VAV1 Gene Polymorphisms in Patients with Rheumatoid Arthritis
Abstract
:1. Introduction
2. Materials and Methods
Subjects
3. Genotyping
4. Statistical Analysis
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chang, C.M.; Hsu, Y.W.; Wong, H.S.; Wei, J.C.; Liu, X.; Liao, H.T.; Chang, W.C. Characterization of T-Cell Receptor Repertoire in Patients with Rheumatoid Arthritis Receiving Biologic Therapies. Dis. Markers 2019, 2364943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kailashiya, V.; Singh, U.; Rana, R.; Singh, N.K.; Dash, D.; Kailashiya, J. Regulatory T Cells and Their Association with Serum Markers and Symptoms in Systemic Lupus Erythematosus and Rheumatoid Arthritis. Immunol. Investig. 2019, 48, 64–78. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.X.; Wu, Y.J.; Zhang, J.; Wei, W. T-cells interact with B cells, dendritic cells, and fibroblast-like synoviocytes as hub-like key cells in rheumatoid arthritis. Int. Immunopharmacol. 2019, 70, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Pavkova Goldbergova, M.; Lipkova, J.; Pavek, N.; Gatterova, J.; Vasku, A.; Soucek, M.; Nemec, P. RANTES, MCP-1 chemokines and factors describing rheumatoid arthritis. Mol. Immunol. 2012, 52, 273–278. [Google Scholar] [CrossRef]
- Moro-García, M.A.; Mayo, J.C.; Sainz, R.M.; Alonso-Arias, R. Influence of Inflammation in the Process of T Lymphocyte Differentiation: Proliferative, Metabolic, and Oxidative Changes. Front. Immunol. 2018, 9, 339. [Google Scholar] [CrossRef] [Green Version]
- Kondo, Y.; Yokosawa, M.; Kaneko, S.; Furuyama, K.; Segawa, S.; Tsuboi, H.; Matsumoto, I.; Sumida, T. Transcriptional Regulation of CD4+ T Cell Differentiation in Experimentally Induced Arthritis and Rheumatoid Arthritis. Arthritis Rheumatol. 2018, 70, 653–661. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Goronzy, J.J.; Weyand, C.M. DNA damage, metabolism and aging in pro-inflammatory T cells: Rheumatoid arthritis as a model system. Exp. Gerontol. 2018, 105, 118–127. [Google Scholar] [CrossRef]
- Kang, I.S.; Jang, J.S.; Kim, C. Opposing roles of hematopoietic-specific small GTPase Rac2 and the guanine nucleotide exchange factor Vav1 in osteoclast differentiation. Sci Rep. 2020, 10, 7024. [Google Scholar] [CrossRef]
- An, W.; Mohapatra, B.C.; Zutshi, N.; Bielecki, T.A.; Goez, B.T.; Luan, H.; Iseka, F.; Mushtaq, I.; Storck, M.D.; Band, V.; et al. VAV1-Cre mediated hematopoietic deletion of CBL and CBL-B leads to JMML-like aggressive early-neonatal myeloproliferative disease. Oncotarget 2016, 7, 59006–59016. [Google Scholar] [CrossRef]
- Zhou, Z.; Yin, J.; Dou, Z.; Tang, J.; Zhang, C.; Cao, Y. The calponin homology domain of VAV1 associates with calmodulin and is prerequisite to T cell antigen receptor-induced calcium release in Jurkat T lymphocytes. J. Biol. Chem. 2007, 282, 23737–23744. [Google Scholar] [CrossRef] [Green Version]
- Fujikawa, K.; Miletic, A.V.; Alt, F.W.; Faccio, R.; Brown, T.; Hoog, J.; Fredericks, J.; Nishi, S.; Mildiner, S.; Moores, S.L.; et al. VAV1/2/3-null mice define an essential role for VAV family proteins in lymphocyte development and activation but a differential requirement in MAPK signaling in T and B cells. J. Exp. Med. 2003, 198, 1595–1608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bustelo, X.R. Vav family exchange factors: An integrated regulatory and functional view. Small Gtpases 2014, 5, e973757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Fdez, S.; Fernández-Nevado, L.; Lorenzo-Martín, L.F.; Bustelo, X.R. Lysine Acetylation Reshapes the Downstream Signaling Landscape of Vav1 in Lymphocytes. Cells 2020, 9, 609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faccio, R.; Teitelbaum, S.L.; Fujikawa, K.; Chappel, J.; Zallone, A.; Tybulewicz, V.L.; Ross, F.P.; Swat, W. Vav3 regulates osteoclast function and bone mass. Nat. Med. 2005, 11, 284–290. [Google Scholar] [CrossRef]
- Sauzeau, V.; Sevilla, M.A.; Rivas-Elena, J.V.; de Alava, E.; Montero, M.J.; López-Novoa, J.M.; Bustelo, X.R. Vav3 proto-oncogene deficiency leads to sympathetic hyperactivity and cardiovascular dysfunction. Nat. Med. 2006, 12, 841–845. [Google Scholar] [CrossRef] [Green Version]
- Sauzeau, V.; Jerkic, M.; Lopez-Novoa, J.M.; Bustelo, X.R. Loss of Vav2 proto-oncogene causes tachycardia and cardiovascular disease in mice. Mol. Biol. Cell 2007, 18, 943–952. [Google Scholar] [CrossRef] [Green Version]
- Sauzeau, V.; Horta-Junior, J.A.; Riolobos, A.S.; Fernández, G.; Sevilla, M.A.; López, D.E.; Montero, M.J.; Rico, B.; Bustelo, X.R. Vav3 is involved in GABAergic axon guidance events important for the proper function of brainstem neurons controlling cardiovascular, respiratory, and renal parameters. Mol. Biol. Cell 2010, 21, 4251–4263. [Google Scholar] [CrossRef] [Green Version]
- Guerreiro-Cacais, A.O.; Norin, U.; Gyllenberg, A.; Berglund, R.; Beyeen, A.D.; Rheumatoid Arthritis Consortium International (RACI); Petit-Teixeira, E.; Cornélis, F.; Saoudi, A.; Fournié, G.J.; et al. VAV1 regulates experimental autoimmune arthritis and is associated with anti-CCP negative rheumatoid arthritis. Genes Immun. 2017, 18, 48–56. [Google Scholar] [CrossRef]
- Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O., 3rd; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D.; et al. 2010 rheumatoid arthritis classification criteria: An American College of Rheumatology/European League against Rheumatism collaborative initiative. Ann. Rheum. Dis. 2010, 69, 1580–1588. [Google Scholar] [CrossRef]
- Jagodic, M.; Colacios, C.; Nohra, R.; Dejean, A.S.; Beyeen, A.D.; Khademi, M.; Casemayou, A.; Lamouroux, L.; Duthoit, C.; Papapietro, O.; et al. A role for VAV1 in experimental autoimmune encephalomyelitis and multiple sclerosis. Sci. Transl. Med. 2009, 1, 10ra21. [Google Scholar] [CrossRef]
- Marinari, B.; Costanzo, A.; Viola, A.; Michel, F.; Mangino, G.; Acuto, O.; Levrero, M.; Piccolella, E.; Tuosto, L. VAV cooperates with CD28 to induce NF-kappaB activation via a pathway involving Rac-1 and mitogen activated kinase kinase 1. Eur. J. Immunol. 2000, 32, 447–456. [Google Scholar] [CrossRef]
- Raab, M.; Pfister, S.; Rudd, C.E. CD28 signaling via VAV/SLP-76 adaptors: Regulation of cytokine transcription independent of TCR ligation. Immunity 2001, 15, 921–933. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Leitenberg, D.; Li, B.; Flavell, R.A. Deficiency of small GTPase Rac2 affects T cell activation. J. Exp. Med. 2001, 194, 915–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Yu, H.; Zheng, W.; Voll, R.; Na, S.; Roberts, A.W.; Williams, D.A.; Davis, R.J.; Ghosh, S.; Flavell, R.A. Role of the guanosine triphosphatase Rac2 in T helper 1 cell differentiation. Science 2000, 288, 2219–2222. [Google Scholar] [CrossRef]
- Boise, L.H.; Minn, A.J.; Noel, P.J.; June, C.H.; Accavitti, M.A.; Lindsten, T.; Thompson, C.B. CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL. Immunity 1995, 3, 87–98. [Google Scholar] [CrossRef] [Green Version]
- Khoruts, A.; Mondino, A.; Pape, K.A.; Reiner, S.L.; Jenkins, M.K. A natural immunological adjuvant enhances T cell clonal expansion through a CD28-dependent, interleukin (IL)-2-independent mechanism. J. Exp. Med. 1998, 187, 225–236. [Google Scholar] [CrossRef] [Green Version]
- Harding, F.A.; McArthur, J.G.; Gross, J.A.; Raulet, D.H.; Allison, J.P. CD28- mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 1992, 356, 607–609. [Google Scholar] [CrossRef]
- Tan, P.; Anasetti, C.; Hansen, J.A.; Melrose, J.; Brunvand, M.; Bradshaw, J.; Ledbetter, J.A.; Linsley, P.S. Induction of alloantigen-specific hyporesponsiveness in human T lymphocytes by blocking interaction of CD28 with its natural ligand B7/BB1. J. Exp. Med. 1993, 177, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Miletic, A.V.; Sakata-Sogawa, K.; Hiroshima, M.; Hamann, M.J.; Gomez, T.S.; Ota, N.; Kloeppel, T.; Kanagawa, O.; Tokunaga, M.; Billadeau, D.D.; et al. VAV1 acidic region tyrosine 174 is required for the formation of T cell receptor-induced microclusters and is essential in T cell development and activation. Biol. Chem. 2006, 281, 38257–38265. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.; Marchal, C.C.; Penninger, J.; Dinauer, M.C. The hemopoietic Rho/Rac guanine nucleotide exchange factor VAV1 regulates N-formyl-methionyl-leucyl-phenylalanine-activated neutrophil functions. J. Immunol. 2003, 171, 4425–4430. [Google Scholar] [CrossRef]
- Ksionda, O.; Saveliev, A.; Köchl, R.; Rapley, J.; Faroudi, M.; Smith-Garvin, J.E.; Wülfing, C.; Rittinger, K.; Carter, T.; Tybulewicz, V.L. Mechanism and function of VAV1 localisation in TCR signalling. J. Cell Sci. 2012, 125, 5302–5314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hollmann, A.; Aloyz, R.; Baker, K.; Dirnhofer, S.; Owens, T.; Sladek, R.; Tzankov, A. VAV-1 expression correlates with NFκB activation and CD40-mediated cell death in diffuse large B-cell lymphoma cell lines. Hematol. Oncol. 2010, 28, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Barreira, M.; Rodríguez-Fdez, S.; Bustelo, X.R. New insights into the VAV1 activation cycle in lymphocytes. Cell Signal. 2018, 45, 132–144. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.S.; Kang, I.S.; Cha, Y.N.; Lee, Z.H.; Dinauer, M.C.; Kim, Y.J.; Kim, C. VAV1 inhibits RANKL-induced osteoclast differentiation and bone resorption. BMB Rep. 2019, 52, 659–664. [Google Scholar] [CrossRef] [Green Version]
Genotype | RA Patients | Control Group | pa | pb | OR (95% CI) | |||
---|---|---|---|---|---|---|---|---|
n | % | n | % | |||||
VAV1rs2546133 genotype | ||||||||
CC | 366 | 86.73% | 310 | 91.72% | 0.090 | TT + CT vs. CC | 0.035 | 1.69 (1.05–2.73) |
CT | 51 | 12.09% | 26 | 7.69% | TT vs. CT + CC | 0.47 | 2.01 (0.39–10.45) | |
TT | 5 | 1.18% | 2 | 0.59% | TT vs. CC | 0.46 | 2.12 (0.41–10.99) | |
CT vs. CC | 0.05 | 1.66 (1.01–2.73) | ||||||
TT vs. CT | 1.00 | 1.28 (0.23–7.02) | ||||||
VAV1rs2546133 allele | ||||||||
C | 783 | 92.77% | 646 | 95.56% | ||||
T | 61 | 7.23% | 30 | 4.44% | T vs. C | 0.023 | 1.68 (1.07–2.63) | |
VAV1rs2617822 genotype | ||||||||
AA | 332 | 78.67% | 271 | 80.18% | 0.86 | GG + AG vs. AA | 0.65 | 1.10 (0.77–1.56) |
AG | 81 | 19.20% | 61 | 18.04% | GG vs. AG + AA | 0.80 | 1.21 (0.43–3.42) | |
GG | 9 | 2.13% | 6 | 1.78% | GG vs. AA | 0.80 | 1.22 (0.43–3.48) | |
AG vs. AA | 0.71 | 1.08 (0.75–1.57) | ||||||
GG vs. AG | 1.00 | 1.13 (0.38–3.34) | ||||||
VAV1rs2617822 allele | ||||||||
A | 745 | 88.27% | 603 | 89.20% | ||||
G | 99 | 11.73% | 73 | 10.80% | G vs. A | 0.63 | 1.10 (0.80–1.51) |
Haplotype | RA Patients | Control Group | pa | ||
---|---|---|---|---|---|
Counts | Frequencies | Counts | Frequencies | ||
CA | 745 | 0.883 | 602 | 0.893 | 0.52 |
TG | 61 | 0.072 | 28 | 0.042 | 0.01 |
CG | 38 | 0.045 | 44 | 0.065 | 0.08 |
Genotype | Age at Onset (years) | ||
---|---|---|---|
n | Mean ± SD | pa | |
VAV1rs2546133 genotype | |||
CC | 366 | 47.65 ± 13.23 | 0.35 |
CT | 51 | 46.29 ± 13.26 | |
TT | 5 | 40.40 ± 11.10 | |
VAV1rs2617822 genotype | |||
AA | 332 | 47.46 ± 13.29 | 0.047 |
AG | 81 | 48.22 ± 12.94 | |
GG | 9 | 37.56 ± 9.84 |
Genotype | Rheumatoid Factor Positive | Erosive RA | Rheumatoid Factor Positive | Erosive RA | |||||
---|---|---|---|---|---|---|---|---|---|
(%) | pa | (%) | pa | OR (95% CI) | pa | OR (95% CI) | pa | ||
VAV1rs2546133 genotype | |||||||||
CC | 74.86% | 0.093 | 79.95% | 0.92 | TT + CT vs. CC | 1.23 (0.62–2.44) | 0.55 | 1.15 (0.56–2.40) | 0.70 |
CT | 82.35% | 82.35% | TT vs. CT + CC | 0.21 (0.04–1.29) | 0.065 | 0.98 (0.11–8.93) | 0.99 | ||
TT | 40.00% | 80.00% | TT vs. CC | 0.22 (0.04–1.36) | 0.076 | 1.00 (0.11–9.11) | 1.00 | ||
CT vs. CC | 1.57 (0.73–3.35) | 0.24 | 1.17 (0.55–2.51) | 0.69 | |||||
TT vs. CT | 0.14 (0.02–0.98) | 0.028 | 0.86 (0.09–8.61) | 0.90 | |||||
VAV1rs2546133 allele | |||||||||
T allele.b | (+): 7.44% | (+): 7.42% | |||||||
(−): 7.43% | (−): 6.63% | T vs. C | 1.00 (0.55–1.84) | 0.99 | 1.13 (0.57–2.22) | 0.72 | |||
VAV1rs2617822 genotype | |||||||||
AA | 75.16% | 0.77 | 80.61% | 0.68 | GG + AG vs. AA | 1.05 (0.61–1.83) | 0.85 | 0.90 (0.51–1.60) | 0.72 |
AG | 77.22% | 77.78% | GG vs. AG + AA | 0.65 (0.16–2.63) | 0.54 | 1.99 (0.25–16.17) | 0.51 | ||
GG | 66.67% | 88.89% | GG vs. AA | 0.66 (0.16–2.70) | 0.56 | 1.92 (0.24–15.67) | 0.53 | ||
AG vs. AA | 1.12 (0.63–2.01) | 0.70 | 0.84 (0.47–1.52) | 0.57 | |||||
GG vs. AG | 0.59 (0.13–2.60) | 0.48 | 2.29 (0.27–19.50) | 0.44 | |||||
VAV1rs2617822 allele | |||||||||
G allele.b | (+): 11.81% | (+): 11.72% | |||||||
(−): 11.88% | (−): 12.05% | G vs. A | 0.99 (0.61–1.62) | 0.98 | 0.97 (0.57–1.64) | 0.91 |
Genotype | Anti-CCP | ||||
---|---|---|---|---|---|
(%) | pa | OR (95% CI) | pa | ||
VAV1rs2546133 genotype | |||||
CC | 82.47% | 0.98 | TT + CT vs. CC | 1.03 (0.40–2.67) | 0.96 |
CT | 83.33% | TT vs. CT + CC | 0.84 (0.09–7.75) | 0.88 | |
TT | 80.00% | TT vs. CC | 0.85 (0.09–7.84) | 0.89 | |
CT vs. CC | 1.06 (0.38–2.97) | 0.91 | |||
TT vs. CT | 0.80 (0.07–8.75) | 0.85 | |||
VAV1rs2546133 allele | |||||
T allele.b | (+): 8.73% | ||||
(−): 8.75% | T vs. C | 1.00 (0.42–2.34) | 1.00 | ||
VAV1rs2617822 genotype | |||||
AA | 83.24% | 0.68 | GG + AG vs. AA | 0.82 (0.38–1.78) | 0.62 |
AG | 78.72% | GG vs. AG + AA | 1.72 (0.21–14.18) | 0.61 | |
GG | 88.89% | GG vs. AA | 1.61 (0.19–13.38) | 0.66 | |
AG vs. AA | 0.75 (0.33–1.67) | 0.47 | |||
GG vs. AG | 2.16 (0.24–19.38) | 0.48 | |||
VAV1rs2617822 allele | |||||
G allele.b | (+): 14.02% | ||||
(−): 15.00% | G vs. A | 0.92 (0.47–1.82) | 0.82 |
Genotype | Vasculitis n = 36 | Amyloidosis n = 24 | Sjogren Syndrome n = 9 | Vasculitis | Amyloidosis | Sjogren Syndrome | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(%) | pa | (%) | pa | (%) | pa | OR (95% CI) | pa | OR (95% CI) | pa | OR (95% CI) | pa | ||
VAV1rs2546133 genotype | |||||||||||||
CC | 6.28% | <0.0001 | 4.37% | 0.0099 | 2.19% | 0.013 | TT + CT vs. CC | 4.51 (2.13–9.55) | <0.0001 | 3.65 (1.48–8.97) | 0.0029 | 0.81 (0.10–6.63) | 0.85 |
CT | 25.49% | 13.73% | 0.00% | TT vs. CT + CC | 0.00 (−) | 0.49 | 4.28 (0.46–39.88) | 0.16 | 12.78 (1.28–127.52) | 0.0054 | |||
TT | 0.00% | 20.00% | 20.00% | TT vs. CC | 0.00 (−) | 0.56 | 5.47 (0.58–51.78) | 0.10 | 11.19 (1.12–111.65) | 0.010 | |||
CT vs. CC | 5.10 (2.39–10.89) | <0.0001 | 3.48 (1.36–8.93) | 0.0061 | 0.00 (−) | 0.29 | |||||||
TT vs. CT | 0.00 (−) | 0.20 | 1.57 (0.15–16.18) | 0.70 | ∞ (−) | 0.0013 | |||||||
VAV1rs2546133 allele | |||||||||||||
T allele.b | (+): 18.06% | (+): 18.75% | (+): 11.11% | ||||||||||
(−): 6.22% | (−): 6.53% | (−): 7.14% | T vs. C | 3.32 (1.70–6.48) | 0.00021 | 3.30 (1.52–7.18) | 0.0015 | 1.63 (0.36–7.24) | 0.52 | ||||
VAV1rs2617822 genotype | |||||||||||||
AA | 5.72% | <0.0001 | 4.52% | 0.14 | 2.11% | <0.0001 | GG + AG vs. AA | 3.84 (1.90–7.74) | <0.0001 | 2.35 (0.99–5.56) | 0.046 | 1.06 (0.22–5.17) | 0.95 |
AG | 20.99% | 9.88% | 0.00% | GG vs. AG + AA | 0.00 (−) | 0.35 | 2.12 (0.25–17.68) | 0.48 | 16.57 (2.91–94.42) | <0.0001 | |||
GG | 0.00% | 11.11% | 22.22% | GG vs. AA | 0.00 (−) | 0.46 | 2.64 (0.31–22.51) | 0.36 | 13.27 (2.33–75.63) | 0.00020 | |||
AG vs. AA | 4.38 (2.16–8.88) | <0.0001 | 2.32 (0.95–5.67) | 0.059 | 0.00 (−) | 0.19 | |||||||
GG vs. AG | 0.00 (−) | 0.13 | 1.14 (0.13–10.33) | 0.91 | ∞ (−) | <0.0001 | |||||||
VAV1rs2617822 allele | |||||||||||||
G allele.b | (+): 23.61% | (+): 20.83% | (+): 22.22% | ||||||||||
(−): 10.62% | (−): 11.18% | (−): 11.50% | G vs. A | 2.60 (1.44–4.69) | 0.0011 | 2.09 (1.01–4.34) | 0.044 | 2.20 (0.71–6.82) | 0.16 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawlik, A.; Malinowski, D.; Paradowska-Gorycka, A.; Safranow, K.; Dziedziejko, V. VAV1 Gene Polymorphisms in Patients with Rheumatoid Arthritis. Int. J. Environ. Res. Public Health 2020, 17, 3214. https://doi.org/10.3390/ijerph17093214
Pawlik A, Malinowski D, Paradowska-Gorycka A, Safranow K, Dziedziejko V. VAV1 Gene Polymorphisms in Patients with Rheumatoid Arthritis. International Journal of Environmental Research and Public Health. 2020; 17(9):3214. https://doi.org/10.3390/ijerph17093214
Chicago/Turabian StylePawlik, Andrzej, Damian Malinowski, Agnieszka Paradowska-Gorycka, Krzysztof Safranow, and Violetta Dziedziejko. 2020. "VAV1 Gene Polymorphisms in Patients with Rheumatoid Arthritis" International Journal of Environmental Research and Public Health 17, no. 9: 3214. https://doi.org/10.3390/ijerph17093214
APA StylePawlik, A., Malinowski, D., Paradowska-Gorycka, A., Safranow, K., & Dziedziejko, V. (2020). VAV1 Gene Polymorphisms in Patients with Rheumatoid Arthritis. International Journal of Environmental Research and Public Health, 17(9), 3214. https://doi.org/10.3390/ijerph17093214