, 1–9. [Google Scholar] [CrossRef]
- Li, T.; Zhang, Y.; Wang, J.; Xu, D.; Yin, Z.; Chen, H.; Lv, Y.; Luo, J.; Zeng, Y.; Liu, Y.; et al. All-cause mortality risk associated with long-term exposure to ambient PM2· 5 in China: A cohort study. Lancet Public Health 2018, 3, e470–e477. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Guo, Y.; Qian, Z.; Ruan, Z.; Zheng, Y.; Woodward, A.; Ai, S.; Howard, S.W.; Vaughn, M.G.; Ma, W.; et al. Ambient fine particulate pollution associated with diabetes mellitus among the elderly aged 50 years and older in China. Environ. Pollut. 2018, 243, 815–823. [Google Scholar] [CrossRef]
- Honda, T.; Pun, V.C.; Manjourides, J.; Suh, H. Anemia prevalence and hemoglobin levels are associated with long-term exposure to air pollution in an older population. Environ. Int. 2017, 101, 125–132. [Google Scholar] [CrossRef]
- Mittal, H.; Roberts, L.; Fuller, G.W.; O’Driscoll, S.; Dick, M.C.; Height, S.E.; Thein, S.L.; Rees, D.C. The effects of air quality on haematological and clinical parameters in children with sickle cell anaemia. Ann. Hematol. 2009, 88, 529–533. [Google Scholar] [CrossRef] [Green Version]
- Kelly, F.J.; Fussell, J.C. Air pollution and public health: Emerging hazards and improved understanding of risk. Environ. Geochem. Health 2015, 37, 631–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowal, P.; Chatterji, S.; Naidoo, N.; Biritwum, R.; Fan, W.; Ridaura, R.L.; Maximova, T.; Arokiasamy, P.; Phaswana-Mafuya, N.; Williams, S.; et al. Data resource profile: The World Health Organization Study on global AGEing and adult health (SAGE). Int. J. Epidemiol. 2012, 41, 1639–1649. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Knibbs, L.D.; Zhang, W.; Li, S.; Cao, W.; Guo, J.; Ren, H.; Wang, B.; Wang, H.; Williams, G.; et al. Estimating spatiotemporal distribution of PM1 concentrations in China with satellite remote sensing, meteorology, and land use information. Environ. Pollut. 2018, 233, 1086–1094. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Li, S.; Knibbs, L.D.; Hamm, N.; Cao, W.; Li, T.; Guo, J.; Ren, H.; Abramson, M.J.; Guo, Y. A machine learning method to estimate PM2.5 concentrations across China with remote sensing, meteorological and land use information. Sci. Total Environ. 2018, 636, 52–60. [Google Scholar] [CrossRef]
- Chen, G.; Wang, Y.; Li, S.; Cao, W.; Ren, H.; Knibbs, L.; Abramson, M.J.; Guo, Y. Spatiotemporal patterns of PM10 concentrations over China during 2005–2016: A satellite-based estimation using the random forests approach. Environ. Pollut. 2018, 242, 605–613. [Google Scholar] [CrossRef]
- Zhan, Y.; Luo, Y.; Deng, X.; Zhang, K.; Zhang, M.; Grieneisen, M.L.; Di, B. Satellite-based estimates of daily NO2 exposure in China using hybrid random forest and spatiotemporal kriging model. Environ. Sci. Technol. 2018, 52, 4180–4189. [Google Scholar] [CrossRef]
- Krotkov, N.A.; Lamsal, L.N.; Celarier, E.A.; Swartz, W.H.; Marchenko, S.V.; Bucsela, E.J.; Chan, K.L.; Wenig, M.; Zara, M. The version 3 OMI NO2 standard product. Atmospheric Meas. Tech. 2017, 10, 3133–3149. [Google Scholar] [CrossRef] [Green Version]
- Williams, S.R.; McDade, T.W. The use of dried blood spot sampling in the national social life, health, and aging project. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2009, 64, i131–i136. [Google Scholar] [CrossRef]
- McDade, T.W.; Williams, S.; Snodgrass, J.J. What a drop can do: Dried blood spots as a minimally invasive method for integrating biomarkers into population-based research. Demography 2007, 44, 899–925. [Google Scholar] [CrossRef] [Green Version]
- Coogan, P.; White, L.F.; Jerrett, M.; Brook, R.D.; Su, J.G.; Seto, E.; Burnett, R.; Palmer, J.R.; Rosenberg, L. Air pollution and incidence of hypertension and diabetes mellitus in black women living in Los Angeles. Circulation 2012, 125, 767–772. [Google Scholar] [CrossRef] [Green Version]
- Zanobetti, A.; Schwartz, J.; Gold, D. Are there sensitive subgroups for the effects of airborne particles? Environ. Health Perspect. 2000, 108, 841–845. [Google Scholar] [CrossRef] [PubMed]
- Lipschitz, D. Medical and functional consequences of anemia in the elderly. J. Am. Geriatr. Soc. 2003, 51, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Macciò, A.; Madeddu, C. Management of anemia of inflammation in the elderly. Anemia 2012, 2012, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Seaton, A.; Soutar, A.; Crawford, V.; Elton, R.; McNerlan, S.; Cherrie, J.; Watt, M.; Agius, R.; Stout, R. Particulate air pollution and the blood. Thorax 1999, 54, 1027–1032. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Guo, Y.; Chatterji, S.; Zheng, Y.; Naidoo, N.; Jiang, Y.; Biritwum, R.B.; Yawson, A.; Minicuci, N.; Salinas, A.; et al. Common risk factors for chronic non-communicable diseases among older adults in China, Ghana, Mexico, India, Russia and South Africa: The study on global AGEing and adult health (SAGE) wave 1. BMC Public Health 2015, 15, 88. [Google Scholar] [CrossRef] [Green Version]
- Hallal, P.R.C.; Andersen, L.B.; Bull, F.C.; Guthold, R.; Haskell, W.; Ekelund, U. Global physical activity levels: Surveillance progress, pitfalls, and prospects. Lancet 2012, 380, 247–257. [Google Scholar] [CrossRef]
- Bull, F.C.; Maslin, T.S.; Armstrong, T. Global physical activity questionnaire (GPAQ): Nine country reliability and validity study. J. Phys. Act. Health 2009, 6, 790–804. [Google Scholar] [CrossRef] [Green Version]
- Barros, A.J.; Hirakata, V.N. Alternatives for logistic regression in cross-sectional studies: An empirical comparison of models that directly estimate the prevalence ratio. BMC Med. Res. Methodol. 2003, 3, 21. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide: Global Update 2005: Summary of Risk Assessment; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- Jekel, J.F.; Katz, D.L.; Elmore, J.G.; Wild, D. Epidemiology, Biostatistics and Preventive Medicine; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Rockhill, B.; Newman, B.; Weinberg, C. Use and misuse of population attributable fractions. Am. J. Public Health 1998, 88, 15–19. [Google Scholar] [CrossRef] [Green Version]
- Stanković, A.; Nikić, D.; Nikolić, M. Relationship between exposure to air pollution and occurrence of anemia in pregnancy. Facta Univ. Ser. Med. Biol. 2006, 13, 54–57. [Google Scholar]
- Nikolić, M.; Nikić, D.; Stanković, A. Effects of air pollution on red blood cells in children. Pol. J. Environ. Stud. 2008, 17, 267. [Google Scholar]
- Das, P.; Chatterjee, P. Assessment of hematological profiles of adult male athletes from two different air pollutant zones of West Bengal, India. Environ. Sci. Pollut. Res. Int. 2015, 22, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Morales-Ancajima, V.C.; Tapia, V.; Vu, B.N.; Liu, Y.; Alarcon-Yaquetto, D.E.; Gonzales, G.F. Increased Outdoor PM2.5 Concentration Is Associated with Moderate/Severe Anemia in Children Aged 6–59 Months in Lima, Peru. J. Environ. Public Health 2019, 2019, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medzhitov, R. Origin and physiological roles of inflammation. Nature 2008, 454, 428–435. [Google Scholar] [CrossRef]
- Viehmann, A.; Hertel, S.; Fuks, K.; Eisele, L.; Moebus, S.; Möhlenkamp, S.; Nonnemacher, M.; Jakobs, H.; Erbel, R.; Jockel, K.-H.; et al. Long-term residential exposure to urban air pollution, and repeated measures of systemic blood markers of inflammation and coagulation. Occup. Environ. Med. 2015, 72, 656–663. [Google Scholar] [CrossRef]
- Barany, P. Inflammation, serum C-reactive protein, and erythropoietin resistance. Nephrol. Dial. Transplant. 2001, 16, 224–227. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.-Y.; Bates, D.W.; Kuperman, G.J.; Curhan, G.C. Relationship between hematocrit and renal function in men and women. Kidney Int. 2001, 59, 725–731. [Google Scholar] [CrossRef] [Green Version]
- Quay, J.L.; Reed, W.; Samet, J.; Devlin, R.B. Air pollution particles induce IL-6 gene expression in human airway epithelial cells via NF-κ B activation. Am. J. Respir. Cell Mol. Biol. 1998, 19, 98–106. [Google Scholar] [CrossRef] [Green Version]
- D’Angelo, G. Role of hepcidin in the pathophysiology and diagnosis of anemia. Blood Res. 2013, 48, 10–15. [Google Scholar] [CrossRef]
- Latvala, J.; Parkkila, S.; Niemelä, O. Excess alcohol consumption is common in patients with cytopenia: Studies in blood and bone marrow cells. Alcohol. Clin. Exp. Res. 2004, 28, 619–624. [Google Scholar] [CrossRef]
- Song, C.; Wu, L.; Xie, Y.; He, J.; Chen, X.; Wang, T.; Lin, Y.; Jin, T.; Wang, A.; Liu, Y.; et al. Air pollution in China: Status and spatiotemporal variations. Environ. Pollut. 2017, 227, 334–347. [Google Scholar] [CrossRef] [PubMed]
- Chai, F.; Gao, J.; Chen, Z.; Wang, S.; Zhang, Y.; Zhang, J.; Zhang, H.; Yun, Y.; Ren, C. Spatial and temporal variation of particulate matter and gaseous pollutants in 26 cities in China. J. Environ. Sci. 2014, 26, 75–82. [Google Scholar] [CrossRef]
- Liu, T.; Zeng, W.; Lin, H.; Rutherford, S.; Xiao, J.; Li, X.; Li, Z.; Qian, Z.; Feng, B.; Ma, W.-J. Tempo-spatial variations of ambient ozone-mortality associations in the USA: Results from the NMMAPS data. Int. J. Environ. Res. Public Health 2016, 13, 851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabatine, M.S.; Morrow, D.A.; Giugliano, R.P.; Burton, P.B.; Murphy, S.A.; McCabe, C.H.; Gibson, C.M.; Braunwald, E. Association of hemoglobin levels with clinical outcomes in acute coronary syndromes. Circulation 2005, 111, 2042–2049. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Guo, Y.; Di, Q.; Zheng, Y.; Kowal, P.; Xiao, J.; Liu, T.; Li, X.; Zeng, W.; Howard, S.W.; et al. Ambient PM2.5 and Stroke: Effect Modifiers and Population Attributable Risk in Six Low- and Middle-Income Countries. Stroke 2017, 48, 1191–1197. [Google Scholar] [CrossRef] [Green Version]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, L.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [Green Version]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A.; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef] [Green Version]
Variables | Non-Anaemic | Anaemic | Total | P Value for Difference |
---|---|---|---|---|
PM10 (ug/m3, mean (SD)) | 88.80 (30.11) | 86.71 (21.18) | 88.21 (27.91) | <0.001 |
PM2.5 (ug/m3, mean (SD)) | 52.64 (17.60) | 52.52 (13.26) | 52.61 (16.49) | 0.74 |
PM1 (ug/m3, mean (SD)) | 42.22 (13.10) | 44.45 (13.70) | 42.85 (13.31) | <0.001 |
NO2 (ppb, mean (SD)) | 28.36 (11.45) | 32.26 (14.48) | 29.46 (12.50) | <0.001 |
Age (years, mean (SD)) | 62.62 (9.09) | 64.03 (9.74) | 63.02 (9.30) | <0.001 |
BMI (kg/m2, mean (SD)) | 24.28 (5.41) | 23.42 (4.30) | 24.04 (5.14) | <0.001 |
Sex | 0.34 | |||
Male (n, %) | 3667 (48.09) | 1405 (47.05) | 5072 (47.8) | |
Female (n, %) | 3958 (51.91) | 1581 (52.95) | 5539 (52.2) | |
Smoker | 0.17 | |||
Ever (n, %) | 2623 (34.61) | 987 (33.21) | 3610 (34.21) | |
Never (n, %) | 4956 (65.39) | 1985 (66.79) | 6941 (65.79) | |
Alcohol | 0.80 | |||
Ever (n, %) | 2341 (30.94) | 911 (30.68) | 3252 (30.87) | |
Never (n, %) | 5225 (69.06) | 2,058 (69.32) | 7283 (69.13) | |
Education | <0.001 | |||
No formal education (n, %) | 1802 (23.63) | 847 (28.37) | 2649 (24.96) | |
Primary school (n, %) | 3032 (39.76) | 1135 (38.01) | 4167 (39.27) | |
Middle school (n, %) | 1470 (19.28) | 570 (19.09) | 2040 (19.23) | |
High school or higher (n, %) | 1321(17.32) | 434 (14.53) | 1755 (16.54) | |
Place of residence | <0.001 | |||
Rural (n, %) | 4514 (59.2) | 1225 (41.02) | 5739 (54.09) | |
Urban (n, %) | 3111 (40.8) | 1761 (58.98) | 4872 (45.91) | |
Physical activity | <0.001 | |||
Low level (n, %) | 2485 (32.78) | 828 (27.86) | 3313 (31.4) | |
Moderate level (n, %) | 2073 (27.35) | 863 (29.04) | 2936 (27.82) | |
High level (n, %) | 3022 (39.87) | 1281 (43.1) | 4303 (40.78) | |
Nutrition | <0.001 | |||
Insufficient intake (n, %) | 3278 (42.99) | 1455 (48.73) | 4733 (44.6) | |
Sufficient intake (n, %) | 4347 (57.01) | 1531 (51.27) | 5878 (55.4) | |
Type of fuel used at home | <0.001 | |||
Clean (n, %) | 3795 (50.16) | 1785 (59.84) | 5580 (52.9) | |
Unclean (n, %) | 3771 (49.84) | 1198 (40.16) | 4969 (47.1) | |
History of Diabetes | 0.50 | |||
Yes (n, %) | 467 (6.18) | 194 (6.54) | 661 (6.29) | |
No (n, %) | 7084 (93.82) | 2772 (93.46) | 9856 (93.71) | |
History of Hypertension | 0.09 | |||
Yes (n, %) | 2069 (27.66) | 770 (26.01) | 2839 (27.19) | |
No (n, %) | 5412 (72.34) | 2190 (73.99) | 7602 (72.81) | |
History of Chronic lung diseases | 0.42 | |||
Yes (n, %) | 618 (8.17) | 257 (8.66) | 875 (8) | |
No (n, %) | 6942 (91.83) | 2711 (91.34) | 9653 (92) |
Study Region | PM10 (μg/m3) | PM2.5 (μg/m3) | PM1 (μg/m3) | NO2 (ppb) |
---|---|---|---|---|
Guangdong | 80.32 (2.91) | 51.63 (2.67) | 37.39 (6.41) | 24.30 (4.87) |
Hubei | 108.36 (2.37) | 67.64 (2.70) | 46.77 (6.71) | 31.52 (1.58) |
Jilin | 74.70 (3.56) | 42.19 (1.85) | 39.80 (6.32) | 20.20 (4.73) |
Shaanxi | 91.24 (19.35) | 48.84 (10.41) | 42.44 (12.00) | 24.40 (5.90) |
Shangdong | 135.85 (14.25) | 71.28 (11.18) | 38.00 (10.86) | 32.60 (9.85) |
Shanghai | 100.55 (1.12) | 69.68 (.77) | 60.25 (9.10) | 46.31 (1.60) |
Yunnan | 47.10 (5.14) | 27.90 (4.99) | 37.70 (13.18) | 19.19 (3.49) |
Zhejiang | 83.86 (11.40) | 50.96 (7.85) | 35.10 (12.60) | 26.96 (11.94) |
Mean (SD) | 91.11 (28.95) | 54.02 (17.02) | 42.90 (13.13) | 28.97 (11.31) |
Median (IQR) | 93.79 (31.15) | 55.62 (26.14) | 41.54 (24.12) | 24.18 (22.42) |
PR (95% CI) | ||||
---|---|---|---|---|
PM10 | PM2.5 | PM1 | NO2 | |
Unadjusted | 0.94 (0.91–0.97) | 0.99 (0.95–1.03) | 1.24 (1.17–1.31) | 1.46 (1.39–1.54) |
Adjusted † | 1.05 (1.02–1.09) | 1.11 (1.06–1.16) | 1.13 (1.06–1.20) | 1.42 (1.34–1.49) |
β (95% CI) | ||||
---|---|---|---|---|
PM10 | PM2.5 | PM1 | NO2 | |
Unadjusted | −0.77 (−0.89, −0.65) | −1.06 (−1.22, −0.91) | −0.98 (−1.08, −0.94) | −1.98 (−2.11, −0.89) |
Adjusted † | −0.53(−0.67, −0.38) | −0.52(−0.71, −0.33) | −0.55 (−0.69, −0.41) | −1.71 (−1.85, −1.57) |
N02 40 µg/m3 or Less Annual Average | |
---|---|
† Adjusted PAR (95% CI) | 4.4% (3.6–5.2) |
† Adjusted PAF (95% CI) | 26.14% (14.94–35.86) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elbarbary, M.; Honda, T.; Morgan, G.; Guo, Y.; Guo, Y.; Kowal, P.; Negin, J. Ambient Air Pollution Exposure Association with Anaemia Prevalence and Haemoglobin Levels in Chinese Older Adults. Int. J. Environ. Res. Public Health 2020, 17, 3209. https://doi.org/10.3390/ijerph17093209
Elbarbary M, Honda T, Morgan G, Guo Y, Guo Y, Kowal P, Negin J. Ambient Air Pollution Exposure Association with Anaemia Prevalence and Haemoglobin Levels in Chinese Older Adults. International Journal of Environmental Research and Public Health. 2020; 17(9):3209. https://doi.org/10.3390/ijerph17093209
Chicago/Turabian StyleElbarbary, Mona, Trenton Honda, Geoffrey Morgan, Yuming Guo, Yanfei Guo, Paul Kowal, and Joel Negin. 2020. "Ambient Air Pollution Exposure Association with Anaemia Prevalence and Haemoglobin Levels in Chinese Older Adults" International Journal of Environmental Research and Public Health 17, no. 9: 3209. https://doi.org/10.3390/ijerph17093209
APA StyleElbarbary, M., Honda, T., Morgan, G., Guo, Y., Guo, Y., Kowal, P., & Negin, J. (2020). Ambient Air Pollution Exposure Association with Anaemia Prevalence and Haemoglobin Levels in Chinese Older Adults. International Journal of Environmental Research and Public Health, 17(9), 3209. https://doi.org/10.3390/ijerph17093209