Potential of Technosols Created with Urban By-Products for Rooftop Edible Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Research Project T4P
2.1.1. Experimental Trials
- (1)
- Constructed Technosols
- Green waste compost, from urban public parks and green spaces. Our supplier was a company located in Versailles near Paris, “BioYvelinesServices”.
- Crushed wood, made of pruning waste from urban tree crushed coarsely. The supplier was also “BioYvelinesServices”;
- Spent mushroom substrate, based on coffee grounds. This substrate is used to produce the mushroom Pleurotus Ostreatus by an urban company: “La boîte à champignons”. This firm, in partnership with a leading coffee supplier, collects used coffee grounds through a specific supply chain from coffee machines in Paris.
- (2)
- Experimental Design
- (3)
- Technosols Design
- Lasagna* (L): a 15 cm layer of green waste compost which covered a 15 cm layer of crushed wood.
- Lasagna non initially inoculated* with Residues of spent mushroom substrate (L-R): a 12.5 cm layer of green waste compost covered, over a 5 cm layer of spent mushroom substrate and a 12.5 cm layer of crushed wood.
- A non-initially inoculated* mix (M): 30 cm of green waste compost and crushed wood mixture (50/50 v/v).
- Lasagna* (L_Bis): a treatment that had the same composition as L but was installed in March 2015 (3 years later).
2.1.2. Crop Rotation and Cropping Practices
- (1)
- Crop Rotation
- Maximize the use of space (vertically and horizontally);
- Associate crops whenever possible;
- Grow vegetables that are accurate in small growing space;
- Try to avoid the same family of vegetables in four succeeding years.
- (2)
- Pest Management
- (3)
- Irrigation
- (4)
- Farm Inputs
- (5)
- Meteorological Conditions
2.2. Data Collection
2.2.1. Food Production (Quantity and Quality)
2.2.2. Technosol Thickness
2.2.3. Technosol Characteristics
2.3. Statistical Analysis
3. Results
3.1. Food Production and Soil Fertility
3.1.1. Yields
3.1.2. Factors Impacting Food Production
- Regarding the impact of the spatial arrangement of the parent material (comparing L to M): L showed a higher productivity than M over the 5 years (Table 3). However, this effect was mainly and almost only attributed to leafy vegetables. No significant differences could be noted for the four fruits vegetables grown and only one significant difference for the root vegetables.
- Ageing of Technosol little impacted yields, as over the seven crops growing on either young (L_bis) or aged (L) Technosol (Table 3), only yields of carrots were higher on the young Technosol.
3.1.3. Technosol Evolution and Fertility
3.2. Harvest Contamination
3.2.1. Trace Metal Contents in Vegetables
3.2.2. Trace metals in Technosols
4. Discussion
4.1. Productivity
4.2. Food Quality
4.3. Technosol Fertility
4.4. Technosol Design and Evolution
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Petit-Boix, A.; Apul, D. From cascade to bottom-up ecosystem services model: How does social cohesion emerge from urban agriculture? Sustainability 2018, 10, 998. [Google Scholar] [CrossRef] [Green Version]
- Eksi, M.; Rowe, D.B.; Fernández-Cañero, R.; Cregg, B.M. Effect of substrate compost percentage on green roof vegetable production. Urban For. Urban Green. 2015, 14, 315–322. [Google Scholar] [CrossRef]
- Orsini, F.; Gasperi, D.; Marchetti, L.; Piovene, C.; Draghetti, S.; Ramazzotti, S.; Bazzocchi, G.; Gianquinto, G. Exploring the production capacity of rooftop gardens (RTGs) in urban agriculture: the potential impact on food and nutrition security, biodiversity and other ecosystem services in the city of Bologna. Food Secur. 2014, 781–792. [Google Scholar] [CrossRef]
- MacRae, R.; Gallant, E.; Patel, S. Could Toronto provide 10% of its fresh vegetable requirements from within its own boundaries? Matching consumption requirements with growing spaces. Agric. Food 2010, 1, 105–127. [Google Scholar] [CrossRef]
- Artmann, M.; Sartison, K. The role of urban agriculture as a nature-based solution: A review for developing a systemic assessment framework. Sustainability 2018, 10, 1937. [Google Scholar] [CrossRef] [Green Version]
- Weidner, T.; Yang, A.; Hamm, M.W. Consolidating the current knowledge on urban agriculture in productive urban food systems: Learnings, gaps and outlook. J. Clean. Prod. 2019, 209, 1637–1655. [Google Scholar] [CrossRef]
- Thomaier, S.; Specht, K.; Henckel, D.; Dierich, A.; Siebert, R.; Freisinger, U.B.; Sawicka, M. Farming in and on urban buildings: Present practice and specific novelties of Zero-Acreage Farming (ZFarming). Renew. Agric. Food Syst. 2015, 30, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Specht, K.; Siebert, R.; Hartmann, I.; Freisinger, U.B.; Sawicka, M.; Werner, A.; Thomaier, S.; Henckel, D.; Walk, H.; Dierich, A. Urban agriculture of the future: an overview of sustainability aspects of food production in and on buildings. Agric. Hum. Values 2013, 31, 33–51. [Google Scholar] [CrossRef]
- Whittinghill, L.J.; Rowe, D.B.; Cregg, B.M. Evaluation of Vegetable Production on Extensive Green Roofs. Agroecol. Sustain. Food Syst. 2013, 37, 465–484. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. FAO—World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; Food and Agriculture Organization of the United Nation: Rome, Italy, 2014. [Google Scholar]
- Dorr, E.; Sanyé-Mengual, E.; Gabrielle, B.; Grard, B.J.-P.; Aubry, C. Proper selection of substrates and crops enhances the sustainability of Paris rooftop garden. Agron. Sustain. Dev. 2017, 37, 51. [Google Scholar] [CrossRef] [Green Version]
- Molineux, C.J.; Gange, A.C.; Connop, S.P.; Newport, D.J. Using recycled aggregates in green roof substrates for plant diversity. Ecol. Eng. 2015, 82, 596–604. [Google Scholar] [CrossRef]
- Molineux, C.J.; Fentiman, C.H.; Gange, A.C. Characterising alternative recycled waste materials for use as green roof growing media in the U.K. Ecol. Eng. 2009, 35, 1507–1513. [Google Scholar] [CrossRef]
- Aloisio, J.M.; Tuininga, A.R.; Lewis, J.D. Crop species selection effects on stormwater runoff and edible biomass in an agricultural green roof microcosm. Ecol. Eng. 2016, 88, 20–27. [Google Scholar] [CrossRef]
- Bouzouidja, R.; Rousseau, G.; Galzin, V.; Claverie, R.; Lacroix, D.; Séré, G. Green roof ageing or Isolatic Technosol’s pedogenesis? J. Soils Sediments 2016. [Google Scholar] [CrossRef] [Green Version]
- De-Ville, S.; Menon, M.; Jia, X.; Reed, G.; Stovin, V. The impact of green roof ageing on substrate characteristics and hydrological performance. J. Hydrol. 2017, 547, 332–344. [Google Scholar] [CrossRef]
- Elstein, J.; Welbaum, G.E.; Stewart, D.A.; Borys, D.R. Evaluating growing media for a shallow-rooted vegetable crop production system on a green roof. Acta Hortic. 2008, 782, 177–183. [Google Scholar] [CrossRef]
- Kong, A.Y.Y.; Rosenzweig, C.; Arky, J. Nitrogen dynamics associated with organic and inorganic inputs to substrate commonly used on rooftop farms. HortScience 2015, 50, 806–813. [Google Scholar] [CrossRef]
- Sanyé-Mengual, E.; Orsini, F.; Oliver-Solà, J.; Rieradevall, J.; Montero, J.I.; Gianquinto, G. Techniques and crops for efficient rooftop gardens in Bologna, Italy. Agron. Sustain. Dev. 2015, 35, 1477–1488. [Google Scholar] [CrossRef] [Green Version]
- Whittinghill, L.J.; Rowe, D.B.; Ngouajio, M.; Cregg, B.M. Evaluation of nutrient management and mulching strategies for vegetable production on an extensive green roof. Agroecol. Sustain. Food Syst. 2016, 40, 297–318. [Google Scholar] [CrossRef]
- Grard, B.J.P.; Chenu, C.; Manouchehri, N.; Houot, S.; Frascaria-Lacoste, N.; Aubry, C. Rooftop farming on urban waste provides many ecosystem services. Agron. Sustain. Dev. 2018, 38, 2. [Google Scholar] [CrossRef] [Green Version]
- Grard, B.J.P.; Bel, N.; Marchal, N.; Madre, F.; Castell, J.F.; Cambier, P.; Houot, S.; Manouchehri, N.; Besancon, S.; Michel, J.C.; et al. Recycling urban waste as possible use for rooftop vegetable garden. Future Food J. Food Agric. Soc. 2015, 3, 21–34. [Google Scholar]
- Amato-Lourenco, L.F.; Moreira, T.C.L.; De Oliveira Souza, V.C.; Barbosa, F.; Saiki, M.; Saldiva, P.H.N.; Mauad, T. The influence of atmospheric particles on the elemental content of vegetables in urban gardens of Sao Paulo, Brazil. Environ. Pollut. 2016, 216, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Rahmanian, M.; Daniel, A.; Grard, B.; Juvin, A.; Bosch, A.; Aubry, C.; Cambier, P.; Manouchehri, N. Edible production on rooftop gardens in Paris? Assessment of heavy metal contamination in vegetables growing on recycled organic wastes substrates in 5 experimental roofgardens. In Proceedings of the IRES 26th International Conference, Paris, France, 30 January 2016; pp. 2–6. [Google Scholar]
- Alloway, B.J. Contamination of soils in domestic gardens and allotments: a brief overview. L. Contam. Reclam. 2004, 12, 179–187. [Google Scholar] [CrossRef]
- Warming, M.; Hansen, M.G.; Holm, P.E.; Magid, J.; Hansen, T.H.; Trapp, S. Does intake of trace elements through urban gardening in Copenhagen pose a risk to human health? Environ. Pollut. 2015, 202, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Säumel, I.; Reddy, S.E.; Wachtel, T. Edible city solutions-one step further to foster social resilience through enhanced socio-cultural ecosystem services in cities. Sustainability 2019, 11, 972. [Google Scholar] [CrossRef] [Green Version]
- Wong, C.S.C.; Li, X.; Thornton, I. Urban environmental geochemistry of trace metals. Environ. Pollut. 2006, 142, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Szolnoki, Z.; Farsang, A. Evaluation of metal mobility and bioaccessibility in soils of urban vegetable gardens using sequential extraction. Water Air Soil Pollut. 2013, 224, 1737. [Google Scholar] [CrossRef]
- McBride, M.B.; Shayler, H.A.; Spliethoff, H.M.; Mitchell, R.G.; Marquez-Bravo, L.G.; Ferenz, G.S.; Russell-Anelli, J.M.; Casey, L.; Bachman, S. Concentrations of lead, cadmium and barium in urban garden-grown vegetables: The impact of soil variables. Environ. Pollut. 2014, 194, 254–261. [Google Scholar] [CrossRef] [Green Version]
- Alexander, P.D.; Alloway, B.J.; Dourado, A.M. Genotypic variations in the accumulation of Cd, Cu, Pb and Zn exhibited by six commonly grown vegetables. Environ. Pollut. 2006, 144, 736–745. [Google Scholar] [CrossRef]
- Pennisi, G.; Orsini, F.; Mancarella, S.; Gasperi, D.; Sanoubar, R.; Vittori Antisari, L.; Vianello, G.; Gianquinto, G. Soilless system on peat reduce trace metals in urban grown food: Unexpected evidence for a soil origin of plant contamination. Agron. Sustain. Dev. 2016, 1–11, in press. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Yang, M.; Han, Z.; Ow, D.W. Rooftop production of leafy vegetables can be profitable and less contaminated than farm-grown vegetables. Agron. Sustain. Dev. 2016, 36, 41. [Google Scholar] [CrossRef] [Green Version]
- Barbillon, A.; Aubry, C.; Nold, F.; Besancon, S.; Manouchehri, N. Health Risks Assessment in Three Urban Farms of Paris Region for Different Scenarios of Urban Agricultural Users: A Case of Soil Trace Metals Contamination. Agric. Sci. 2019, 10, 352–370. [Google Scholar] [CrossRef] [Green Version]
- Pelfrêne, A.; Douay, F.; Richard, A.; Roussel, H.; Girondelot, B. Assessment of potential health risk for inhabitants living near a former lead smelter. Part 2: Site-specific human health risk assessment of Cd and Pb contamination in kitchen gardens. Environ. Monit. Assess. 2013, 185, 2999–3012. [Google Scholar] [CrossRef] [PubMed]
- Collaert, J.-P. L’art du Jardin en Lasagnes; Edisud: Aix-en-Provence, France, 2010; ISBN 978-2744908613. [Google Scholar]
- Pey, B.; Cortet, J.; Capowiez, Y.; Nahmani, J.; Watteau, F.; Schwartz, C. Technosol composition affects Lumbricus terrestris surface cast composition and production. Ecol. Eng. 2014, 67, 238–247. [Google Scholar] [CrossRef]
- Pourias, J.; Duchemin, E.; Aubry, C. Products from urban collective gardens: food for thought or for consumption? J. Agric. Food Syst. Community Dev. 2015, 5, 175–199. [Google Scholar]
- Argouarc’h, J. Les cultures légumières en agriculture biologique; CFPPA Rennes-Le Rheu: Le Rheu, France, 2005; pp. 1–119. [Google Scholar]
- Mench, M.; Baize, D. Contamination Des Sols Et De Nos Aliments D’Origine Végétale Par Les Éléments En Traces: Mesures Pour Réduire L’Exposition. Courr. l’environnement l’INRA 2004, 31–56. [Google Scholar]
- Tremel-Schaub, A.; Feix, I. Contamination des Sols Transferts des Sols Vers les Plantes; EDP Sciences, ADEME: Paris, France, 2005; ISBN 286883793X. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- ITAB. Guide Produire des léGumes Bio—Tome 2: Spécificités par Légume; ITAB: Paris, France, 2017. [Google Scholar]
- Mathieu, A.; Baize, D.; Raoul, C.; Daniau, C. Proposition de référentiels régionaux en éléments traces métalliques dans les sols: Leur utilisation dans les évaluations des risques sanitaires. Environnement Risques et Sante 2008, 7, 112–122. [Google Scholar]
- Adriano, D.C. Trace Elements in Terrestrial Environments; Springer: New York, NY, USA, 2001; ISBN 978-1-4684-9505-8. [Google Scholar]
- Shahid, M.; Dumat, C.; Khalid, S.; Schreck, E.; Xiong, T.; Niazi, N.K. Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. J. Hazard. Mater. 2017, 325, 36–58. [Google Scholar] [CrossRef] [Green Version]
- DEFRA. Fertiliser Manual (RB209); DEFRA: London, UK, 2010. [Google Scholar]
- Joimel, S.; Cortet, J.; Jolivet, C.C.; Saby, N.P.A.; Chenot, E.D.; Branchu, P.; Consalès, J.N.; Lefort, C.; Morel, J.L.; Schwartz, C. Physico-chemical characteristics of topsoil for contrasted forest, agricultural, urban and industrial land uses in France. Sci. Total Environ. 2016, 545–546, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Séré, G.; Schwartz, C.; Ouvrard, S.; Renat, J.-C.; Watteau, F.; Villemin, G.; Morel, J.L. Early pedogenic evolution of constructed Technosols. J. Soils Sediments 2010, 10, 1246–1254. [Google Scholar] [CrossRef]
- Elder, J.W.; Lal, R. Tillage effects on gaseous emissions from an intensively farmed organic soil in North Central Ohio. Soil Tillage Res. 2008, 98, 45–55. [Google Scholar] [CrossRef]
Ref. | Main Aim of the Study | Edible Crop Grown | Type/Composition of Substrate | Fertilization (F) and Irrigation (I) | Soil Depth (cm) | Study Time (months) | Köppen Climate Classification | Study Location |
---|---|---|---|---|---|---|---|---|
(a) | Effect of substrate and type of plant on (i) water retention, (ii) P and N loss in drainage water and (iii) food production | Amaranthus (tricolor L.; cruentus and dubius) | Extensive mix; Substrate «GaiaSoil»; Potting soil. | I | 11 | 1.5 | Cfa ⬄ Humid subtropical climate | New-York (USA) |
(b) | Impact of organic matter on food production level | Cucumbers and peppers | Expanded clay pellets and sand mix with a compost from garden | F and I | 12.5 | 6 | Dfa ⬄ Humid continental climate | Michigan University (USA) |
(c) | Potential for food production and water retention of substrate and hydroponic based system. | Kale | Potting soil | F and I | 10.2 | 1 | Cfa ⬄ Humid subtropical climate | Virginia Technology (USA) |
(d) | Test of fertilization on productive green roof | Swiss chard | Substrate of intensive green roof (rooflite®): lightweight mineral aggregates, organic composted component and mushroom compost. | F and I | 11 | 2 | Cfa ⬄ Humid subtropical climate | Columbia University (USA) |
(e) | Comparison of food production potential of different cropping system | Black cabbage, cantaloupe, chicory, chili pepper, eggplant, lettuce, tomato and watermelon | Topsoil and compost | F and I | 20 | 21 | Cfa ⬄ Humid subtropical climate | Bologna (Italy) |
(f) | LCA of different cropping system | Same as ref. (e) | Topsoil and compost | F and I | 20 | 21 | Cfa ⬄ Humid subtropical climate | Bologna (Italy) |
(g) | Evaluation of food production potential | Basil, beans, cucumbers, chives and peppers | Expanded clay pellets (50%), sand (35%) and leaf compost (15%) | F and I | 10.5 | 36 | Dfa ⬄ Humid continental climate | Michigan University (USA) |
(h) | Test of different mulches and fertilization | Same as ref. (h) | Commecial substrate « XeroFlor »® | F and I | 12.7 | 24 | Dfa ⬄ Humid continental climate | Michigan University (USA) |
(i) | Ecosystem services delivered by productive green roof | Lettuce and cherry tomatoes | Urban waste: green waste compost, spent mushroom substrate and crushed wood. | I | 30 | 24 | Cfb ⬄ Marine West Coast Climate | Paris (France) |
(j) | Food production potential and contamination by productive green roof | Same as ref. (i) | Urban waste: green waste compost, spent mushroom substrate and crushed wood. | I | 30 | 24 | Cfb ⬄ Marine West Coast Climate | Paris (France) |
2012 | ||||||||||||||
J | F | M | A | M | J | J | A | S | O | N | D | |||
03/01 -Lettuce- 06/06 | 06/06 -Cherry tomatoes- 10/15 | 10/15 -Green manure | ||||||||||||
2013 | ||||||||||||||
J | F | M | A | M | J | J | A | S | O | N | D | |||
Green manure- 04/02 | 04/02 -Lettuce- 05/22 | 05/22 -Cherry tomatoes- 10/14 | 10/14 -Green manure | |||||||||||
2014 | ||||||||||||||
J | F | M | A | M | J | J | A | S | O | N | D | |||
Green manure- 03/31 | 03/31 -Cabbage - Kale … | |||||||||||||
03/31 -Beans- 03/10 | ||||||||||||||
2015 | ||||||||||||||
J | F | M | A | M | J | J | A | S | O | N | D | |||
… Cabbage - Kale - 04/02 | 04/02 -Zucchini- 09/30 | 09/30 -Lettuce- 12/07 | 12/07 - … | |||||||||||
04/02 -Radish- 06/12 | ||||||||||||||
2016 | ||||||||||||||
J | F | M | A | M | J | J | A | S | O | N | D | |||
… Mesclun - 03/14 | 03/14 -Onions- 10/21 | 10/22 -Onions … | ||||||||||||
03/14 -Carrots- 10/21 | 10/21 -Lettuce... | |||||||||||||
10/22 -Garlic … | ||||||||||||||
2017 | ||||||||||||||
J | F | M | A | M | J | J | A | S | O | N | D | |||
… Onions - 05/22 | ||||||||||||||
… Lettuce - 05/02 | ||||||||||||||
… Garlic - 05/22 |
Year | Number of Cropping Days | Number of Plants per m2 | (a) or (m) * | Yield (kg·m−2 of Cultivated Area **) | Professional Yield *** (kg·m−2) | |||||
---|---|---|---|---|---|---|---|---|---|---|
L | L-R | M | L_bis | |||||||
Leaf | Cabbage | 2014 | 349 | 6 | (a) | 4.9 ± 1 (ab) | 6.2 ± 0.7 (a) | 2.9 ± 0.4 (bc) | 7.1 | |
Lettuce | 2012 | 45 | 8 | (m) | 2.7 ± 0.3 (b) | 4.3 ± 0.3 (a) | 0.4 ± 0.1 (c) | 5.8 | ||
2013 | 49 | 8 | (m) | 2.7 ± 0.1 (a) | 2.2 ± 0.4 (a) | 0.6 ± 0.1 (b) | ||||
2015 | 67 | 14 | (m) | 1.5 ± 0.1 (a) | 1.5 ± 0.2 (a) | 0.6 ± 0.2 (c) | 1 ± 0.1 (b) | |||
2017 | 193 | 14 | (a) | 2.8 ± 1.1 (a) | 3.5 ± 1.7 (a) | 2.5 ± 0.5 (a) | 3.1 ± 0.7 (a) | |||
Mesclun | 2015 | 97 | - | (m) | 0.7 ± 0.2 (a) | 1.1 ± 0.2 (a) | 0.2 ± 0.1 (b) | 0.2 ± 0 (b) | ||
Fruits | Zucchini | 2015 | 180 | 3 | (a) | 9.4 ± 2.7 (a) | 13.4 ± 1.4 (a) | 7 ± 1.6 (a) | 7.2 ± 1.2 (a) | 2-3.5 |
Beans | 2014 | 168 | 6 | (a) | 7.6 ± 0.8 (a) | 8.1 ± 1.8 (a) | 9.1 ± 0.8 (a) | - | ||
Tomatoes | 2012 | 130 | 6 | (m) | 2.1 ± 0.2 (bc) | 3.9 ± 0.4 (a) | 2.4 ± 0.1 (ab) | 4–8 | ||
2013 | 144 | 6 | (m) | 4.8 ± 0.5 (a) | 5.1 ± 0.3 (a) | 4.2 ± 0.4 (a) | ||||
Roots | Carrots | 2016 | 220 | - | (a) | 12.3 ± 2.5 (ab) | 17.6 ± 1.1 (a) | 6.7 ± 3.5 (b) | 16.9 ± 1.5 (a) | 3–7 |
Onions | 2016 | 220 | - | (a) | 1.3 ± 0.4 (a) | 1 ± 0.4 (a) | 0.8 ± 0.9 (a) | 0.8 ± 0.1 (a) | 1.5–2.5 | |
2017 | 212 | - | (a) | 0.7 ± 0.1 (a) | 0.6 ± 0.1 (a) | 0.4 ± 0.1 (a) | 0.4 ± 0.1 (a) | |||
Radish | 2015 | 70 | - | (a) | 4.1 ± 0.1 (a) | 4.7 ± 0.7 (a) | 1.5 ± 0.2 (b) | 1.9 ± 0.3 (b) | ||
Garlic | 2017 | 212 | - | (a) | 2.2 ± 0.3 (a) | 1.6 ± 0.5 (a) | 1.4 ± 0.4 (a) | 1.6 ± 0 (a) | 0.2–0.5 | |
Green manure | 2013 | 168 | - | (m) | 0.8 ± 0.2 (a) | 0.6 ± 0.1 (a) | 0.2 ± 0 (b) | - | ||
2014 | 167 | - | (m) | 1.7 ± 0.2 (a) | 1.6 ± 0.3 (a) | 0.6 ± 0.3 (b) | - |
Treatment | Height | Year | Bulk Density | Total Porosity | Organic Carbon | pH | CEC | CaCO3 tot. | C/N | Ntot. | N-NO3 | N-NH4 | P2O5 total | Porga. | P.Olsen | K tot. | K Coba. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
g·cm−3 | cm3·cm−3 | g·kg−1 | cmol+·kg−1 | g·kg−1 | g·kg−1 | mg·kg−1 | mg·kg−1 | g·kg−1 | g·kg−1 | g·kg−1 | g·kg−1 | cmol+/kg−1 | |||||
GW compost | 0.2 ± 0.02 (cd) | 0.4 ± 0.04 (bc) | 230 ± 22.6 (c) | 7.8 ± 0.1 (a) | 40.6 ± 1.3 (c) | 56.2 ± 6.1 (a) | 18.7 ± 0.8 (bc) | 12.2 ± 0.8 (d) | 263.5 ± 69.9 (a) | 49.8 ± 5.9 (b) | 4.9 ± 0.6 (c) | 1.3 ± 0.2 (a) | 0.6 ± 0 (b) | 12.2 ± 0.38 (a) | 12.9 ± 0.9 (a) | ||
SMS | 0.1 ± 0.02 (d) | 0.4 ± 0.02 (b) | 415 ± 42.9 (a) | 6.7 ± 1.5 (b) | 27.1 ± 3.5 (d) | 37 ± 45.4 (b) | 15.9 ± 1.6 (cd) | 26.1 ± 1.6 (a) | 5.4 ± 3.2 (b) | 513.3 ± 369.1 (a) | 3.2 ± 0.5 (e) | 1.4 ± 0.4 (a) | 0.8 ± 0.4 (a) | 4.3 ± 0.9 (e) | 10.6 ± 2.4 (b) | ||
Crushed wood | 0.1 ± 0.04 (d) | 0.7 ± 0.03 (a) | 454.3 ± 5.7 (a) | 7.3 ± 0.1 (ab) | 23.1 ± 1 (e) | 3.2 ± 1.1 (c) | 96.9 ± 0.3 (a) | 4.7 ± 0.3 (d) | 1.7 ± 0.1 (b) | 53.8 ± 4.3 (b) | 1.5 ± 0.14 (f) | 0.6 ± 0.1 (b) | 0.4 ± 0.1 (c) | 6.2 ± 0.15 (d) | 13.6 ± 0.3 (a) | ||
L | Upper | 2nd | 234.7 ± 16.3 (c) | 7.9 ± 0.1 (a) | 53.4 ± 2.6 (b) | 51.7 ± 2.1 (a) | 16.6 ± 0.8 (b) | 14.1 ± 0.8 (c) | 6.7 ± 2.7 (b) | 50 ± 12.7 (b) | 4.9 ± 0.16 (c) | 1 ± 0.2 (ab) | 0.6 ± 0.03 (b) | 8.8 ± 0.31 (b) | 6 ± 0.1 (c) | ||
5th | 0.4 ± 0.01 (a) | 0.3 ± 0.04 (ef) | 184.3 ± 21.5 (d) | 7.6 ± 0.1 (a) | 54.2 ± 2.7 (b) | 56.7 ± 2.8 (a) | 13.5 ± 1.5 (d) | 13.7 ± 1.5 (cd) | 15.4 ± 5.6 (b) | 61.5 ± 1.1 (b) | 5.4 ± 0.21 (b) | 1.3 ± 0.1 (a) | 0.5 ± 0.01 (c) | 0.6 ± 0.4 (d) | |||
Lower | 2nd | 248.3 ± 22.3 (cd) | 7.8 ± 0.1 (a) | 53.1 ± 1.3 (b) | 42.9 ± 1.8 (ab) | 18.4 ± 0.6 (b) | 13.5 ± 0.6 (cd) | 5.8 ± 2.6 (b) | 44.6 ± 10.8 (b) | 4.6 ± 0.08 (c) | 1.1 ± 0.2 (a) | 0.5 ± 0.04 (b) | 8.7 ± 0.26 (b) | 7 ± 0.4 (c) | |||
5th | 0.4 ± 0.04 (a) | 0.3 ± 0.02 (f) | 213.7 ± 24 (cd) | 7.5 ± 0.05 (a) | 58.5 ± 0.1 (a) | 47.2 ± 7.7 (ab) | 14.5 ± 1.3 (d) | 14.8 ± 1.3 (c) | 10.9 ± 1.4 (b) | 62.4 ± 4.4 (b) | 5.2 ± 0.28 (bc) | 1.3 ± 0.1 (a) | 0.4 ± 0.06 (c) | 0.5 ± 0.2 (d) | |||
L-R | Upper | 2nd | 242.3 ± 27.1 (c) | 7.9 ± 0.1 (a) | 54.6 ± 1.1 (b) | 57.8 ± 1.1 (a) | 14.8 ± 1.7 (d) | 16.4 ± 1.7 (c) | 7.4 ± 1.8 (b) | 69.7 ± 1.2 (b) | 4.8 ± 0.08 (c) | 1.5 ± 0.7 (a) | 0.5 ± 0.04 (bc) | 8 ± 0.39 (b) | 4 ± 0.8 (d) | ||
5th | 0.3 ± 0.1 (ab) | 0.3 ± 0.06 (def) | 200.3 ± 17.3 (d) | 7.7 ± 0.1 (a) | 59.5 ± 2.1 (a) | 56.7 ± 6.1 (a) | 12.9 ± 1.6 (d) | 15.5 ± 1.6 (c) | 25.8 ± 10.4 (b) | 63.5 ± 1.9 (b) | 5.5 ± 0.25 (b) | 1.2 ± 0.3 (a) | 0.5 ± 0.03 (c) | 0.4 ± 0.2 (e) | |||
Lower | 2nd | 288 ± 51.5 (b) | 7.7 ± 0.02 (a) | 55.7 ± 2 (b) | 46.8 ± 11 (ab) | 18.4 ± 0.9 (c) | 15.6 ± 0.9 (c) | 6.9 ± 1.3 (b) | 73.7 ± 3.2 (b) | 4.1 ± 0.08 (d) | 1.4 ± 0.3 (a) | 0.5 ± 0.03 (c) | 6.9 ± 0.6 (c) | 5.5 ± 0.4 (c) | |||
5th | 0.3 ± 0.03 (ab) | 0.3 ± 0.01 (def) | 242.7 ± 11 (c) | 7.6 ± 0.04 (a) | 62.4 ± 1.9 (a) | 61.7 ± 9.5 (a) | 13.1 ± 0.7 (d) | 18.5 ± 0.7 (b) | 21.6 ± 2.6 (b) | 62.8 ± 4.5 (b) | 4.9 ± 0.32 (c) | 1 ± 0.2 (ab) | 0.4 ± 0.07 (c) | 0.3 ± 0.02 (e) | |||
M | Upper | 2nd | 267.3 ± 24.7 (c) | 7.7 ± 0.1 (a) | 53 ± 2.2 (b) | 45.2 ± 1.2 (ab) | 19.7 ± 0.8 (b) | 13.6 ± 0.8 (d) | 4.8 ± 1.9 (b) | 69.8 ± 2.5 (b) | 4.3 ± 0.13 (dh) | 1.5 ± 0.5 (a) | 0.5 ± 0.01 (bc) | 7.6 ± 0.25 (b) | 4.5 ± 0.2 (d) | ||
5th | 0.2 ± 0.04 (bc) | 0.4 ± 0.02 (cd) | 260.7 ± 10.1 (c) | 7.4 ± 0.03 (a) | 62.7 ± 1.1 (a) | 39.6 ± 6.7 (ab) | 16.5 ± 2.1 (c) | 16 ± 2.1 (c) | 21.9 ± 4 (b) | 72.6 ± 3.5 (b) | 5.3 ± 0.23 (c) | 1.6 ± 0.1 (a) | 0.4 ± 0.03 (c) | 1 ± 0.3 (e) | |||
Lower | 2nd | 276 ± 42.8 (b) | 7.6 ± 0.03 (a) | 52.1 ± 1.4 (b) | 37.5 ± 1 (ab) | 20.3 ± 1.8 (b) | 13.7 ± 1.8 (de) | 3.9 ± 0.8 (b) | 66.6 ± 2.2 (b) | 4.1 ± 0.3 (h) | 1.3 ± 0.1 (a) | 0.5 ± 0.02 (bc) | 7.7 ± 0.26 (b) | 5.6 ± 0.4 (c) | |||
5th | 0.2 ± 0.1 (bc) | 0.4 ± 0.05 (cd) | 238 ± 28.6 (c) | 7.4 ± 0.04 (a) | 62 ± 1.2 (a) | 49.7 ± 8.1 (a) | 15.2 ± 1.2 (c) | 15.6 ± 1.2 (ce) | 15.1 ± 6.4 (b) | 63 ± 3 (b) | 4.8 ± 0.14 (cd) | 1.4 ± 0.1 (a) | 0.4 ± 0.03 (c) | 0.6 ± 0.2 (e) | |||
L_Bis | Upper | 2nd | 0.4 ± 0.03 (a) | 0.3 ± 0.02 (f) | 187.7 ± 17 (c) | 7.6 ± 0.1 (a) | 52.9 ± 2.1 (b) | 59.9 ± 1.6 (a) | 13.7 ± 0.9 (d) | 13.7 ± 0.9 (d) | 6.7 ± 2.3 (b) | 55.1 ± 3.4 (b) | 5.6 ± 0.14 (b) | 1.1 ± 0.2 (a) | 0.5 ± 0.01 (bc) | 1.3 ± 0.2 (c) | |
Lower | 2nd | 0.3 ± 0.02 (bc) | 0.4 ± 0.01 (cde) | 218.3 ± 18 (c) | 7.4 ± 0.04 (a) | 57.2 ± 3.5 (a) | 44.8 ± 1.6 (ab) | 13.9 ± 0.9 (d) | 15.7 ± 0.9 (c) | 6.3 ± 1.5 (b) | 60.1 ± 2.8 (b) | 6.2 ± 0.1 (a) | 1.5 ± 0.1 (a) | 0.5 ± 0.03 (bc) | 1.4 ± 0.5 (c) |
Layer/Total | Dry Weight (kg) | Corg (kg·plot−1) | CEC (cmol+.plot−1) | Ntotal (kg·plot−1) | ||
---|---|---|---|---|---|---|
L | Upper | Initial | 23.2 | 5.3 | 0.9 | 0.3 |
Year 5 | 29.9 | 5 | 1.5 | 0.8 | ||
Lower | Initial | 13 | 5.9 | 0.3 | 0.1 | |
Year 5 | 29.9 | 6.4 | 1.8 | 0.4 | ||
Total | Initial | 36.2 | 11.2 | 1.2 | 0.3 | |
Year 5 | 59.7 | 11.4 | 3.2 | 0.8 | ||
L-R | Upper | Initial | 21.4 | 6 | 0.9 | 0.3 |
Year 5 | 23.8 | 4.8 | 1.4 | 0.4 | ||
Lower | Initial | 13 | 6.5 | 0.4 | 0.2 | |
Year 5 | 23.6 | 5.7 | 1.5 | 0.4 | ||
Total | Initial | 34.4 | 12.6 | 1.2 | 0.5 | |
Year 5 | 47.4 | 10.5 | 2.9 | 0.8 | ||
M | Upper | Initial | 18.1 | 5.6 | 0.6 | 0.2 |
Year 5 | 19.3 | 5 | 1.2 | 0.3 | ||
Lower | Initial | 18 | 5.6 | 0.6 | 0.2 | |
Year 5 | 19.3 | 4.7 | 1.2 | 0.3 | ||
Total | Initial | 36.2 | 11.2 | 1.2 | 0.3 | |
Year 5 | 38.6 | 9.8 | 2.5 | 0.6 | ||
L_Bis | Upper | Initial | 23.2 | 5.3 | 0.9 | 0.3 |
Year 2 | 29.6 | 5.5 | 1.6 | 0.4 | ||
Lower | Initial | 13 | 5.9 | 0.3 | 0.1 | |
Year 2 | 19.2 | 4.2 | 1.1 | 0.3 | ||
Total | Initial | 36.2 | 11.2 | 1.2 | 0.3 | |
Year 2 | 48.8 | 9.7 | 2.7 | 0.7 |
Year | Type | Layer | As | Cd | Cr | Cu | Pb | Hg | Zn | Ni | Se |
---|---|---|---|---|---|---|---|---|---|---|---|
mg·kg−1 of DM | |||||||||||
NF U 44-551* | 2 | 150 | 100 | 100 | 1 | 300 | 50 | ||||
Parental material | Green waste compost | 5.9 ± 0.2 (ab) | 0.5 ± 0.1 (a) | 20.7 ± 1 (a) | 36.8 ± 5.4 (b) | 51.2 ± 4.4 (a) | 0.3 ± 0.1 (a) | 179.5 ± 6.9 (c) | 9.4 ± 0.1 (a) | 0.5 ± 0 (a) | |
Spent mushroom substrate | 4 ± 0 (b) | 0.1 ± 0.08 (b) | 5.9 ± 0.4 (c) | 22.6 ± 4.7 (c) | 3.1 ± 4.3 (b) | 0.1 ± 0.1 (a) | 26.7 ± 4.5 (d) | 5 ± 0 (a) | 0.5 ± 0 (a) | ||
Crushed wood | 5.8 ± 3.1 (ab) | 0.1 ± 0.08 (b) | 13.3 ± 7.9 (b) | 22.4 ± 20.5 (c) | 9.1 ± 4.9 (b) | 0.2 ± 0 (a) | 34 ± 6.2 (d) | 8.8 ± 6.1 (a) | 0.5 ± 0 (a) | ||
Year 5 | L | Upper | 5.2 ± 0 (ab) | 0.5 ± 0.01 (a) | 21.7 ± 0.9 (a) | 42.5 ± 0.7 (ab) | 60.3 ± 2 (a) | 0.4 ± 0 (a) | 200.5 ± 14.5 (a) | 10.2 ± 0.4 (a) | 0.7 ± 0 (a) |
Lower | 4.9 ± 0.4 (ab) | 0.5 ± 0.02 (a) | 20.4 ± 1.3 (a) | 43 ± 1.4 (ab) | 59.5 ± 1.6 (a) | 0.5 ± 0.02 (a) | 247 ± 35.4 (a) | 10.5 ± 0.5 (a) | 0.5 ± 0 (a) | ||
L-R | Upper | 4.5 ± 0.1 (ab) | 0.5 ± 0.02 (a) | 21.8 ± 0.5 (a) | 53.3 ± 18.8 (ab) | 58.6 ± 3.3 (a) | 0.4 ± 0.05 (a) | 190.7 ± 8.1 (a) | 10 ± 0.5 (a) | 0.5 ± 0.06 (a) | |
Lower | 4.5 ± 0.2 (ab) | 0.5 ± 0.03 (a) | 19.4 ± 0.8 (a) | 50.7 ± 3.2 (ab) | 53.7 ± 3.3 (a) | 0.4 ± 0.06 (a) | 209.7 ± 26.4 (b) | 10.7 ± 0.5 (a) | 0.5 ± 0 (a) | ||
M | Upper | 4.5 ± 0.06 (ab) | 0.5 ± 0.01 (a) | 19 ± 0.6 (a) | 43.3 ± 1.2 (ab) | 59.1 ± 8 (a) | 0.4 ± 0.01 (a) | 187.7 ± 10.1 (b) | 9.7 ± 0.8 (a) | 0.5 ± 0 (a) | |
Lower | 5.2 ± 0.2 (ab) | 0.5 ± 0.01 (a) | 21 ± 1 (a) | 45.7 ± 3.8 (ab) | 68.5 ± 17.9 (a) | 0.4 ± 0.07 (a) | 207.3 ± 17.9 (b) | 11 ± 0.5 (a) | 0.6 ± 0.06 (a) | ||
L_Bis | Upper | 5.8 ± 0.6 (ab) | 0.5 ± 0.01 (a) | 21.5 ± 1.9 (a) | 40.7 ± 1.5 (ab) | 80.4 ± 11.7 (a) | 0.5 ± 0.09 (a) | 210.3 ± 14.4 (b) | 10.5 ± 0.3 (a) | 0.5 ± 0 (a) | |
Lower | 4.7 ± 0.3 (ab) | 0.5 ± 0.02 (a) | 19.9 ± 0.6 (a) | 40 ± 0 (ab) | 61.7 ± 5.4 (a) | 0.5 ± 0.01 (a) | 197.3 ± 4.04 (b) | 10 ± 0.3 (a) | 0.8 ± 0.4 (a) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grard, B.J.-P.; Manouchehri, N.; Aubry, C.; Frascaria-Lacoste, N.; Chenu, C. Potential of Technosols Created with Urban By-Products for Rooftop Edible Production. Int. J. Environ. Res. Public Health 2020, 17, 3210. https://doi.org/10.3390/ijerph17093210
Grard BJ-P, Manouchehri N, Aubry C, Frascaria-Lacoste N, Chenu C. Potential of Technosols Created with Urban By-Products for Rooftop Edible Production. International Journal of Environmental Research and Public Health. 2020; 17(9):3210. https://doi.org/10.3390/ijerph17093210
Chicago/Turabian StyleGrard, Baptiste J-P., Nastaran Manouchehri, Christine Aubry, Nathalie Frascaria-Lacoste, and Claire Chenu. 2020. "Potential of Technosols Created with Urban By-Products for Rooftop Edible Production" International Journal of Environmental Research and Public Health 17, no. 9: 3210. https://doi.org/10.3390/ijerph17093210
APA StyleGrard, B. J. -P., Manouchehri, N., Aubry, C., Frascaria-Lacoste, N., & Chenu, C. (2020). Potential of Technosols Created with Urban By-Products for Rooftop Edible Production. International Journal of Environmental Research and Public Health, 17(9), 3210. https://doi.org/10.3390/ijerph17093210