The Associations between Functional Fitness Test Performance and Abdominal Obesity in Healthy Elderly People: Results from the National Physical Fitness Examination Survey in Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection Protocol
2.3. Measurement
2.3.1. Demographic Data
2.3.2. Anthropometric Assessment
2.3.3. Functional Fitness Tests
- (1)
- 2 min step: The participant steps and lifts their knees between their patella and iliac crest for 2 min. The total number of times the movement is completed in 2 min is recorded.
- (2)
- 30 s arm curl: Participants sit on a chair and curl their dominant arm with a weight (5 pounds for females, 8 pounds for males). The arm must be fully bent and straightened at the elbow. The upper arm is braced and close to the body so that only the lower arm can move. The number of times the movement is completed in 30 s is recorded.
- (3)
- 30 s chair stand: Participants sit in the middle of a chair and cross their hands on the opposite shoulder. Keeping their feet flat on the floor with a straight back, they repeat the full standing position and sit back down for 30 s. The number of times the movement is completed within the period is recorded.
- (4)
- Back scratch: Participants, in the standing position, place one hand behind their head and another hand behind their back. Then, they reach as far as possible to touch the palm or overlap the middle fingers of both hands. Participants are allowed to practice 2 times before completing the test 2 times. The best score to the nearest centimeter is recorded.
- (5)
- Chair sit-and-reach test: Participants sit on the edge of a chair. One foot remains flat on the floor, while the other leg is extended forward with a straight knee, the heel on the floor, and the ankle bent at 90 degrees. The participants cross both hands and even their middle fingers. Then, they reach forward as far as possible toward their toes. If the participants cannot reach their toes, the distance between the fingertips and toes is recoded as a negative score. In contrast, if the participant’s fingertips overlaps their toes, their overlapping distance is recorded positively.
- (6)
- One-leg stance with eyes open: The duration for which the participants stand on one leg with their eyes open and without hopping or putting their raised foot down is recorded in seconds.
- (7)
- 8-foot up-and-go: A marker (a cone is used) is placed 8 feet in front of a chair. Participants fully sit on the chair with their hands resting on their knees and their feet flat on the floor. The time from sitting, to moving around the cone, returning to the chair, and then back to the starting position is recorded.
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baumgartner, R.N.; Stauber, P.M.; McHugh, D.; Garry, P.J. Cross-sectional age-differences in body composition in persons 60+ years of age. J. Gerontol. A Biol. Sci. Med Sci. 1995, 50, M307–M316. [Google Scholar] [CrossRef] [PubMed]
- Ponti, F.; Santoro, A.; Mercatelli, D.; Gasperini, C.; Conte, M.; Martucci, M.; Sangiorgi, L.; Franceschi, C.; Bazzocchi, A. Aging and imaging assessment of body composition: From fat to facts. Front. Endocrinol. 2020, 10, 861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Després, J.P.; Lemieux, I. Abdominal obesity and metabolic syndrome. Nature 2006, 444, 881–887. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Li, X.; Zheng, L.; Chen, X.; Ian, Q.; Wu, H.; Ding, X.; Qian, D.; Shen, Y.; Yu, Z.; et al. Abdominal obesity is strongly associated with cardiovascular disease and its risk factors in elderly and very elderly community-dwelling Chinese. Sci. Rep. 2016, 6, 21521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- David, C.N.; Mello, R.B.; Bruscato, N.M.; Moriguchi, E.H. Overweight and abdominal obesity association with all-cause and cardiovascular mortality in the elderly aged 80 and over: A cohort study. J. Nutr. Health Aging 2017, 21, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Zhou, J.; Zhu, Y.; Luo, L.; He, T.; Hu, H.; Liu, H.; Zhang, Y.; Luo, D.; Xu, S.; et al. Abdominal obesity and colorectal cancer risk: Systematic review and meta-analysis of prospective studies. Biosci. Rep. 2017, 37. [Google Scholar] [CrossRef] [Green Version]
- Hidayat, K.; Du, X.; Chen, G.; Shi, M.; Shi, B. Abdominal obesity and lung cancer risk: Systematic review and meta-analysis of prospective studies. Nutrients 2016, 8, 810. [Google Scholar] [CrossRef]
- Chang, H.C.; Yang, H.C.; Chang, H.Y.; Yeh, C.J.; Chen, H.H.; Huang, K.C.; Pan, W.H. Morbid obesity in Taiwan: Prevalence, trends, associated social demographics, and lifestyle factors. PLoS ONE 2017, 12, e0169577. [Google Scholar] [CrossRef]
- Corona, L.P.; Silva Alexandre, T.; Oliveira Duarte, Y.A.; Lebrao, M.L. Abdominal obesity as a risk factor for disability in Brazilian older adults. Public Health Nutr. 2017, 20, 1047–1053. [Google Scholar] [CrossRef] [Green Version]
- Souza Barbosa, F.J.; Gomes, C.S.; Costa, V.J.; Ahmed, T.; Zunzunegui, M.V.; Curcio, C.L.; Gomez, F.; Guerra, R.O. Abdominal obesity and mobility disability in older adults: A 4-year follow-up of the international mobility in aging study. J. Nutr. Health Aging 2018, 22, 1228–1237. [Google Scholar] [CrossRef]
- Oliverira Maximo, R.; Santos, J.L.F.; Perracini, M.R.; Oliveira, C.; Oliverira Duarte, Y.A.; Silva Alexandre, T. Abdominal obesity, dynapenia and dynapenic-abdominal obesity as factors associated with falls. Braz. J. Phys. Ther. 2019, 23, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Vincent, H.K.; Vincent, K.R.; Lamb, K.M. Obesity and mobility disability in the older adult. Obes. Rev. 2010, 11, 568–579. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Report on Diabetes; WHO Press: Geneva, Switzerland, 2016. [Google Scholar]
- Delmonico, M.J.; Harris, T.B.; Visser, M.; Park, S.W.; Conroy, M.B.; Velasquex-Mieyer, P.; Boudreau, R.; Manini, T.M.; Nevitt, M. Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am. J. Clin. Nutr. 2009, 90, 1579–1585. [Google Scholar] [PubMed]
- Sardinha, L.B.; Santos, D.A.; Silva, A.M.; Coelho-e-Silva, M.J.; Raimundo, A.M.; Moreira, H.; Santos, R.; Vale, S.; Baptista, F.; Mota, J. Prevalence of overweight, obesity, and abdominal obesity in a representative sample of Portuguese adults. PLoS ONE 2012, 7, e47883. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xu, H.; Song, F.; Xu, W.; Pallard-Borg, S.; Qi, X. Relation of socioeconomic status to overweight and obesity: A large population-based study of Chinese adults. Ann. Hum. Biol. 2017, 44, 495–501. [Google Scholar] [CrossRef]
- Tzotzas, T.; Vlahavas, G.; Papadopoulou, S.K.; Kapantais, E.; Kaklamanou, D.; Hassapidou, M. Marital status and educational level associated to obesity in Greek adults: Data from the National Epidemiological Survey. BMC Public Health 2010, 10, 732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansson, P.O.; Eriksson, H.; Welin, L.; Svardsudd, K.; Vilhelmsen, L. Smoking and abdominal obesity. Arch. Intern. Med. 1999, 159, 1886–1890. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.Y.; Pi-Sunyer, F.X.; Liu, C.S.; Li, T.C.; Li, C.L.; Huang, C.Y.; Lin, C.C. Betel nut chewing is strongly associated with general and central obesity in Chinese male middle-aged adults. Obesity 2009, 17, 1247–1254. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Wang, R.; Jiang, A.; Ding, Y.; Wu, M.; Ma, X.; Zhao, Y.; He, J. Abdominal obesity and its association with health-related quality of life in adults: A population-based study in five Chinese cities. Health Qual. Life Outcomes 2014, 12, 100. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y. Educational differences in obesity in the United States: A closer look at the trends. Obesity 2011, 20, 904–908. [Google Scholar] [CrossRef]
- Schaap, L.A.; Koster, A.; Visser, M. Adiposity, muscle mass, and muscle strength in relation to functional decline in older persons. Epidemiol. Rev. 2013, 35, 51–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, J.P.; Chong, M.S.; Tay, L.; Yang, Y.X.; Leung, B.P.; Yeo, A.; Yew, S.; Tan, C.H.; Lim, W.S. Inter-muscular adipose tissue is associated with adipose tissue inflammation and poorer functional performance in central adiposity. Arch. Gerontol. Geriatr. 2019, 81, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Koster, A.; Patel, K.V.; Visser, M.; van Eijk, J.T.M.; Kanaya, A.M.; Rekeneire, N.D.; Newman, A.B.; Tyla sky, F.A.; Kritchevsky, S.B.; Harris, T.B. Joint effects of adiposity and physical activity on incident mobility limitation in older adults. J. Am. Geriatr. Soc. 2008, 56, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Henwood, T.R.; Taaffe, D.R. Short-term resistance training and the older adult: The effect of varied programmes for the enhancement of muscle strength and functional performance. Clin. Physiol. Funct. Imaging 2006, 26, 305–313. [Google Scholar] [CrossRef]
- Paterson, D.H.; Warburton, D.E. Physical activity and functional limitations in older adults: A systematic review related to Canada’s Physical Activity Guidelines. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 38. [Google Scholar] [CrossRef] [Green Version]
- McAuley, E.; Konopack, J.F.; Morris, K.S.; Motl, R.W.; Hu, L.; Doerksen, S.E.; Rosengren, K. Physical activity and functional limitations in older women: Influence of self-efficacy. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2006, 61, 270–277. [Google Scholar] [CrossRef] [Green Version]
- Rikli, R.; Jones, C.J. Development and validation of criterion-referenced clinically relevant fitness standards for maintaining physical independence in later years. Gerontologist 2013, 53, 255–267. [Google Scholar] [CrossRef]
- Lee, P.F.; Ho, C.C.; Kan, N.W.; Yeh, D.P.; Chang, Y.C.; Li, Y.J.; Tseng, C.Y.; Hsieh, X.Y.; Chiu, C.H. The association between physical fitness performance and abdominal obesity risk among Taiwanese adults: A cross-sectional study. Int. J. Environ. Res. Public Health 2020, 17, 1722. [Google Scholar] [CrossRef] [Green Version]
- Jonsson, E.; Seiger, A.; Hirschfeld, H. One-leg stance in healthy young and elderly adults: A measure of postural steadiness? Clin. Biomech. 2004, 19, 688–694. [Google Scholar] [CrossRef]
- Rikil, R.; Jones, C.J. Senior Fitness Test Manual; Human Kinetics, Inc.: Champaign, IL, USA, 2012. [Google Scholar]
- Lee, P.F.; Ho, C.C.; Yeh, D.P.; Hung, C.T.; Chang, Y.C.; Liu, C.C.; Tseng, C.Y.; Hsieh, X.Y. Cross-sectional associations of physical fitness performance level and sleep duration among older adults: Results from the national physical fitness survey in Taiwan. Int. J. Environ. Res. Public Health 2020, 17, 388. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.T.; Lee, P.F.; Lee, T.S.; Ho, C.C. Poor physical fitness performance as a predictor of general adiposity in Taiwanese adults. Int. J. Environ. Res. Public Health 2020, 17, 2686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.L.; Lee, P.F.; Chang, Y.C.; Hsu, F.S.; Tseng, C.Y.; Hsieh, X.Y.; Ho, C.C. The association between physical fitness performance and subjective happiness among Taiwanese adults. Int. J. Environ. Res. Public Health 2020, 17, 3774. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.C.; Lee, M.L.; Kim, S.R. Effect of exercise performance by elderly women on balance ability and muscle function. J. Phys. Ther. Sci. 2015, 27, 989–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeon, B.J. The effects of obesity on fall efficacy in elderly people. J. Phys. Ther. Sci. 2013, 25, 1485–1489. [Google Scholar] [CrossRef] [Green Version]
- Hassinen, M.; Komulainen, P.; Lakka, T.A.; Vaisanen, S.B.; Rauramaa, R. Associations of body composition and physical activity with balance and walking ability in the elderly. J. Phys. Act. Health 2005, 3, 298–306. [Google Scholar] [CrossRef]
- Cabrera, M.A.; Gebara, O.C.; Diament, J.; Nussbacher, A.; Rosano, G.; Wajngarten, M. Metabolic syndrome, abdominal obesity, and cardiovascular risk in elderly women. Int. J. Cardiol. 2007, 114, 224–229. [Google Scholar] [CrossRef]
- Vieira, D.C.L.; Tibana, R.A.; Tajra, V.; Nascimento, D.C.; Farias, D.L.; Oliveira Silva, A.; Teixeira, T.G.; Fonseca, R.M.C.; Oliveira, R.J.; dos Santos Mendes, F.A.; et al. Decreased functional capacity and muscle strength in elderly women with metabolic syndrome. Clin. Interv. Aging 2013, 8, 1377–1386. [Google Scholar]
- Dulac, M.C.; Carvalho, L.P.; Aubertin-Leheudre, M. Functional capacity depends on lower limb muscle strength rather than on abdominal obesity in active postmenopausal women. Menopause 2018, 25, 176–181. [Google Scholar] [CrossRef]
- Riebe, D.; Blissmer, B.J.; Greaney, M.L.; Garber, C.E.; Lees, F.D.; Clark, P.G. The relationship between obesity, physical activity, and physical function in older adults. J. Aging Health 2009, 21, 1159–1178. [Google Scholar] [CrossRef]
- Tuna, H.D.; Edeer, A.O.; Malkoc, M.; Aksakoglu, G. Effect of age and physical activity level on functional fitness in older adults. Eur. Rev. Aging Phys. Act. 2009, 6, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Kostic, R.; Pantelic, S.; Uzunovic, S.; Djuraskovic, R. A comparative analysis of the indicators of the functional fitness of the elderly. Facta Univ. Ser. Phys. Educ. Sport 2011, 9, 161–171. [Google Scholar]
- Lee, D.C.; Shook, R.P.; Drenowatz, C.; Blair, S.N. Physical activity and sarcopenic obesity: Definition, assessment, prevalence and mechanism. Future Sci. OA 2016, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, J.; Guo, S.; Liu, J.; Zhang, M.; Ding, Y.; Zhang, J.; Li, S.; Xu, S.; Niu, Q.; Guo, H.; et al. Ethnic differences in prevalence of general obesity and abdominal obesity among low-income rural Kazakh and Uyghur adults in far western China and implications in preventive public health. PLoS ONE 2014, 9, e106723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhaliwal, S.S.; Welborn, T.A. Measurement error and ethnic comparisons of measures of abdominal obesity. Prev. Med. 2009, 49, 148–152. [Google Scholar] [CrossRef]
- Ito, T.; Kawakami, R.; Tanisawa, K.; Miyawaki, R.; Ishii, K.; Torii, S.; Suzuki, K.; Sakamoto, S.; Muraoka, I.; Oka, K.; et al. Dietary patterns and abdominal obesity in middle-aged and elderly Japanese adults: Waseda alumin’s sports, exercise, daily activity, sedentariness and health sudy (WASEDA’s Health Study). Nutrition 2019, 58, 149–155. [Google Scholar] [CrossRef]
- Lin, M.; Lucas, H.C., Jr.; Shmueli, G. Research commentary-too big to fail: Large samples and the p-value problem. Inf. Syst. Res. 2013, 24, 883–1167. [Google Scholar] [CrossRef] [Green Version]
Variables | Men (N = 8017) | Women (N = 14,372) | ||||
---|---|---|---|---|---|---|
Abdominal Obesity (n = 3780) | Nonabdominal Obesity (n = 4237) | p-Value | Abdominal Obesity (n = 9880) | Nonabdominal Obesity (n = 4492) | p-Value | |
Age (years) | 0.001 * | <0.001 * | ||||
65–69 | 28.12 | 31.25 | 34.72 | 41.90 | ||
70–74 | 24.63 | 25.58 | 27.88 | 27.96 | ||
75–79 | 23.39 | 20.04 | 21.26 | 17.76 | ||
80–84 | 14.21 | 13.55 | 11.16 | 8.82 | ||
≥85 | 9.6 | 9.58 | 4.98 | 3.56 | ||
Height (cm) | 164.06 ± 5.86 | 162.77 ± 6.07 | <0.001 * | 152.77 ± 5.82 | 152.50 ± 5.60 | 0.009 * |
Body weight (kg) | 71.39 ± 6.93 | 60.66 ± 7.33 | <0.001 * | 60.70 ± 7.96 | 51.28 ± 6.40 | <0.001 * |
BMI (kg/m2) | 26.56 ± 2.38 | 22.88 ± 2.43 | <0.001 * | 26.02 ± 3.14 | 22.06 ± 2.53 | <0.001 * |
WC (cm) | 96.33 ± 5.08 | 82.27 ± 5.40 | <0.001 * | 89.34 ± 6.96 | 74.08 ± 4.09 | <0.001 * |
HC (cm) | 100.06 ± 4.79 | 92.84 ± 4.65 | <0.001 * | 98.37 ± 5.91 | 90.95 ± 4.68 | <0.001 * |
WHR | 0.96 ± 0.05 | 0.89 ± 0.05 | <0.001 * | 0.91 ± 0.06 | 0.82 ± 0.05 | <0.001 * |
Education level (%) | <0.001 * | <0.001 * | ||||
Elementary school or lower | 48.62 | 39.29 | 68.94 | 54.11 | ||
Junior or senior school | 30.71 | 34.78 | 23.99 | 32.59 | ||
College or higher | 20.67 | 25.93 | 7.07 | 13.30 | ||
Income level (%) | 0.004 * | <0.001 * | ||||
≤NTD 20,000 | 80.57 | 77.52 | 91.79 | 87.25 | ||
NTD 20,001–40,000 | 10.83 | 11.76 | 5.19 | 8.17 | ||
≥NTD 40,001 | 8.60 | 10.72 | 3.02 | 4.58 | ||
Marital status (%) | 0.612 | <0.001 * | ||||
Never married | 58.60 | 58.94 | 47.64 | 52.06 | ||
Married | 30.50 | 29.63 | 25.24 | 25.62 | ||
Divorced/separation/widowed | 10.90 | 11.42 | 27.12 | 22.33 | ||
Self-reported health status (%) | 0.003 * | <0.001 * | ||||
Excellent or good | 66.61 | 69.76 | 62.63 | 65.89 | ||
Fair | 25.69 | 24.14 | 28.01 | 27.34 | ||
Poor or very bad | 7.69 | 6.10 | 9.36 | 6.77 | ||
Smoking status (%) | <0.001 * | 0.011 * | ||||
Never | 78.60 | 82.11 | 97.19 | 97.97 | ||
Current | 11.62 | 10.70 | 1.98 | 1.26 | ||
Former | 9.78 | 7.19 | 0.83 | 0.77 | ||
Chewing betel nut | <0.001 * | 0.090 | ||||
Never | 93.37 | 96.26 | 98.79 | 99.21 | ||
Current | 2.61 | 1.12 | 0.81 | 0.51 | ||
Former | 4.02 | 2.63 | 0.40 | 0.28 |
Variables | Men (N = 8017) | Women (N = 14,372) | ||||
---|---|---|---|---|---|---|
Abdominal Obesity (n = 3780) | Nonabdominal Obesity (n = 4237) | p-Value | Abdominal Obesity (n = 9880) | Nonabdominal Obesity (n = 4492) | p-Value | |
2 min step test (step; cardiovascular fitness) | 85.17 ± 23.84 | 89.19 ± 23.14 | <0.001 * | 83.16 ± 24.19 | 88.29 ± 23.22 | <0.001 * |
30 s arm curl test (rep; muscle strength and endurance) | 17.56 ± 5.48 | 17.78 ± 5.77 | 0.077 | 17.24 ± 5.45 | 17.23 ± 5.58 | 0.873 |
30 s chair stand test (rep; muscle strength and endurance) | 14.52 ± 4.70 | 15.72 ± 4.93 | <0.001 * | 14.17 ± 4.53 | 15.58 ± 4.71 | <0.001 * |
Back scratch test (cm; flexibility) | −13.94 ± 12.82 | −8.71 ± 12.35 | <0.001 * | −6.57 ± 11.09 | −1.28 ± 9.34 | <0.001 * |
Chair sit-and-reach test (cm; flexibility) | 1.74 ± 8.25 | 3.37 ± 8.35 | <0.001 * | 4.90 ± 7.84 | 6.55 ± 8.11 | <0.001 * |
8-foot up-and-go test (s) (s; balance) | 7.47 ± 1.88 | 6.90 ± 1.84 | <0.001 * | 7.64 ± 1.84 | 6.96 ± 1.72 | <0.001 * |
One-leg stance with eyes open test (s; balance) | 13.82 ± 11.11 | 17.50 ± 11.66 | <0.001 * | 13.05 ± 10.77 | 17.28 ± 11.39 | <0.001 * |
Variables | Model 1 (Unadjusted) | Model 2 (Adjusted a) | ||||
---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
Men | ||||||
2 min step test (step; cardiovascular fitness) | ||||||
<73 (n = 2221) | 1.10 | 0.95–1.28 | 0.185 | 1.22 | 0.99–1.49 | 0.064 |
73–89 (n = 1929) | 1.10 | 0.96–1.27 | 0.183 | 1.13 | 0.93–1.39 | 0.219 |
90–103 (n = 1980) | 1.13 | 0.98–1.29 | 0.086 | 1.21 | 1.00–1.46 | 0.048 * |
>103 (n = 1887) | 1.00 | — | — | 1.00 | — | — |
Test for trend | 0.343 | 0.154 | ||||
30 s arm curl test (rep; muscle strength and endurance) | ||||||
<14 (n = 2071) | 0.76 | 0.65–0.88 | <0.001 * | 1.10 | 0.89–1.35 | 0.393 |
14–17 (n = 1969) | 0.92 | 0.79–1.06 | 0.255 | 1.23 | 0.99–1.51 | 0.058 |
18–22 (n = 2207) | 0.96 | 0.83–1.10 | 0.538 | 1.14 | 0.94–1.39 | 0.188 |
>22 (n = 1597) | 1.00 | — | — | 1.00 | — | — |
Test for trend | <0.001 * | 0.394 | ||||
30 s chair stand test (rep; muscle strength and endurance) | ||||||
<12 (n = 2002) | 1.22 | 1.04–1.43 | 0.013 * | 1.29 | 1.03–1.61 | 0.026 * |
12–14 (n = 1961) | 1.22 | 1.05–1.42 | 0.009 * | 1.12 | 0.91–1.39 | 0.288 |
15–18 (n = 2197) | 1.14 | 0.99–1.31 | 0.054 | 1.06 | 0.88–1.29 | 0.542 |
>18 (n = 1857) | 1.00 | — | — | 1.00 | — | — |
Test for trend | 0.020 * | 0.027 * | ||||
Back scratch test (cm; flexibility) | ||||||
<−21 (n = 1991) | 2.96 | 2.55–3.43 | <0.001 * | 1.21 | 0.98–1.50 | 0.080 |
−21–−11 (n = 2095) | 2.19 | 1.90–2.53 | <0.001 * | 1.19 | 0.97–1.46 | 0.087 |
−10–0 (n = 2301) | 1.80 | 1.56–2.06 | <0.001 * | 1.23 | 1.01–1.49 | 0.038 * |
>0 (n = 1625) | 1.00 | — | — | 1.00 | — | — |
Test for trend | <0.001 * | 0.168 | ||||
Chair sit-and-reach test (cm; flexibility) | ||||||
<−2 (n = 2595) | 1.23 | 1.08–1.41 | 0.003 * | 1.72 | 1.42–2.08 | <0.001 * |
−2–0 (n = 1525) | 1.06 | 0.91–1.23 | 0.437 | 1.30 | 1.05–1.61 | 0.015 * |
1–8 (n = 2237) | 1.02 | 0.89–1.17 | 0.749 | 1.14 | 0.94–1.38 | 0.181 |
>8 (n = 1643) | 1.00 | — | — | 1.00 | — | — |
Test for trend | <0.001 * | <0.001 * | ||||
8-foot up-and-go test (s; balance) | ||||||
>8.3 (n = 1845) | 1.33 | 1.16–1.54 | <0.001 * | 1.25 | 1.02–1.54 | 0.031 * |
7.0–8.3 (n = 1910) | 1.36 | 1.19–1.55 | <0.001 * | 1.28 | 1.06–1.55 | 0.010 * |
5.8–6.9 (n = 1960) | 1.24 | 1.09–1.41 | 0.001 * | 1.13 | 0.94–1.36 | 0.197 |
<5.8 (n = 2289) | 1.00 | — | — | 1.00 | — | — |
Test for trend | <0.001 * | 0.009 * | ||||
One-leg stance with eyes open test (s; balance) | ||||||
<5.0 (n = 1973) | 1.78 | 1.29–2.46 | <0.001 * | 2.29 | 1.44–3.65 | <0.001 * |
5.0–12.6 (n = 2034) | 1.39 | 1.01–1.91 | 0.043 * | 1.52 | 0.96–2.40 | 0.075 |
12.7–30.0 (n = 3813) | 1.13 | 0.83–1.54 | 0.449 | 1.44 | 0.92–2.26 | 0.109 |
>30.0 (n = 193) | 1.00 | — | — | 1.00 | — | — |
Test for trend | <0.001 * | <0.001 * |
Variables | Model 1 (Unadjusted) | Model 2 (Adjusted a) | ||||
---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
Women | ||||||
2 min step test (step; cardiovascular fitness) | ||||||
<70 (n = 4059) | 1.08 | 0.96–1.21 | 0.224 | 1.04 | 0.89–1.22 | 0.603 |
70–87 (n = 3418) | 1.02 | 0.91–1.14 | 0.772 | 1.12 | 0.97–1.30 | 0.129 |
88–101 (n = 3481) | 0.99 | 0.89–1.10 | 0.886 | 1.12 | 0.98–1.29 | 0.103 |
>101 (n = 3414) | 1.00 | — | — | 1.00 | — | — |
Test for trend | 0.286 | 0.535 | ||||
30 s arm curl test (rep; muscle strength and endurance) | ||||||
<14 (n = 3901) | 0.72 | 0.64–0.80 | <0.001 * | 0.88 | 0.75–1.02 | 0.089 |
14–16 (n = 2539) | 0.72 | 0.63–0.81 | <0.001 * | 0.81 | 0.69–0.96 | 0.013 * |
17–21 (n = 4493) | 0.86 | 0.77–0.96 | 0.005 * | 0.97 | 0.84–1.11 | 0.618 |
>21 (n = 3072) | 1.00 | — | — | 1.00 | — | — |
Test for trend | <0.001 * | 0.040 * | ||||
30 s chair stand test (rep; muscle strength and endurance) | ||||||
<11 (n = 2863) | 1.44 | 1.26–1.66 | <0.001 * | 1.26 | 1.05–1.51 | 0.015 * |
11–13 (n = 3457) | 1.39 | 1.23–1.58 | <0.001 * | 1.24 | 1.05–1.47 | 0.010 * |
14–18 (n = 5312) | 1.25 | 1.13–1.39 | <0.001 * | 1.11 | 0.97–1.27 | 0.144 |
>18 (n = 2740) | 1.00 | — | — | 1.00 | — | — |
Test for trend | <0.001 * | 0.006 * | ||||
Back scratch test (cm; flexibility) | ||||||
<−12 (n = 3502) | 3.82 | 3.38–4.33 | <0.001 * | 2.16 | 1.83–2.56 | <0.001 * |
−12–−2 (n = 3650) | 2.56 | 2.29–2.86 | <0.001 * | 1.34 | 1.16–1.55 | <0.001 * |
−1–3 (n = 4404) | 1.62 | 1.47–1.79 | <0.001 * | 1.28 | 1.12–1.46 | <0.001 * |
>3 (n = 2811) | 1.00 | — | — | 1.00 | — | — |
Test for trend | <0.001 * | <0.001 * | ||||
Chair sit-and-reach test (cm; flexibility) | ||||||
<0 (n = 2977) | 0.98 | 0.87–1.10 | 0.742 | 1.29 | 1.10–1.51 | 0.001 * |
0–3 (n = 4379) | 1.15 | 1.03–1.28 | 0.010 * | 1.27 | 1.10–1.46 | 0.001 * |
4–11 (n = 3888) | 1.06 | 0.95–1.18 | 0.288 | 1.13 | 0.99–1.30 | 0.079 |
>11 (n = 3104) | 1.00 | — | — | 1.00 | — | — |
Test for trend | 0.654 | <0.001 * | ||||
8-foot up-and-go test (s; balance) | ||||||
>8.6 (n = 3270) | 1.42 | 1.26–1.61 | <0.001 * | 1.16 | 0.99–1.37 | 0.072 |
7.1–8.6 (n = 3491) | 1.37 | 1.23–1.53 | <0.001 * | 1.12 | 0.97–1.29 | 0.128 |
6.0 –7.0 (n = 3806) | 1.16 | 1.05–1.28 | 0.004 * | 1.00 | 0.87–1.14 | 0.938 |
<6.0 (n = 3772) | 1.00 | — | — | 1.00 | — | — |
Test for trend | <0.001 * | 0.007 * | ||||
One-leg stance with eyes open test (s; balance) | ||||||
<4.4 (n = 3590) | 1.75 | 1.56–1.97 | <0.001 * | 1.44 | 1.22–1.69 | <0.001 * |
4.4–10.7 (n = 3589) | 1.50 | 1.35–1.67 | <0.001 * | 1.24 | 1.07–1.43 | 0.004 * |
10.8–27.0 (n = 3610) | 1.33 | 1.20–1.48 | <0.001 * | 1.18 | 1.03–1.35 | 0.019 * |
>27.0 (n = 3577) | 1.00 | — | — | 1.00 | — | — |
Test for trend | <0.001 * | <0.001 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.-H.; Chen, H.-L.; Lin, Y.-T.; Lin, C.-W.; Ho, C.-C.; Lin, H.-Y.; Lee, P.-F. The Associations between Functional Fitness Test Performance and Abdominal Obesity in Healthy Elderly People: Results from the National Physical Fitness Examination Survey in Taiwan. Int. J. Environ. Res. Public Health 2021, 18, 264. https://doi.org/10.3390/ijerph18010264
Chen H-H, Chen H-L, Lin Y-T, Lin C-W, Ho C-C, Lin H-Y, Lee P-F. The Associations between Functional Fitness Test Performance and Abdominal Obesity in Healthy Elderly People: Results from the National Physical Fitness Examination Survey in Taiwan. International Journal of Environmental Research and Public Health. 2021; 18(1):264. https://doi.org/10.3390/ijerph18010264
Chicago/Turabian StyleChen, Hsin-Han, Hui-Ling Chen, Yi-Tien Lin, Chaou-Wen Lin, Chien-Chang Ho, Hsueh-Yi Lin, and Po-Fu Lee. 2021. "The Associations between Functional Fitness Test Performance and Abdominal Obesity in Healthy Elderly People: Results from the National Physical Fitness Examination Survey in Taiwan" International Journal of Environmental Research and Public Health 18, no. 1: 264. https://doi.org/10.3390/ijerph18010264
APA StyleChen, H. -H., Chen, H. -L., Lin, Y. -T., Lin, C. -W., Ho, C. -C., Lin, H. -Y., & Lee, P. -F. (2021). The Associations between Functional Fitness Test Performance and Abdominal Obesity in Healthy Elderly People: Results from the National Physical Fitness Examination Survey in Taiwan. International Journal of Environmental Research and Public Health, 18(1), 264. https://doi.org/10.3390/ijerph18010264