Factors Affecting Users’ Satisfaction with Urban Parks through Online Comments Data: Evidence from Shenzhen, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Extraction
2.3. Analysis
2.3.1. Textual Analysis
2.3.2. Sentiment Analysis
2.3.3. Statistical Analysis
3. Results
3.1. Characteristics of People’s Online Comment on Parks
3.2. Factors Influencing People’s Experiences within Urban Parks
3.3. Effects of the Influential Factors on People’s Satisfaction with Parks and Their Relative Importance
4. Discussion
4.1. Factors Influencing People’s Satisfaction with Parks and Their Relative Importance
4.2. Discussion of Methodology and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2014 Revision; United Nations, Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2014. [Google Scholar]
- Wolch, J.R.; Byrne, J.; Newell, J.P. Urban green space, public health, and environmental justice: The challenge of making cities “just green enough”. Landsc. Urban Plan. 2014, 125, 234–244. [Google Scholar] [CrossRef] [Green Version]
- Coppel, G.; Wustemann, H. The impact of urban green space on health in Berlin, Germany: Empirical findings and implications for urban planning. Landsc. Urban Plan. 2017, 167, 410–418. [Google Scholar] [CrossRef]
- Liu, H.L.; Shen, Y.S. The impact of green space changes on air pollution and microclimates: A case study of the Taipei metropolitan area. Sustainability 2014, 6, 8827–8855. [Google Scholar] [CrossRef] [Green Version]
- Peschardt, K.; Stigsdotter, U. Associations between park characteristics and perceived restrictiveness of small public urban spaces. Landsc. Urban Plan. 2013, 112, 26–39. [Google Scholar] [CrossRef]
- Kashef, M. Urban livability across disciplinary and professional boundaries. Front. Archit. Res. 2016, 5, 239–253. [Google Scholar] [CrossRef] [Green Version]
- Krajter Ostoić, S.; Konijnendijk van den Bosch, C.C.; Vuletić, D.; Stevanov, M.; Zivojinović, I.; Mutabdzija-Bećirović, S.; Lazarević, J.; Stojanova, B.; Blagojević, D.; Stojanovska, M.; et al. Citizens’ perception of and satisfaction with urban forests and green space: Results from selected Southeast European cities. Urban For. Urban Green. 2017, 23, 93–103. [Google Scholar] [CrossRef]
- Ray Gozalo, G.; Barrigon Morillas, J.M.; Montes Gonzalez, D.; Atanasio Moraga, P. Relationships among satisfaction, noise perception, and use of urban green spaces. Sci. Total Environ. 2018, 624, 438–450. [Google Scholar] [CrossRef]
- Tsurumi, T.; Managi, S. Environmental value of green spaces in Japan: An application of the life satisfaction approach. Ecol. Econ. 2015, 120, 1–12. [Google Scholar] [CrossRef]
- Zhang, Y.; Van den Berg, A.; Van Dijk, T.; Weitkamp, G. Quality over Quantity: Contribution of Urban Green Space to Neighborhood Satisfaction. Int. J. Environ. Res. Public Health 2017, 14, 535. [Google Scholar] [CrossRef]
- Ives, C.; Oke, C.; Hehir, A.; Gordon, A. Capturing residents’ values for urban green space: Mapping, analysis and guidance for practice. Landsc. Urban Plan. 2017, 161, 32–43. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Yang, J.; Ma, L.; Huang, C. Factors affecting the use of urban green spaces for physical activities: Views of young urban residents in Beijing. Urban For. Urban Green. 2015, 14, 851–857. [Google Scholar] [CrossRef]
- Akpinar, A. How is quality of urban green spaces associated with physical activity and health? Urban For. Urban Green. 2016, 16, 76–83. [Google Scholar] [CrossRef]
- Evenson, K.R.; Jones, S.A.; Holliday, K.M.; Cohen, D.A.; Mckenzie, T.L. Park characteristics, use, and physical activity: A review of studies using SOPARC (system for observing play and recreation in communities). Prev. Med. 2016, 86, 153–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves, S.; Aspinall, P.A.; Ward Thompson, C.; Sugiyama, T. Preferences of older people for environmental attributes of local parks. The use of choice-based conjoint analysis. Facilities 2008, 26, 433–453. [Google Scholar] [CrossRef]
- Adinolfi, C.; Suárez-Cáceres, G.P.; Cariñanos, P. Relation between visitors’ behavior and characteristics of green spaces in the city of Granada, south-eastern Spain. Urban For. Urban Green. 2014, 13, 534–542. [Google Scholar] [CrossRef]
- Wright Wendel, H.E.; Zarger, R.K.; Mihelcic, J.R. Accessibility and usability: Green space preferences, perceptions, and barriers in a rapidly urbanizing city in Latin America. Landsc. Urban Plan. 2012, 107, 272–282. [Google Scholar] [CrossRef]
- Wan, C.; Shen, G.Q. Salient attributes of urban green space in high density cities: The case of Hong Kong. Habitat Int. 2015, 49, 92–99. [Google Scholar] [CrossRef]
- Sreetheran, M.; Konijnendijk van den Bosch, C.C. A socio-ecological exploration of fear of crime in urban green spaces—A systematic review. Urban For. Urban Green. 2014, 13, 1–18. [Google Scholar] [CrossRef]
- Cariñanos, P.; Casares-Porcel, M. Urban green zones and related pollen allergy: A review. Some guidelines for designing spaces with low allergy impact. Landsc. Urban Plan. 2011, 101, 205–214. [Google Scholar] [CrossRef]
- Wang, D.; Brown, G.; Liu, Y. The physical and non-physical factors that influence perceived access to urban parks. Landsc. Urban Plan. 2015, 133, 53–66. [Google Scholar] [CrossRef]
- Jansson, M.; Fors, H.; Lindgren, T.; Wiström, B. Perceived personal safety in relation to urban woodland vegetation—A review. Urban For. Urban Green. 2013, 12, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.C.; Kim, K.H. Attitudes of citizens towards urban parks and greenspaces for urban sustainability: The case of Gyeongsan city, Republic of Korea. Sustainability 2015, 7, 8240–8254. [Google Scholar] [CrossRef] [Green Version]
- Aspinall, P.A.; Ward Thompson, C.; Alves, S.; Sugiyama, T.; Brice, R.; Vickers, A. Preference and relative importance for environmental attributes of neighbourhood open space in older people. Environ. Plann. B 2010, 37, 1022–1039. [Google Scholar] [CrossRef]
- McCormak, G.R.; Graham, T.M.; Swanson, K.; Massolo, A.; Rock, M.J. Changesin visitor profiles and activity patterns following dog supportive modificationsto parks: A natural experiment on the health impact of an urban policy. SSM Popul. Health 2016, 2, 237–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jim, C.Y.; Shan, X. Socioeconomic effect on perception of urban green spaces in Guangzhou, China. Cities 2013, 31, 123–131. [Google Scholar] [CrossRef]
- Sang, Å.O.; Knez, I.; Gunnarsson, B.; Hedblom, M. The effects of naturalness, gender, and age on how urban green space is perceived and used. Urban For. Urban Green. 2016, 18, 268–276. [Google Scholar] [CrossRef]
- Roberts, H.; Sadler, J.P.; Chapman, L. Using Twitter to investigate seasonal variation in physical activity in urban green space. Geo Geogr. Environ. 2017, 4, e00041. [Google Scholar] [CrossRef]
- Cohen, D.A.; Marsh, T.; Williamson, S.; Derose, K.P.; Martinez, H.; Setodji, C.; McKenzie, T.L. Parks and physical activity: Why are some parks used more than others? Prev. Med. 2010, 50, 9–12. [Google Scholar] [CrossRef] [Green Version]
- Balram, S.; Dragićević, S. Attitudes toward urban green spaces: Integrating questionnaire survey and collaborative GIS techniques to improve attitude measurements. Landsc. Urban Plan. 2005, 71, 147–162. [Google Scholar] [CrossRef]
- Gibson, S.C. “Let’s go to the park”. An investigation of older adults in Australia and their motivations for park visitation. Landsc. Urban Plan. 2018, 180, 234–246. [Google Scholar] [CrossRef]
- Bubalo, M.; Van Zanten, B.T.; Verburg, P.H. Crowdsourcing geo-information on landscape perceptions and preferences: A review. Landsc. Urban Plan. 2019, 184, 101–111. [Google Scholar] [CrossRef]
- Evenson, K.R.; Wen, F.; Hillier, A.; Cohen, D.A. Assessing the contribution of parks to physical activity using GPS and accelerometry. Med. Sci. Sport Exerc. 2013, 45, 1981–1987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Zhou, W. Recreational visits to urban parks and factors affecting park visits: Evidence from geotagged social media data. Landsc. Urban Plan. 2018, 180, 27–35. [Google Scholar] [CrossRef]
- Cuomo, M.; Tortora, D.; Foroudi, P.; Giordano, A.; Festa, G.; Metallo, G. Digital transformation and tourist experience co-design: Big social data for planning cultural tourism. Technol. Forecast Soc. 2021, 162, 120345. [Google Scholar] [CrossRef]
- Chen, Y.; Parkins, J.R.; Sherren, K. Using geo-tagged Instagram posts to reveal landscape values around current and proposed hydroelectric dams and their reservoirs. Landsc. Urban Plan. 2018, 170, 283–292. [Google Scholar] [CrossRef]
- Campelo, M.B.; Nogueira Mendes, R.M. Comparing webshare services to assess mountain bike use in protected areas. J. Outdoor Rec. Tour. 2016, 15, 82–88. [Google Scholar] [CrossRef]
- Roberts, V.H. Using Twitter data in urban green space research: A case study and critical evaluation. Appl. Geogr. 2017, 81, 13–20. [Google Scholar] [CrossRef]
- Hjorth, L.; Horst, H.; Galloway, A.; Bell, G. The Routledge Companion to Digital Ethnography; Taylor & Francis: Abingdon, UK, 2017. [Google Scholar]
- Levin, N.; Kark, S.; Crandall, D. Where have all the people gone? Enhancing global conservation using night lights and social media. Ecol. Appl. 2015, 25, 2153–2167. [Google Scholar] [CrossRef] [Green Version]
- Donahue, M.L.; Keeler, B.L.; Wood, S.A.; Fisher, D.M.; Hamstead, Z.A.; McPhearson, T. Using social media to understand drivers of urban park visitation in the Twin Cities, MN. Landsc. Urban Plan. 2018, 175, 1–10. [Google Scholar] [CrossRef]
- Tenkanen, H.; Di Minin, E.; Heikinheimo, V.; Hausmann, A.; Herbst, M.; Kajala, L.; Toivonen, T. Instagram, Flickr, or Twitter: Assessing the usability of social media data for visitor monitoring in protected areas. Sci. Rep. 2017, 7, 17615. [Google Scholar] [CrossRef] [Green Version]
- Sessions, C.; Wood, S.A.; Rabotyagov, S.; Fisher, D.M. Measuring recreational visitation at U.S. National Parks with crowd-sourced photographs. J. Environ. Manag. 2016, 183, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Tenerelli, P.; Demšar, U.; Luque, S. Crowdsourcing indicators for cultural ecosystem services: A geographically weighted approach for mountain landscapes. Ecol. Indic. 2016, 64, 237–248. [Google Scholar] [CrossRef] [Green Version]
- Ghermandi, A.; Fichtman, E. Cultural ecosystem services of multifunctional constructed treatment wetlands and waste stabilization ponds: Time to enter the mainstream? Ecol. Eng. 2015, 84, 615–623. [Google Scholar] [CrossRef]
- Kozinets, R. The Field behind the Screen: Using netnography for marketing research in online communities. J. Mark. Res. 2002, 39, 61–72. [Google Scholar] [CrossRef] [Green Version]
- Hamstead, Z.A.; Fisher, D.; Ilieva, R.T.; Wood, S.A.; McPhearson, T.; Kremer, P. Geolocated social media as a rapid indicator of park visitation and equitable park access. Comput. Environ. Urban 2018, 72, 38–50. [Google Scholar] [CrossRef]
- Plunz, R.A.; Zhou, Y.; Vintimilla, M.; Mckeown, K.; Yu, T.; Uguccioni, L.; Sutto, M.P. Twitter sentiment in New York City parks as measure of well-being. Landsc. Urban Plan. 2019, 189, 235–246. [Google Scholar] [CrossRef]
- Dunkel, A. Visualizing the perceived environment using crowdsourced photo geodata. Landsc. Urban Plan. 2015, 142, 173–186. [Google Scholar] [CrossRef]
- Roberts, H.; Resch, B.; Sadler, J.; Chapman, L.; Petutschnig, A.; Zimmer, S. Investigating the emotional responses of individuals to urban green space using twitter data: A critical comparison of three different methods of sentiment analysis. Urban Plan. 2018, 3, 21–33. [Google Scholar] [CrossRef]
- Guo, S.; Yang, G.; Pei, T.; Ma, T.; Ma, T.; Song, C.; Shu, H.; Du, Y.; Zhou, C. Analysis of factors affecting urban park service area in Beijing: Perspectives from multi-source geographic data. Landsc. Urban Plan. 2019, 181, 103–117. [Google Scholar] [CrossRef]
- Shi, P.; Yu, D. Assessing urban environmental resources and services of Shenzhen, China: A landscape-based approach for urban planning and sustainability. Landsc. Urban Plan. 2014, 125, 290–297. [Google Scholar] [CrossRef]
- Zeng, Q.; Xie, Y.; Liu, K. Assessment of the patterns of urban land covers and impervious surface areas: A case study of Shenzhen, China. Phys. Chem. Earth Parts A/B/C 2019, 110, 1–7. [Google Scholar] [CrossRef]
- You, H. Characterizing the inequalities in urban public green space provision in Shenzhen, China. Habitat Int. 2016, 56, 176–180. [Google Scholar] [CrossRef]
- Xu, M.; Xin, J.; Su, S.; Weng, M.; Cai, Z. Social inequalities of park accessibility in Shenzhen, China: The role of park quality, transport modes, and hierarchical socioeconomic characteristics. J. Transp. Geogr. 2017, 62, 38–50. [Google Scholar] [CrossRef]
- Shenzhen Municipal Bureau of Statistics. Shenzhen Statistical Yearbook (SSY); China Statistics Press: Beijing, China, 2019. (In Chinese) [Google Scholar]
- Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD). Standard for Classification of Urban Green Space; (CJJ/T85-2017); Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD): Beijing, China, 2017. (In Chinese) [Google Scholar]
- Shen, C.; Chen, M.; Wang, C. Analyzing the trend of O2O commerce by bilingual text mining on social media. Comput. Hum. Behav. 2018, 101, 474–483. [Google Scholar] [CrossRef]
- Mao, X.; Zhao, X.; Lin, J.; Herrera-Viedma, E. Utilizing multi-source data in popularity prediction for shop-type recommendation. Knowl. Based Syst. 2019, 165, 253–267. [Google Scholar] [CrossRef]
- Zhang, J.; Savage, S.J.; Chen, Y. Consumer uncertainty and price discrimination through online coupons: An empirical study of restaurants in Shanghai. Inf. Econ. Policy 2015, 33, 43–55. [Google Scholar] [CrossRef] [Green Version]
- Glaser, B.G.; Strauss, A.L.; Strutzel, E. The discovery of grounded theory: Strategies for qualitative research. Nurs. Res. 1968, 17, 364. [Google Scholar] [CrossRef] [Green Version]
- Patton, M.Q. Qualitative Research and Evaluation Methods, 4th ed.; Sage Publications: London, UK, 2004. [Google Scholar]
- Charmaz, K.; Bryant, A. Grounded theory. In International Encyclopedia of Education, 3rd ed.; Peterson, P., Baker, E., McGaw, B., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 406–412. [Google Scholar]
- Gao, Y.; Koo, T.T.R. Flying Australia–Europe via China: A qualitative analysis of the factors affecting travelers’ choice of Chinese carriers using online comments data. J. Air Transp. Manag. 2014, 39, 23–29. [Google Scholar] [CrossRef]
- Saldaña, J. The Coding Manual for Qualitative Researchers, 3rd ed.; Sage Publications: London, UK, 2016. [Google Scholar]
- Zhang, L.; Liu, B. Sentiment Analysis and Opinion Mining. In Encyclopedia of Machine Learning and Data Mining; Sammut, C., Webb, G., Eds.; Springer: Boston, MA, USA, 2016. [Google Scholar]
- Roberts, H.; Sadler, J.; Chapman, L. The value of Twitter data for determining the emotional responses of people to urban green spaces: A case study and critical evaluation. Urban Stud. 2019, 56, 818–835. [Google Scholar] [CrossRef]
- Resch, B.; Summa, A.; Sagl, G.; Zeile, P.; Exner, J.P. Urban emotions—Geo-semantic emotion extraction from technical sensors, human sensors and crowdsourced data. In Progress in Location-Based Services 2014; Gartner, G., Huang, H., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 199–212. [Google Scholar]
- Roberts, K.; Roach, M.; Johnson, J.; Guthrie, J.; Harabagiu, S. EmpaTweet: Annotating and detecting emotions on Twitter. In Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC’12), Istanbul, Turkey, 23–25 May 2012. [Google Scholar]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Van Allen, P.R. A Good Library Sign System: Is It Possible? Ref. Serv. Rev. 1984, 12, 102–106. [Google Scholar] [CrossRef]
- Verlič, A.; Arnberger, A.; Japelj, A.; Simončič, P.; Pirnat, J. Perceptions of recreational trail impacts on an urban forest walk: A controlled field experiment. Urban For. Urban Green. 2015, 14, 89–98. [Google Scholar] [CrossRef]
- Ngiam, R.W.J.; Wei, L.L.; Collins, C.M. A balancing act in urban social-ecology: Human appreciation, ponds and dragonflies. Urban Ecosyst. 2017, 20, 743–758. [Google Scholar] [CrossRef]
- Yang, J.; McBride, J.; Zhou, J.; Sun, Z. The urban forest in Beijing and its role in air pollution reduction. Urban For. Urban Green. 2005, 3, 65–78. [Google Scholar] [CrossRef]
- Pathak, V.; Tripathi, B.D.; Mishra, V.K. Evaluation of anticipated performance index of some tree species for green belt development to mitigate traffic generated noise. Urban For. Urban Green. 2011, 10, 61–66. [Google Scholar] [CrossRef]
- Declet-Barreto, J.; Brazel, A.J.; Martin, C.A.; Chow, W.; Harlan, S. Creating the park cool island in an inner-city neighborhood: Heat mitigation strategy for Phoenix, AZ. Urban Ecosyst. 2012, 16, 617–635. [Google Scholar] [CrossRef]
- Raaschou-Nielsen, O.; Andersen, Z.J.; Beelen, R.; Samoli, E.; Stafoggia, M.; Weinmayr, G.; Hoffmann, B.; Fischer, P.; Nieuwenhuijsen, M.J.; Brunekreef, B.; et al. Air pollution and lung cancer incidence in 17 European cohorts: Prospective analyses from the European study of cohorts for air pollution effects (escape). Lancet Oncol. 2013, 14, 813–822. [Google Scholar] [CrossRef]
- Jiang, Y.; Huang, G.; Fisher, B. Air quality, human behavior and urban park visit: A case study in Beijing. J. Clean. Prod. 2019, 240, 118000. [Google Scholar] [CrossRef]
- Bastian, O.; Haase, D.; Grunewald, K. Ecosystem properties, potentials and services—The EPPS conceptual framework and an urban application example. Ecol. Indic. 2012, 21, 7–16. [Google Scholar] [CrossRef]
- Haaland, C.; Van den Bosch, C.K. Challenges and strategies for urban green-space planning in cities undergoing densification: A review. Urban For. Urban Green. 2015, 14, 760–771. [Google Scholar] [CrossRef]
- Chen, B.; Adimo, O.A.; Bao, Z. Assessment of aesthetic quality and multiple functions of urban green space from the users’ perspective: The case of Hangzhou Flower Garden, China. Landsc. Urban Plan. 2009, 93, 76–82. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, J.; Liu, Z. Consensus in visual preferences: The effects of aesthetic quality and landscape types. Urban For. Urban Green. 2016, 20, 210–217. [Google Scholar] [CrossRef]
- Chen, T.; Hui, E.; Lang, W.; Tao, L. People, recreational facility and physical activity: New-type urbanization planning for the healthy communities in China. Habitat Int. 2016, 58, 12–22. [Google Scholar] [CrossRef]
- Ekkel, E.D.; De Vries, S. Nearby green space and human health: Evaluating accessibility metrics. Landsc. Urban Plan. 2017, 157, 214–220. [Google Scholar] [CrossRef]
- China Internet Network Information Center (CNNIC). The 45th China Statistical Report on Internet Development; China Statistics Press: Beijing, China, 2020. (In Chinese) [Google Scholar]
- Saif, H.; Fernez, M.; He, Y.; Alani, H. Evaluation datasets for Twitter sentiment analysis: A survey and a new dataset, the STS-Gold. In Proceedings of the 1st International Workshop on Emotion and Sentiment in Social and Expressive Media: Approaches and Perspectives from AI (ESSEM 2013), Turin, Italy, 3 December 2013. [Google Scholar]
- Resch, B.; Summa, A.; Zeile, P.; Strube, M. Citizen-centric urban planning through extracting emotion information from Twitter in an interdisciplinary space-time linguistic algorithm. Urban. Plann. 2016, 1, 114–127. [Google Scholar] [CrossRef]
Site | User ID | Time | Score | Text | Photograph |
---|---|---|---|---|---|
Lianhuashan Park | A | 5 June 2019 08:21 | 4 | Here is the best park for picnics and kite flying. Large lawn and big trees, so it completely has not to worry that the shade place is not enough. And if having more time can also stroll Guan Shanyue art museum and Shenzhen Library at the foot of Lianhua mountain, and Shenzhen Museum and Shenzhen contemporary art and urban planning museum are in a little farther away. There is one of the best places to go. |
Park | Number of Comments | Mean Score of Users’ Satisfactions | Park | Number of Comments | Mean Score of Users’ Satisfactions |
---|---|---|---|---|---|
Cuizhu Park | 71 | 4.07 | Sihai Park | 157 | 4.07 |
Donghu Park | 670 | 4.31 | Moon Bay Park | 46 | 4.15 |
Honghu Park | 687 | 4.41 | Zhongshan Park | 226 | 4.54 |
People Park | 293 | 4.29 | Yantian Central Park | 33 | 4.58 |
Bijia Hill Park | 487 | 4.28 | Baoan Park | 125 | 4.37 |
Honggang Park | 105 | 4.00 | Xinan Park | 35 | 3.77 |
Lizhi Park | 682 | 4.37 | Lingzhi Park | 73 | 3.84 |
Lianhuashan Park | 2244 | 4.51 | Pingluanshan Park | 44 | 4.48 |
Meilin Park | 69 | 4.39 | Tiezishan Park | 38 | 3.95 |
Futian Ecology Park | 146 | 4.38 | Dayun Natural Park | 31 | 4.35 |
Central Park | 309 | 4.24 | Henggang People Park | 37 | 4.11 |
Citizen Central Park | 550 | 4.65 | Longcheng Park | 65 | 4.45 |
Nanshan Park | 335 | 4.38 | Longcheng Square | 107 | 4.26 |
Dashahe Park | 173 | 4.32 | Long Park | 64 | 4.03 |
Lilin Park | 49 | 4.27 | Shiyaling Park | 34 | 3.88 |
Lixiang Park | 188 | 4.31 | Longhua Park | 98 | 3.95 |
Qianhaishi Park | 34 | 4.38 | Julongshan Park | 54 | 4.19 |
Shenzhen Bay Park | 2511 | 4.55 | Honghuashan Park | 73 | 4.19 |
Variable | Coefficient | Standardized Coefficient | Significance | VIF |
---|---|---|---|---|
(Constant) | 3.986 | 0.083 | 0.000 | |
Park size | 0.412 | 0.142 | 0.007 | 1.438 |
Air quality | 0.841 | 0.232 | 0.001 | 2.067 |
Vegetation | −1.018 | 0.204 | 0.000 | 1.982 |
Mosquito | 2.386 | 0.860 | 0.010 | 1.542 |
Recreational facility | 0.330 | 0.118 | 0.010 | 1.438 |
Sign system | 5.049 | 1.304 | 0.001 | 1.747 |
Landscape visual quality | 0.666 | 0.124 | 0.000 | 2.549 |
Maintenance of facilities and plants | 1.758 | 0.948 | 0.037 | 1.813 |
Environment cleanliness | 1.767 | 0.585 | 0.006 | 1.342 |
R2 | 0.850 | - | - | - |
Adjusted R2 | 0.798 | - | - | - |
Mean VIF | - | - | - | 1.769 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.; Xiao, J. Factors Affecting Users’ Satisfaction with Urban Parks through Online Comments Data: Evidence from Shenzhen, China. Int. J. Environ. Res. Public Health 2021, 18, 253. https://doi.org/10.3390/ijerph18010253
Liu R, Xiao J. Factors Affecting Users’ Satisfaction with Urban Parks through Online Comments Data: Evidence from Shenzhen, China. International Journal of Environmental Research and Public Health. 2021; 18(1):253. https://doi.org/10.3390/ijerph18010253
Chicago/Turabian StyleLiu, Ruixue, and Jing Xiao. 2021. "Factors Affecting Users’ Satisfaction with Urban Parks through Online Comments Data: Evidence from Shenzhen, China" International Journal of Environmental Research and Public Health 18, no. 1: 253. https://doi.org/10.3390/ijerph18010253
APA StyleLiu, R., & Xiao, J. (2021). Factors Affecting Users’ Satisfaction with Urban Parks through Online Comments Data: Evidence from Shenzhen, China. International Journal of Environmental Research and Public Health, 18(1), 253. https://doi.org/10.3390/ijerph18010253