Revisiting the Village Where Arsenic Contamination of Underground Water Was First Discovered in Bangladesh: Twenty-Five Years Later
Abstract
:1. Introduction
2. Background Information on Study Sites
3. Materials and Methods
4. Results
4.1. As Levels in Underground Water
4.2. Socioeconomic Status and Risk Perceptions
4.3. Logistic Regression Analysis on Tap Water Installation and Water Source Selection
5. Discussions
5.1. Possible Reasons for the Decreasing Trend in As Levels in the Study Site
5.2. Determinants of Water Source Selection
5.3. Policy Implications
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chakraborti, D.; Rahman, M.M.; Das, B.; Murrill, M.; Dey, S.; Mukherjee, S.C.; Dhar, R.K.; Biswas, B.K.; Chowdhury, U.K.; Roy, S.; et al. Status of groundwater arsenic contamination in Bangladesh: A 14-year study report. Water Res. 2010, 44, 5789–5802. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.W.; Ahmad, S.A.; Sayed, S.; Abdul Hadi, S.; Khan, M.H.; Jalil, M.; Faruquee, M. Arsenic contamination in ground water and its effect on human health with particular reference to Bangladesh. J. Prev. Soc. Med. 1997, 16, 65–73. [Google Scholar]
- British Geological Survey (BGS). Groundwater Studies for Arsenic Contamination in Bangladesh; Main Report and Supplemental Volumes 1–3; Government of the People’s Republic of Bangladesh, Ministry of Local Government, Rural Development and Cooperatives, Department of Public Health Engineering: Dhaka, Bangladesh; Mott MacDonald International Ltd.: Croydon, UK, 1999.
- Chakraborti, D.; Rahman, M.M.; Mukherjee, A.; Alauddin, M.; Hassan, M.; Dutta, R.N.; Hossain, M.M. Groundwater arsenic contamination in Bangladesh–21 Years of research. J. Trace Elem. Med. Biol. 2015, 31, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Department of Public Health Engineering (DPHE). Yearly Report 2018–19 (In Bengali). Available online: http://www.dphe.gov.bd/site/view/annual_reports/ (accessed on 29 August 2020).
- Balasubramanya, S.; Horbulyk, T.M. Groundwater Arsenic in Bangladesh: What’s New for Policy Research? Water Policy 2018, 20, 461–474. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.A.; Khan, M.H.; Haque, M. Arsenic contamination in groundwater in Bangladesh: Implications and challenges for healthcare policy. Risk Manag. Healthc. Policy 2018, 11, 251–261. [Google Scholar] [CrossRef] [Green Version]
- Kabir, A.; Howard, G. Sustainability of Arsenic Mitigation in Bangladesh: Results of a Functionality Survey. Int. J. Environ. Health Res. 2007, 17, 207–218. [Google Scholar] [CrossRef]
- Kundu, D.K.; Mola, A.P.J.; Gupta, A. Failing Arsenic Mitigation Technology in Rural Bangladesh: Explaining Stagnation in Niche Formation of the Sono Filter. Water Policy 2016, 18, 1490–1507. [Google Scholar] [CrossRef]
- World Bank. Improving Water Quality and Sanitation for the Rural Population: Increasing Access to Safe Water and Sanitation Services in Rural Bangladesh. Available online: https://www.worldbank.org/en/results/2019/05/24/improving-water-quality-and-sanitation-for-the-rural-population-increasing-access-to-safe-water-and-sanitation-services-in-rural-bangladesh (accessed on 28 November 2020).
- Van Geen, A.; Trevisani, M.; Immel, J.; Jakariya, M.; Osman, N.; Cheng, Z.; Gelman, A.; Ahmed, K.M. Targeting Low-Arsenic Groundwater with Mobile-Phone Technology in Araihazar, Bangladesh. J. Health Popul. Nutr. 2006, 24, 282–297. [Google Scholar]
- Winkel, L.H.E.; Trang, P.T.K.; Lan, V.M.; Stengel, C.; Amini, M.; Ha, N.T.; Viet, P.H.; Berg, M. Arsenic pollution of groundwater in Vietnam exacerbated by deep aquifer exploitation for more than a century. Proc. Natl. Acad. Sci. USA 2011, 108, 1246–1251. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.R.; Koneshloo, M.; Knappett, P.S.K.; Ahmed, K.M.; Bostick, B.C.; Mailloux, B.J.; Mozumder, R.H.; Zahid, A.; Harvey, C.F.; van Geen, A.; et al. Megacity pumping and preferential flow threaten groundwater quality. Nat. Commun. 2016, 7, 1–8. [Google Scholar] [CrossRef]
- Shamsudduha, M.; Zahid, A.; Burgess, W.G. Security of deep groundwater against arsenic contamination in the Bengal Aquifer System: A numerical modeling study in southeast Bangladesh. Sustain. Water Resour. Manag. 2019, 5, 1073–1087. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.K.A.; Bandaranayake, D.; Khan, A.W.; Hadi, S.K.A.; Uddin, G.; Halim, M.D.A. Arsenic contamination in ground water and arsenicosis in Bangladesh. Int. J. Environ. Health Res. 1997, 7, 271–276. [Google Scholar] [CrossRef]
- Ohno, K.; Furukawa, A.; Hayashi, K.; Kamei, T.; Magara, Y. Arsenic contamination of groundwater in Nawabganj, Bangladesh, focusing on the relationship with other metals and ions. Water Sci. Technol. 2005, 52, 87–94. [Google Scholar] [CrossRef]
- Reza, A.H.M.S.; Jean, J.S.; Yang, H.J.; Lee, M.K.; Woodall, B.; Liu, C.C.; Luo, S.D. Occurrence of arsenic in core sediments and groundwater in the Chapai-Nawabganj District, northwestern Bangladesh. Water Res. 2010, 44, 2021–2037. [Google Scholar] [CrossRef] [PubMed]
- Reza, A.H.M.S.; Jean, J.S.; Lee, M.K.; Liu, C.C.; Bundschuh, J.; Yang, H.J.; Lee, Y.C. Implications of organic matter on arsenic mobilization into groundwater: Evidence from northwestern (Chapai-Nawabganj), central (Manikganj) and southeastern (Chandpur) Bangladesh. Water Res. 2010, 44, 5556–5574. [Google Scholar] [CrossRef] [PubMed]
- Reza, A.H.M.S.; Jean, J.S.; Lee, M.K.; Luo, S.D.; Bundschuh, J.; Li, H.C.; Yang, H.J.; Liu, C.C. Interrelationship of TOC, As, Fe, Mn, Al and Si in shallow alluvial aquifers in Chapai-Nawabganj, Northwestern Bangladesh: Implication for potential source of organic carbon. Environ. Earth Sci. 2011, 63, 955–967. [Google Scholar] [CrossRef]
- Reza, A.H.M.S.; Jean, J.S. Vertical distribution and mobilization of arsenic in shallow alluvial aquifers of Chapai-Nawabganj District, northwestern Bangladesh. J. Geol. Soc. India 2012, 80, 531–538. [Google Scholar] [CrossRef]
- Reza, A.H.M.S.; Jean, J.S.; Bundschuh, J.; Liu, C.C.; Yang, H.J.; Lee, C.Y. Vertical geochemical variations and arsenic mobilization in the shallow alluvial aquifers of the Chapai-Nawabganj District, northwestern Bangladesh: Implication of siderite precipitation. Environ. Earth Sci. 2013, 68, 1255–1270. [Google Scholar] [CrossRef]
- Islam, A.R.M.T.; Shen, S.H.; Bodrud-Doza, M. Assessment of arsenic health risk and source apportionment of groundwater pollutants using multivariate statistical techniques in Chapai-Nawabganj district, Bangladesh. J. Geol. Soc. India 2017, 90, 239–248. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Yip, P.S.L.; Tsang, E.W.K. Interpreting dummy variables and their interaction effects in strategy research. Strateg. Organ. 2007, 5, 13–30. [Google Scholar] [CrossRef]
- Mosler, H.J.; Blöchliger, O.R.; Inauen, J. Personal, Social, and Situational Factors Influencing the Consumption of Drinking Water from Arsenic-Safe Deep Tubewells in Bangladesh. J. Environ. Manag. 2010, 91, 1316–1323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inauen, J.; Hossain, M.M.; Johnston, R.B.; Mosler, H.J. Acceptance and Use of Eight Arsenic-Safe Drinking Water Options in Bangladesh. PLoS ONE 2013, 8, e53640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harvey, C.F. Arsenic Mobility and Groundwater Extraction in Bangladesh. Science 2002, 298, 1602–1606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khandoker, S.; Miah, M.A.M.; Rashid, M.A.; Khatun, M.; Kundu, N.D. Comparative profitability analysis of shifting land from field crops to mango cultivation in selected areas of Bangladesh. Bangladesh J. Agric. Res. 2017, 42, 137–158. [Google Scholar] [CrossRef] [Green Version]
- Hoque, B.A.; Hoque, M.M.; Ahmed, T.; Islam, S.; Azad, A.K.; Ali, N.; Hossain, M.; Hossain, M.S. Demand-Based Water Options for Arsenic Mitigation: An Experience from Rural Bangladesh. Public Health 2004, 118, 70–77. [Google Scholar] [CrossRef]
- Naus, F.L.; Burer, K.; van Laerhoven, F.; Griffioen, J.; Ahmed, K.M.; Schot, P. Why Do People Remain Attached to Unsafe Drinking Water Options? Quantitative Evidence from Southwestern Bangladesh. Water 2020, 12, 342. [Google Scholar] [CrossRef] [Green Version]
- Opar, A.; Pfaff, A.; Seddique, A.A.; Ahmed, K.M.; Graziano, J.H.; van Geen, A. Responses of 6500 Households to Arsenic Mitigation in Araihazar, Bangladesh. Health Place 2007, 13, 164–172. [Google Scholar] [CrossRef]
- Singh, S.K.; Taylor, R.W.; Rahman, M.M.; Pradhan, B. Developing robust arsenic awareness prediction models using machine learning algorithms. J. Environ. Manag. 2018, 211, 125–137. [Google Scholar] [CrossRef]
- Madajewicz, M.; Pfaff, A.; van Geen, A.; Graziano, J.; Hussein, I.; Momotaj, H.; Sylvi, R.; Ahsan, H. Can Information Alone Change Behavior? Response to Arsenic Contamination of Groundwater in Bangladesh. J. Dev. Econ. 2007, 84, 731–754. [Google Scholar] [CrossRef] [Green Version]
- George, C.M.; Inauen, J.; Perin, J.; Tighe, J.; Hasan, K.; Zheng, Y. Behavioral determinants of switching to arsenic-safe water wells: An analysis of a randomized controlled trial of health education interventions coupled with water arsenic testing. Health Educ. Behav. 2017, 44, 92–102. [Google Scholar] [CrossRef]
- Simpson, E.H. The Interpretation of Interaction in Contingency Tables. J. R. Stat. Soc. Ser. B 1951, 13, 238–241. [Google Scholar] [CrossRef]
- Coi, A.; Minichilli, F.; Bustaffa, E.; Carone, S.; Santoro, M.; Bianchi, F.; Cori, L. Risk perception and access to environmental information in four areas in Italy affected by natural or anthropogenic pollution. Environ. Int. 2016, 95, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, B.K.; Caldwell, J.C.; Mitra, S.N.; Smith, W. Searching for an optimum solution to the Bangladesh arsenic crisis. Soc. Sci. Med. 2003, 56, 2089–2096. [Google Scholar] [CrossRef]
- Caldwell, B.K.; Smith, W.T.; Lokuge, K.; Ranmuthugala, G.; Dear, K.; Milton, A.H.; Sim, M.R.; Ng, J.C.; Mitra, S.N. Access to drinking-water and arsenicosis in Bangladesh. J. Health Popul. Nutr. 2006, 24, 336–345. [Google Scholar]
- Ahmad, J.; Goldar, B.; Misra, S. Rural communities’ preferences for arsenic mitigation options in Bangladesh. J. Water Health 2006, 4, 463–477. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, A.; Sakamoto, M. The Effect of Social Network on Acceptability of New Technology in Developing Countries: A Case Study of Piped Water Adoption in Rural India. Environ. Nat. Resour. Res. 2018, 8, 1–15. [Google Scholar]
- UNICEF. Bangladesh National Drinking Water Quality Survey of 2009; Bangladesh Bureau of Statistics: Dhaka, Bangladesh, 2009.
Authors | Sampling Date(s) | Sample Size | Mean (µg/L) | Min (µg/L) | Max (µg/L) | % of Samples Greater than 50 µg/L | Figure 1 Legend |
---|---|---|---|---|---|---|---|
Khan et al. [2] | N/A | N/A | N/A | N/A | N/A | N/A | Blue line |
Ahmad et al. [15] 1 | N/A | 25 | 601 | 10 | 2870 | 29.0% | Orange line |
Ohno et al. [16] | April 2002 | 10 | 476 | 14 | 2630 | 70.0% | □ |
Reza et el. [17] | January 2008 | 20 | 50.6 | 2.76 | 170 | 40.0% | △ |
Reza et el. [18] | January 2008 | 20 | 62.4 | 3.02 | 315.15 | 35.0% | ◇ |
Reza et el. [19] | N/A | 20 | 50.6 | 2.76 | 170 | 40.0% | △ |
Reza et el. [20] | January 2008, 2009, 2010 | 54 | 48.81 | 2.76 | 315.15 | N/A | N/A |
Reza et el. [21] | January 2009 | 14 | 26.8 | 5.99 | 59.06 | 7.1% | ☆ |
Islam et al. [22] | November/December 2014 | 18 | 66 | 3 | 151 | 57.9% | ○ |
ID | Latitude | Longitude | As (µg/L) in 2018 | As (µg/L) in 2014 |
---|---|---|---|---|
Chamagram Village (the study site) | ||||
1 | 24°36′15″ | 88°14′44″ | 21 | |
2 | 24°36′11″ | 88°14′41″ | 15 | |
3 | 24°36′15″ | 88°14′45″ | 28 | |
4 | 24°36′14″ | 88°14′45″ | 23 | |
5 | 24°36′13″ | 88°14′41″ | 12 | |
6 | 24°36′14″ | 88°14′43″ | 17 | |
7 | 24°36′11″ | 88°14′42″ | 16 | |
8 | 24°36′12″ | 88°14′45″ | 44 | |
9 | 24°36′08″ | 88°14′43″ | 39 | |
10 | 24°36′07″ | 88°14′42″ | 8 | |
Site from Islam et al. [22] | ||||
1 | 24°36′12″ | 88°15′08″ | 3 | 32 |
2 | 24°36′16″ | 88°15′04″ | 3 | 101 |
3 | 24°36′16″ | 88°15′01″ | 1 | 40 |
4 | 24°36′15″ | 88°15′01″ | 11 | N/A |
5 | 24°36′14″ | 88°15′01″ | 9 | 110 |
6 | 24°36′15″ | 88°15′02″ | 3 | 80 |
7 | 24°36′17″ | 88°15′00″ | 2 | 25 |
8 | 24°36′16″ | 88°15′00″ | 5 | N/A |
9 | 24°36′19″ | 88°15′04″ | 5 | N/A |
10 | 24°36′20″ | 88°15′00″ | 7 | 61 |
11 | 24°36′20″ | 88°15′01″ | 2 | 46 |
12 | 24°36′20″ | 88°15′02″ | 2 | 25 |
13 | 24°36′18″ | 88°15′02″ | 2 | 151 |
14 | 24°36′14″ | 88°15′06″ | 1 | 20 |
15 | 24°36′11″ | 88°15′10″ | 12 | 145 |
16 | 24°36′14″ | 88°15′07″ | 2 | 61 |
17 | 24°36′13″ | 88°15′08″ | 1 | N/A |
Question | Total | Village | |
---|---|---|---|
Study Site | Comparison Site | ||
Literacy | 149 (58.0) | 73 (70.9) | 76 (49.3) |
Family monthly income (BDT) 1 | 13,490 (10,758) | 15,233 (11,451) | 12,340 (10,111) |
Occupation | |||
Farmer (Farm owner) | 17 (6.6) | 1 (1.0) | 16 (10.4) |
Farm worker | 18 (7.0) | 3 (2.9) | 15 (9.7) |
Business owner | 66 (25.6) | 16 (15.5) | 49 (31.8) |
Business employee | 17 (6.6) | 7 (6.8) | 10 (6.5) |
Day laborer | 90 (34.9) | 40 (38.8) | 50 (32.5) |
Rickshaw puller/van driver | 7 (2.7) | 5 (4.9) | 2 (1.3) |
Remittance from other cities | 11 (4.3) | 11 (10.7) | 0 (0.0) |
Other | 32 (12.4) | 20 (19.4) | 12 (7.8) |
Own water source | |||
Yes | 190 (73.9) | 80 (77.7) | 110 (71.4) |
-Tap | 24 (12.6) | 6 (7.5) | 18 (16.4) |
-Shallow tube-well | 156 (82.1) | 66 (82.5) | 90 (81.2) |
-Tap & Shallow tube-well | 10 (52.6) | 8 (10.0) | 2 (1.8) |
Drinking water source | |||
Tap water | 132 (51.2) | 38 (36.9) | 94 (61.0) |
Nonfiltered shallow tube-well | 123 (48.2) | 64 (62.1) | 59 (38.3) |
Filtered shallow tube-well | 2 (0.8) | 1 (1.0) | 1 (0.6) |
Cooking water source | |||
Tap water | 168 (65.4) | 71 (68.9) | 97 (63.0) |
Nonfiltered shallow tube-well | 88 (34.2) | 32 (31.1) | 56 (36.4) |
River water | 1 (0.4) | 0 (1.0) | 1 (0.6) |
Bathing water source | |||
Tap water | 142 (55.3) | 50 (48.5) | 92 (59.7) |
Nonfiltered shallow tube-well | 114 (44.4) | 53 (51.5) | 61 (39.6) |
Pond water | 1 (0.4) | 0 (0.0) | 1 (0.6) |
Arsenicosis cases | |||
In family (Yes) | 15 (5.8) | 0 (0.0) | 15 (9.7) |
-Number of patients 1,2,3 | 2.68 (4.56) | 0 (0.0) | 2.68 (4.56) |
-Duration of illness (in years) 1,2,3 | 10.5 (10.3) | 0 (0.0) | 10.5 (10.3) |
In neighborhood (Yes) | 30 (11.7) | 0 (0.0) | 30 (19.5) |
Number of respondents | 257 (100.0) | 103 (40.1) | 154 (59.9) |
Use | Total | Owners | Nonowners | |||
---|---|---|---|---|---|---|
Tap | Shallow Tube-Well | Both | Total | |||
Drinking Water Study site | ||||||
Tap | 38 (36.9) | 5 (83.3) | 14 (21.2) | 3 (37.5) | 22 (27.5) | 16 (69.6) |
Shallow tube-well | 65 (63.1) | 1 (16.7) | 52 (78.8) | 5 (62.5) | 58 (72.5) | 7 (30.4) |
Total | 103 (100) | 6 (100) | 66 (100) | 8 (100) | 80 (100) | 23 (100) |
Comparison site | ||||||
Tap | 94 (61.0) | 16 (88.9) | 37 (41.1) | 2 (100) | 55 (50.0) | 39 (88.6) |
Shallow tube-well | 60 (39.0) | 2 (11.1) | 53 (58.8) | 0 (0) | 55 (50.0) | 5 (11.4) |
Total | 154 (100) | 18 (100) | 90 (100) | 2 (100) | 110 (100) | 44 (100) |
Cooking Water Study site | ||||||
Tap | 71 (68.9) | 5 (83.3) | 41 (62.1) | 6 (75.0) | 52 (65.0) | 19 (82.6) |
Shallow tube-well | 32 (31.1) | 1 (16.7) | 25 (37.9) | 2 (25.0) | 28 (35.0) | 4 (17.4) |
Total | 103 (100) | 6 (100) | 66 (100) | 8 (100) | 80 (100) | 23 (100) |
Comparison site | ||||||
Tap | 97 (63.0) | 16 (88.9) | 40 (44.4) | 2 (100) | 58 (50.0) | 39 (88.6) |
Shallow tube-well | 56 (36.4) | 2 (11.1) | 50 (55.6) | 0 (0) | 52 (50.0) | 4 (9.1) |
River | 1 (0.6) | 0 (0) | 0 (0.0) | 0 (0) | 0 (0) | 1 (2.3) |
Total | 154 (100) | 18 (100) | 90 (100) | 2 (100) | 110 (100) | 44 (100) |
Bathing Water Study site | ||||||
Tap | 50 (48.5) | 5 (83.3) | 21 (31.8) | 6 (75.0) | 32 (40.0) | 18 (78.3) |
Shallow tube-well | 53 (51.5) | 1 (16.7) | 45 (68.2) | 2 (25.0) | 48 (60.0) | 5 (21.7) |
Total | 103 (100) | 6 (100) | 66 (100) | 8 (100) | 80 (100) | 23 (100) |
Comparison site | ||||||
Tap | 92 (59.7) | 16 (88.9) | 35 (38.9) | 2 (100) | 53 (48.2) | 39 (88.6) |
Shallow tube-well | 61 (39.6) | 2 (11.1) | 54 (60.0) | 0 (0) | 56 (50.9) | 5 (11.4) |
River | 1 (0.6) | 0 (0) | 1 (1.1) | 0 (0) | 1 (0.9) | 0 (0.0) |
Total | 154 (100) | 18 (100) | 90 (100) | 2 (100) | 110 (100) | 44 (100) |
Dependent Variable: Tap Installation (0 = Not Possessing a Tap, 1 = Possessing a Tap) | ||||
---|---|---|---|---|
Explanatory Variables | (1) | (2) | (3) | (4) |
Log of income | 0.272 | 0.298 | 0.274 | 0.296 |
(0.249) | (0.267) | (0.250) | (0.264) | |
Education 2 | 0.143 | 0.144 | 0.144 | |
(0.092) | (0.092) | (0.092) | ||
Feeling physical burden 3 | −0.032 | −0.033 | −0.032 | −0.036 |
(0.186) | (0.186) | (0.186) | (0.187) | |
Knowledge on shallow tube-well 4 | −0.100 | −0.118 | −0.139 | |
(Knowledge) | (0.258) | (0.256) | (0.262) | |
Social capital 5 | 0.117 | 0.100 | 0.117 | |
(0.246) | (0.250) | (0.247) | ||
Village | 0.012 | |||
(0 = Study site, 1 = Comparison site) | (0.390) | |||
Village × Education | ||||
—Study site | 0.099 | |||
(0.114) | ||||
—Comparison site | 0.167 | |||
(0.097) | ||||
Village × Knowledge | ||||
—Study site | −0.106 | |||
(0.265) | ||||
—Comparison site | −0.096 | |||
(0.253) | ||||
Village × Social capital | ||||
—Study site | 0.077 | |||
(0.256) | ||||
—Comparison site | 0.150 | |||
(0.252) | ||||
Intercept | −4.880 | −4.976 | −4.889 | −4.963 |
(2.990) | (3.129) | (2.992) | (3.108) | |
McFadden’s pseudo r-squared | 0.022 | 0.025 | 0.022 | 0.025 |
AIC | 210.4 | 200.90 | 210.39 | 209.91 |
Dependent Variable: Water Source (0 = Shallow Tube-Well, 1 = Tap) | |||||
---|---|---|---|---|---|
Explanatory Variables | (1) | (2) | (3) | (4) | (5) |
Log of income | 0.021 | 0.074 | 0.026 | 0.062 | 0.085 |
(0.114) | (0.124) | (0.121) | (0.125) | (0.131) | |
Education | −0.015 | 0.004 | 0.032 | 0.023 | |
(0.080) | (0.079) | (0.082) | (0.083) | ||
Feeling physical burden | −1.415 *** | −1.185 *** | −1.367 *** | −1.271 *** | −1.325 *** |
(0.180) | (0.172) | (0.183) | (0.184) | (0.192) | |
Knowledge | 0.152 | 0.306 | 0.292 | 0.100 | |
(Knowledge) | (0.226) | (0.220) | (0.228) | (0.233) | |
Social capital | −0.396 | −0.222 | −0.405 | −0.354 | |
(0.213) | (0.203) | (0.229) | (0.216) | ||
Village | 1.392 *** | ||||
(0 = Study site, 1 = Comparison site) | (0.346) | ||||
Possession (0 = No, 1 = Yes) 2 | −1.569 *** | ||||
(0.416) | |||||
Village × Possession × Education | |||||
—Nonowners in the study site | −0.104 | ||||
(0.160) | |||||
—Owners in the study site | −0.300 ** | ||||
(0.111) | |||||
—Nonowners in the comparison site | 0.529 * | ||||
(0.233) | |||||
—Owners in the comparison site | 0.088 | ||||
(0.088) | |||||
Village × Possession × Knowledge | |||||
—Nonowners in the study site | 0.349 | ||||
(0.275) | |||||
—Owners in the study site | −0.008 | ||||
(0.234) | |||||
—Nonowners in the comparison site | 0.824 ** | ||||
(0.276) | |||||
—Owners in the comparison site | 0.323 | ||||
(0.226) | |||||
Village × Possession × Social capital | |||||
—Nonowners in the study site | −0.127 | ||||
(0.261) | |||||
—Owners in the study site | −0.633 ** | ||||
(0.232) | |||||
—Nonowners in the comparison site | 0.264 | ||||
(0.267) | |||||
—Owners in the comparison site | −0.221 | ||||
(0.210) | |||||
Intercept | 4.236 | 3.888 | 4.441 | 3.487 | 3.855 |
(1.764) | (1.819) | (1.895) | (1.882) | (1.953) | |
McFadden’s pseudo r-squared | 0.298 | 0.294 | 0.330 | 0.336 | 0.356 |
AIC | 261.33 | 263.2 | 254.75 | 252.44 | 245.43 |
Dependent Variable: Water Source (0 = Shallow Tube-Well, 1 = Tap) | |||||
---|---|---|---|---|---|
Explanatory Variables | (1) | (2) | (3) | (4) | (5) |
Log of income | 0.017 | 0.022 | 0.019 | 0.020 | 0.031 |
(0.102) | (0.105) | (0.104) | (0.105) | (0.106) | |
Education | 0.066 | 0.084 | 0.105 | 0.103 | |
(0.076) | (0.077) | (0.079) | (0.078) | ||
Feeling physical burden | −0.992 *** | −0.873 *** | −0.935 *** | −0.904 *** | −0.882 *** |
(0.164) | (0.168) | (0.165) | (0.172) | (0.171) | |
Knowledge on shallow tube-well | 0.427 * | 0.366 | 0.413 | 0.416 * | |
(Knowledge) | (0.210) | (0.204) | (0.206) | (0.210) | |
Social capital | 0.034 | −0.067 | 0.102 | 0.112 | |
(0.188) | (0.191) | (0.193) | (0.193) | ||
Village | −0.504 | ||||
(0 = Study site, 1 = Comparison site) | (0.315) | ||||
Possession (0 = No, 1 = Yes) | −1.232 ** | ||||
(0.438) | |||||
Village × Possession × Education | |||||
—Nonowners in the study site | 0.217 | ||||
(0.155) | |||||
—Owners in the study site | 0.115 | ||||
(0.100) | |||||
—Nonowners in the comparison site | 0.424 * | ||||
(0.206) | |||||
—Owners in the comparison site | 0.013 | ||||
(0.082) | |||||
Village × Possession × Knowledge | |||||
—Nonowners in the study site | 0.489 | ||||
(0.271) | |||||
—Owners in the study site | 0.481 * | ||||
(0.219) | |||||
—Nonowners in the comparison site | 0.734 ** | ||||
(0.254) | |||||
—Owners in the comparison site | 0.239 | ||||
(0.207) | |||||
Village × Possession × Social capital | |||||
—Nonowners in the study site | 0.269 | ||||
(0.257) | |||||
—Owners in the study site | 0.130 | ||||
(0.198) | |||||
—Nonowners in the comparison site | 0.420 | ||||
(0.250) | |||||
—Owners in the comparison site | −0.060 | ||||
(0.190) | |||||
Intercept | 2.038 | 2.360 | 1.225 | 1.153 | 1.022 |
(1.606) | (1.626) | (1.643) | (1.648) | (1.647) | |
McFadden’s pseudo r-squared | 0.173 | 0.192 | 0.186 | 0.213 | 0.208 |
AIC | 286.56 | 280.12 | 286.18 | 277.84 | 279 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakamoto, M. Revisiting the Village Where Arsenic Contamination of Underground Water Was First Discovered in Bangladesh: Twenty-Five Years Later. Int. J. Environ. Res. Public Health 2021, 18, 259. https://doi.org/10.3390/ijerph18010259
Sakamoto M. Revisiting the Village Where Arsenic Contamination of Underground Water Was First Discovered in Bangladesh: Twenty-Five Years Later. International Journal of Environmental Research and Public Health. 2021; 18(1):259. https://doi.org/10.3390/ijerph18010259
Chicago/Turabian StyleSakamoto, Maiko. 2021. "Revisiting the Village Where Arsenic Contamination of Underground Water Was First Discovered in Bangladesh: Twenty-Five Years Later" International Journal of Environmental Research and Public Health 18, no. 1: 259. https://doi.org/10.3390/ijerph18010259
APA StyleSakamoto, M. (2021). Revisiting the Village Where Arsenic Contamination of Underground Water Was First Discovered in Bangladesh: Twenty-Five Years Later. International Journal of Environmental Research and Public Health, 18(1), 259. https://doi.org/10.3390/ijerph18010259