Radiological Assessment of Indoor Radon and Thoron Concentrations and Indoor Radon Map of Dwellings in Mashhad, Iran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Measuring Techniques
2.3. Annual Effective Dose, Excess Lifetime Cancer Risk (ELCR) and Lung Cancer Cases (LCC) Associated with Radon/Thoron Exposure
2.4. Statistical Analysis
2.5. Radon Mapping and Cross-Validation
3. Results and Discussion
3.1. Activity Measurements
3.2. Radiation Dose and Risk Assessment
3.3. Spatial Distribution Map of Indoor Radon Concentrations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations Scientific Committee on the Effects of Atomic Radiation. UNSCEAR 2000 Report, Sources 473 and Effects of Ionizing Radiation; Annex B Exposures from Natural Radiation Sources; UNSCEAR: New York, NY, USA, 2000; Volume 1. [Google Scholar]
- United Nations Scientific Committee on the Effects of Atomic Radiation. UNSCEAR 2008 Report, Sources and Effects of Ionizing Radiation; Annex B Exposures of the Public and Workers from Various Sources of Radiation; UNSCEAR: New York, NY, USA, 2010; Volume 1. [Google Scholar]
- Shahrokhi, A. Application of the European Basic Safety Standards Directive in Underground Mines: A Comprehensive Radioecology Study in a Hungarian Manganese Mine. Ph.D. Thesis, Pannon Egyetem, Veszprem, Hungary, 2018. [Google Scholar]
- World Health Organization. WHO Handbook on Indoor Radon: A Public Health Perspective; WHO: Geneva, Switzerland, 2009. [Google Scholar]
- United States Environmental Protection Agency. EPA Protocol for Conducting Radon and Radon Decay Product Measurements in Multifamily Buildings; Environmental Protection Agency: Washington, DC, USA, 2017.
- Dubois, G. An Overview of Radon Surveys in Europe; European Commission, Ed.; EUR 21892 EN; Publications Office of the European Union: Luxembourg, 2005. [Google Scholar]
- Rahman, S.; Mati, N.; Ghauri, B.M. Seasonal indoor radon concentration in the North West Frontier Province and federally administered tribal areas—Pakistan. Radiat. Meas. 2007, 42, 1715–1722. [Google Scholar] [CrossRef]
- Rafique, M.; Rahman, S.U.; Mahmood, T.; Rahman, S.; Matiullah. Assessment of seasonal variation of indoor radon level in dwellings of some districts of Azad Kashmir, Pakistan. Indoor Built Environ. 2011, 20, 354–361. [Google Scholar] [CrossRef]
- Kim, Y.; Chang, B.U.; Park, H.M.; Kim, C.K.; Tokonami, S. National radon survey in Korea. Radiat. Prot. Dosim. 2011, 146, 6–10. [Google Scholar] [CrossRef]
- Szeiler, G.; Somlai, J.; Ishikawa, T.; Omori, Y.; Mishra, R.; Sapra, B.K.; Mayya, Y.S.; Tokonami, S.; Csordás, A.; Kovács, T. Preliminary results from an indoor radon thoron survey in Hungary. Radiat. Prot. Dosim. 2012, 152, 243–246. [Google Scholar] [CrossRef]
- Sainz-Fernandez, C.; Fernandez-Villar, A.; Fuente-Merino, I.; Gutierrez-Villanueva, J.L.; Martin-Matarranz, J.L.; Garcia-Talavera, M.; Casal-Ordas, S.; Quindós-Poncela, L.S. The Spanish indoor radon mapping strategy. Radiat. Prot. Dosim. 2014, 162, 58–62. [Google Scholar] [CrossRef]
- Shahrokhi, A.; Shokraee, F.; Reza, A.; Rahimi, H. Health risk assessment of household exposure to indoor radon in association with the dwelling’s age. J. Radiat. Prot. Res. 2015, 40, 155–161. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Singh, P.; Singh, S.; Sahoo, B.K.; Sapra, B.K.; Bajwa, B.S. A study of indoor radon, thoron and their progeny measurement in Tosham region Haryana, India. J. Radiat. Res. Appl. Sci. 2015, 8, 226–233. [Google Scholar] [CrossRef] [Green Version]
- Cinelli, G.; Tositti, L.; Capaccioni, B.; Brattich, E.; Mostacci, D. Soil gas radon assessment and development of a radon risk map in Bolsena, Central Italy. Environ. Geochem. Health 2015, 37, 305–319. [Google Scholar] [CrossRef] [Green Version]
- Elío, J.; Crowley, Q.; Scanlon, R.; Hodgson, J.; Long, S. Logistic regression model for detecting radon prone areas in Ireland. Sci. Total Environ. 2017, 599, 1317–1329. [Google Scholar] [CrossRef]
- Hoffmann, M.; Aliyev, C.S.; Feyzullayev, A.A.; Baghirli, R.J.; Veliyeva, F.F.; Pampuri, L.; Valsangiacomo, C.; Tollefsen, T.; Cinelli, G. First map of residential indoor radon measurements in Azerbaijan. Radiat. Prot. Dosim. 2017, 175, 186–193. [Google Scholar] [CrossRef]
- Park, J.H.; Lee, C.M.; Lee, H.Y.; Kang, D.R. Estimation of seasonal correction factors for indoor radon concentrations in Korea. Int. J. Environ. Res. Public Health 2018, 15, 2251. [Google Scholar] [CrossRef] [Green Version]
- Sohrabi, M.; Babapouran, M. New public dose assessment from internal and external exposures in low and elevated-level natural radiation areas of Ramsar, Iran. Int. Congr. Ser. 2005, 1276, 169–174. [Google Scholar] [CrossRef]
- Hadad, K.; Doulatdar, R.; Mehdizadeh, S. Indoor radon monitoring in northern Iran using passive and active measurements. J. Environ. Radioact. 2007, 95, 39–52. [Google Scholar] [CrossRef]
- Hadad, K.; Mokhtari, J. Indoor radon variations in central Iran and its geostatistical map. Atmos. Environ. 2015, 102, 220–227. [Google Scholar] [CrossRef]
- Bouzarjomehri, F.; Ehrampoosh, M.H. Radon level in dwellings basement of Yazd-Iran. Iran. J. Radiat. Res. 2008, 6, 141–144. [Google Scholar]
- Mowlavi, A.A.; Fornasier, M.R.; Binesh, A.; De Denaro, M. Indoor radon measurement and effective dose assessment of 150 apartments in Mashhad, Iran. Environ. Monit Assess. 2012, 184, 1085–1088. [Google Scholar] [CrossRef]
- Fahiminia, M.; Fard, R.F.; Ardani, R.; Naddafi, K.; Hassanvand, M.S.; Mohammadbeigi, A. Indoor radon measurements in residential dwellings in Qom, Iran. Int. J. Radiat Res. 2016, 14, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Yarahmadi, M.; Shahsavani, A.; Mahmoudian, M.H.; Shamsedini, N.; Rastkari, N.; Kermani, M. Estimation of the residential radon levels and the annual effective dose in dwellings of Shiraz, Iran, in 2015. Electron. Phys. 2016, 8, 2497–2505. [Google Scholar] [CrossRef]
- Shahbazi Sehrani, M.; Boudaqpoor, S.; Mirmohammadi, M. Measurement of indoor radon gas concentration and assessment of health risk in Tehran, Iran. Int. J. Environ. Sci. Technol. 2019, 16, 2619–2626. [Google Scholar] [CrossRef]
- Mirbag, A.; Shokati Poursani, A. Indoor radon measurement in residential/commercial buildings in Isfahan city. J. Air Pollut. Health 2019, 3, 209–218. [Google Scholar] [CrossRef]
- Shahrokhi, A.; Adelikhah, M.; Chalupnik, S.; Kocsis, E.; Toth-Bodrogi, E.; Kovács, T. Radioactivity of building materials in Mahallat, Iran–an area exposed to a high level of natural background radiation–attenuation of external radiation doses. Materiales de Construcción 2020, 70, e233. [Google Scholar] [CrossRef]
- Sohrabi, M.; Roositalab, J.; Mohammadi, J. Public effective doses from environmental natural gamma exposures indoors and outdoors in Iran. Radiat. Prot. Dosim. 2015, 167, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Tokonami, S.; Takahashi, H.; Kobayashi, Y.; Zhuo, W.; Hulber, E. Up-to-date radon-thoron discriminative detector for a large-scale survey. Rev. Sci. Instrum. 2005, 76, 113505. [Google Scholar] [CrossRef]
- Adelikhah, M.E.; Shahrokhi, A.; Chalupnik, S.; Toth-Bodrogi, E.; Kovács, T. High level of natural ionizing radiation at a thermal bath in Dehloran, Iran. Heliyon 2020, 6, e04297. [Google Scholar] [CrossRef]
- Shahrokhi, A.; Nagy, E.; Csordás, A.; Somlai, J.; Kovács, T. Distribution of indoor radon concentrations between selected Hungarian thermal baths. Nukleonika 2016, 61, 333–336. [Google Scholar] [CrossRef] [Green Version]
- Csordás, A.; Fábián, F.; Shahrokhi, A.; Somlai, J.; Kovács, T. Calibration of CR-39-based thoron progeny device. Radiat. Prot. Dosim. 2014, 160, 169–172. [Google Scholar]
- International Commission on Radiological Protection. Lung Cancer Risk from radon and Progeny and Statement on Radon; Annals of the ICRP: New York, NY, USA, 2010. [Google Scholar]
- Özen, S.; Celik, N.; Dursun, E.; Taskın, H. Indoor and outdoor radon measurements at lung cancer patients’ homes in the dwellings of Rize Province in Turkey. Environ. Geochem. Health 2018, 40, 1111–1125. [Google Scholar] [CrossRef]
- Bossew, P.; Tollefsen, T.; Gruber, V.; De Cort, M. The European radon mapping project. In Proceedings of the IX Latin American IRPA Regional Congress on Radiation Protection and Safety, IRP, Rio de Janeiro, Brazil, 14–19 April 2013. [Google Scholar]
- Janik, M.; Bossew, P.; Kurihara, O. Machine learning methods as a tool to analyse incomplete or irregularly sampled radon time series data. Sci. Total Environ. 2018, 630, 1155–1167. [Google Scholar] [CrossRef]
- Alexander, D.L.; Tropsha, A.; Winkler, D.A. Beware of R2: Simple, unambiguous assessment of the prediction accuracy of QSAR and QSPR models. J. Chem. Inf. Model. 2015, 55, 1316–1322. [Google Scholar] [CrossRef] [Green Version]
- International Commission on Radiological Protection. Protection Against Radon-222 at Home and at Work; Annals of the ICRP: New York, NY, USA, 1993. [Google Scholar]
- United States Environmental Protection Agency. Assessment of Risk from Radon in Homes; Environmental Protection Agency: Washington, DC, USA, 2003.
- Mehra, R.; Badhan, K.; Kansal, S.; Sonkawade, R.G. Assessment of seasonal indoor radon concentration in dwellings of Western Haryana. Radiat. Meas. 2011, 46, 1803–1806. [Google Scholar] [CrossRef]
- Dey, G.K.; Das, P.K. Estimation of radon concentration in dwellings in and around Guwahati. J. Earth Syst. Sci. 2012, 121, 237–240. [Google Scholar] [CrossRef]
- Kapdan, E.; Altinsoy, N. A comparative study of indoor radon concentrations between dwellings and schools. Radiat Phys. Chem. 2012, 81, 383–386. [Google Scholar] [CrossRef]
- Cosma, C.; Cucoş-Dinu, A.; Papp, B.; Begy, R.; Sainz, C. Soil and building material as main sources of indoor radon in Băiţa-Ştei radon prone area (Romania). J. Environ. Radioact. 2013, 116, 174–179. [Google Scholar] [CrossRef]
- Kunovska, B.; Ivanova, K.; Stojanovska, Z.; Vuchkov, D.; Zaneva, N. Measurements of radon concentration in soil gas of urban areas, Bulgaria. Rom. J. Phys. 2013, 58, S172–S179. [Google Scholar]
- Szabó, K.Z.; Jordan, G.; Horváth, Á.; Szabó, C. Mapping the geogenic radon potential: Methodology and spatial analysis for central Hungary. J. Environ. Radioact. 2014, 129, 107–120. [Google Scholar] [CrossRef]
- Hasan, A.K.; Subber, A.R.; Shaltakh, A.R. Measurement of radon concentration in soil gas using RAD7 in the environs of Al-Najaf Al-Ashraf City-Iraq. Adv. Appl. Sci. Res. 2011, 2, 273–278. [Google Scholar]
- Mittal, S.; Rani, A.; Mehra, R. Estimation of radon concentration in soil and groundwater samples of Northern Rajasthan, India. J. Radiat. Res. Appl. Sci. 2016, 9, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Kikaj, D.; Jeran, Z.; Bahtijari, M.; Stegnar, P. Radon in soil gas in Kosovo. J. Environ. Radioact. 2016, 164, 245–252. [Google Scholar] [CrossRef]
- Vaupotič, J.; Gregorič, A.; Kobal, I.; Žvab, P.; Kozak, K.; Mazur, J.; Kochowska, E.; Grządziel, D. Radon concentration in soil gas and radon exhalation rate at the Ravne Fault in NW Slovenia. Nat. Hazard. Earth Sys. 2010, 10, 895–899. [Google Scholar] [CrossRef]
- Duggal, V.; Rani, A.; Mehra, R. Measurement of soil-gas radon in some areas of northern Rajasthan, India. J. Earth Syst Sci. 2014, 123, 1241–1247. [Google Scholar] [CrossRef]
- Al Mugahed, M.; Bentayeb, F. Studying of Radon Gas Concentrations in Soil Qaa Al-Hakel Agricultural Area, Ibb, Yemen. Mater. Today Proc. 2019, 13, 525–529. [Google Scholar] [CrossRef]
- Roshandel, G.; Ghanbari-Motlagh, A.; Partovipour, E.; Salavati, F.; Hasanpour-Heidari, S.; Mohammadi, G.; Khoshaabi, M.; Sadjadi, A.; Davanlou, M.; Tavangar, S.M.; et al. Cancer incidence in Iran in 2014: Results of the Iranian National Population-based Cancer Registry. Cancer Epidemiol. 2019, 61, 50–58. [Google Scholar] [CrossRef]
Season | Parameter | A.M 1 | G.M 2 | S.D 3 | Min | Max | Winter/Summer Ratio (Mean) | |
---|---|---|---|---|---|---|---|---|
222Rn | 220Rn | |||||||
Summer | Indoor air radon (Bq m−3) | 115.02 | 105.8 | 50.64 | 50.8 | 305.2 | 1.31 | 1.36 |
Indoor air thoron (Bq m−3) | 48.73 | 37.4 | 27.95 | <LLD | 122.5 | |||
Soil-gas radon (kBq m−3) | 3.07 | 2.71 | 1.621 | 1.078 | 8.021 | |||
Winter | Indoor air radon (Bq m−3) | 150.3 | 139.68 | 62.74 | 75.3 | 376.6 | ||
Indoor air thoron (Bq m−3) | 66.17 | 49.41 | 34.24 | <LLD | 166.3 |
Region | Radon in Soil-Gas (KBq m−3) | Measurement Method | Sampling Depth (cm) | Reference |
---|---|---|---|---|
Bǎita-Stei, Romania | 5.5–512 | Lucas Cell | 40–80 | [43] |
Bolsena, Italy | 7–176 | RAD 7 | 60–70 | [14] |
Bulgaria | 3–97 | AlphaGuard | 100 | [44] |
Hungary | 1–47.1 | RAD 7 | 80 | [45] |
Najaf, Iraq | 0.009–9.29 | RAD 7 | 5–60 | [46] |
Rajasthan, India | 0.94–10.05 | RAD 7 | 100 | [47] |
Sharr-Korabi, Kosovo | 0.295–32 | SSNTDs (CR-39) | 80 | [48] |
Slovenia | 0.9–32.9 | AlphaGuard | 100 | [49] |
Sri Ganganagar, India | 0.9–10.10 | RAD 7 | 10–100 | [50] |
Yemen | 0.15–13.56 | SSNTDs (CR-39) | 0–150 | [51] |
Mashhad, Iran | 1.07–8.02 | SSNTDs (CR-39) | 50–60 | Present study |
Region | Number of Dwelling | Mean Radon Concentration (SD 1) | Mean Effective Dose (mSv yr−1) | ELCR2 | LCC3 × 10−6 | Excessive Rate (%) | Reference |
---|---|---|---|---|---|---|---|
Isfahan | 51 | 28.57 (39.38) | 0.72 | 2.7 × 10−1 | 12.96 | 4% > 100 Bq m−3 | [26] |
Lahijan | 400 | 163 (57) | 3.43 | 1.3 × 10−2 | 61.74 | In most dwellings > 100 Bq m−3 | [19] |
Mashhad | 148 | 31.9 | (0.25–3.78) | - | - | 5.3% of apartments > 100 Bq m−3 | [22] |
Qom | 123 | 95.83 | 2.41 | 9.2 × 10−3 | 43.38 | 24.3% > 100 Bq m−3 | [23] |
Ramsar | 500 | Autumn: 355 Winter: 476 | Autumn: 8.95 Winter: 12 | 3.44 × 10−2 4.6 × 10−2 | 161.11 216 | - | [18] |
Shiraz | 185 | 57.6 (33.06) | 1.45 | 5.6 × 10−3 | 26.1 | 5.4% > 100 Bq m−3 | [24] |
Tehran | 30 | 104 | 2.62 | 1 × 10−2 | 47.16 | 38% > 100 Bq m−3 | [25] |
Yazd | 84 | 137.4 (149.5) | 3.46 | 1.3 × 10−2 | 62.28 | 30% of basements> 148 Bq m−3 | [21] |
Mashhad | 78 | Summer: 115(51) Winter: 150 (62) | Summer: 3.1 Winter: 4.2 | (12.3 × 10−3) (15.9 × 10−3) | (56.7) (74.1) | Summer: 20% > 148 Bq m−3 Winter: 31% > 148 Bq m−3 | Current study |
Method | MAE 1 | RMSE 2 | RMSLE 3 | PB 4 | R2 |
---|---|---|---|---|---|
Inverse distance weighting | 28.159 | 34.931 | 0.01210 | 20.069 | 0.234 |
Empirical Bayesian Kriging | 28.235 | 35.148 | 0.01218 | 20.123 | 0.224 |
Ordinary Kriging | 28.424 | 36.364 | 0.01346 | 20.268 | 0.169 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adelikhah, M.; Shahrokhi, A.; Imani, M.; Chalupnik, S.; Kovács, T. Radiological Assessment of Indoor Radon and Thoron Concentrations and Indoor Radon Map of Dwellings in Mashhad, Iran. Int. J. Environ. Res. Public Health 2021, 18, 141. https://doi.org/10.3390/ijerph18010141
Adelikhah M, Shahrokhi A, Imani M, Chalupnik S, Kovács T. Radiological Assessment of Indoor Radon and Thoron Concentrations and Indoor Radon Map of Dwellings in Mashhad, Iran. International Journal of Environmental Research and Public Health. 2021; 18(1):141. https://doi.org/10.3390/ijerph18010141
Chicago/Turabian StyleAdelikhah, Mohammademad, Amin Shahrokhi, Morteza Imani, Stanislaw Chalupnik, and Tibor Kovács. 2021. "Radiological Assessment of Indoor Radon and Thoron Concentrations and Indoor Radon Map of Dwellings in Mashhad, Iran" International Journal of Environmental Research and Public Health 18, no. 1: 141. https://doi.org/10.3390/ijerph18010141
APA StyleAdelikhah, M., Shahrokhi, A., Imani, M., Chalupnik, S., & Kovács, T. (2021). Radiological Assessment of Indoor Radon and Thoron Concentrations and Indoor Radon Map of Dwellings in Mashhad, Iran. International Journal of Environmental Research and Public Health, 18(1), 141. https://doi.org/10.3390/ijerph18010141