Air Pollution Is Associated with Poor Cognitive Function in Taiwanese Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. The Taiwan Biobank
2.3. Collection of Demographic, Medical and Laboratory Data
2.4. Evaluation of Cognitive Function
2.5. Assessment of Air Pollutants
2.6. Example of Nearest Neighbor Interpolation
2.7. Statistical Analysis
3. Results
3.1. Correlations between Air Pollutants and Total MMSE Scores
3.2. Correlations between Air Pollutants and Each MMSE Subscore
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Disclosure
References
- North, C.M.; Rice, M.B.; Ferkol, T.; Gozal, D.; Hui, C.; Jung, S.H.; Kuribayashi, K.; McCormack, M.C.; Mishima, M.; Morimoto, Y.; et al. Air pollution in the Asia-Pacific Region: A Joint Asian Pacific Society of Respirology/American Thoracic Society perspective (Republication). Respirology 2019, 24, 484–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schraufnagel, D.E.; Balmes, J.R.; Cowl, C.T.; De Matteis, S.; Jung, S.H.; Mortimer, K.; Perez-Padilla, R.; Rice, M.B.; Riojas-Rodriguez, H.; Sood, A.; et al. Air Pollution and Noncommunicable Diseases: A Review by the Forum of International Respiratory Societies’ Environmental Committee, Part 2: Air Pollution and Organ Systems. Chest 2019, 155, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Power, M.C.; Adar, S.D.; Yanosky, J.D.; Weuve, J. Exposure to air pollution as a potential contributor to cognitive function, cognitive decline, brain imaging, and dementia: A systematic review of epidemiologic research. Neurotoxicology 2016, 56, 235–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Kilian, J.; Kitazawa, M. The emerging risk of exposure to air pollution on cognitive decline and Alzheimer’s disease—Evidence from epidemiological and animal studies. Biomed. J. 2018, 41, 141–162. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Lazcano, J.C.; González-Guevara, E.; del Carmen Rubio, M.; Franco-Pérez, J.; Custodio, V.; Hernández-Cerón, M.; Livera, C.; Paz, C. The effects of ozone exposure and associated injury mechanisms on the central nervous system. Rev. Neurosci. 2013, 24, 337–352. [Google Scholar] [CrossRef] [PubMed]
- Clifford, A.; Lang, L.; Chen, R.; Anstey, K.J.; Seaton, A. Exposure to air pollution and cognitive functioning across the life course—A systematic literature review. Environ. Res. 2016, 147, 383–398. [Google Scholar] [CrossRef]
- Chang, K.H.; Chang, M.Y.; Muo, C.H.; Wu, T.N.; Chen, C.Y.; Kao, C.H. Increased risk of dementia in patients exposed to nitrogen dioxide and carbon monoxide: A population-based retrospective cohort study. PLoS ONE 2014, 9, e103078. [Google Scholar] [CrossRef]
- Choe, Y.M.; Lee, B.C.; Choi, I.G.; Suh, G.H.; Lee, D.Y.; Kim, J.W. Alzheimer’s Disease Neuroimaging Initiative. MMSE Subscale Scores as Useful Predictors of AD Conversion in Mild Cognitive Impairment. Neuropsychiatr. Dis. Treat. 2020, 16, 1767–1775. [Google Scholar] [CrossRef]
- Chen, C.H.; Yang, J.H.; Chiang, C.W.K.; Hsiung, C.N.; Wu, P.E.; Chang, L.C.; Chu, H.W.; Chang, J.; Song, I.W.; Yang, S.L.; et al. Population structure of Han Chinese in the modern Taiwanese population based on 10,000 participants in the Taiwan Biobank project. Hum. Mol. Genet. 2016, 25, 5321–5331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, C.T.; Hung, T.H.; Yeh, C.K. Taiwan Regulation of Biobanks. J. Law Med. Ethics 2015, 43, 816–826. [Google Scholar] [PubMed]
- Levey, A.S.; Bosch, J.P.; Lewis, J.B.; Greene, T.; Rogers, N.; Roth, D. A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Modification of Diet in Renal Disease Study Group. Ann. Intern. Med. 1999, 130, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.H.; Wang, C.F.; Chiu, H.; Lai, B.C.; Tu, H.P.; Wu, P.Y.; Huang, J.C.; Chen, S.C. Air Pollutants Interaction and Gender Difference on Bone Mineral Density T-Score in Taiwanese Adults. Int. J. Environ. Res. Public Health 2020, 17, 9165. [Google Scholar] [CrossRef] [PubMed]
- Lo, Y.C.; Lu, Y.C.; Chang, Y.H.; Kao, S.; Huang, H.B. Air Pollution Exposure and Cognitive Function in Taiwanese Older Adults: A Repeated Measurement Study. Int. J. Environ. Res. Public Health 2019, 16, 2976. [Google Scholar] [CrossRef] [Green Version]
- Jung, C.-R.; Lin, Y.-T.; Hwang, B.-F. Ozone, particulate matter, and newly diagnosed Alzheimer’s disease: A population-based cohort study in Taiwan. J. Alzheimer’s Dis. 2015, 44, 573–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Kwong, J.C.; Copes, R.; Hystad, P.; van Donkelaar, A.; Tu, K.; Brook, J.R.; Goldberg, M.S.; Martin, R.V.; Murray, B.J. Exposure to ambient air pollution and the incidence of dementia: A population-based cohort study. Environ. Int. 2017, 108, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Han, S.-H.; Choi, J. Exposure to Ambient Air Pollution and Cognitive Impairment in Community-Dwelling Older Adults: The Korean Frailty and Aging Cohort Study. Int. J. Environ. Res. Public Health 2019, 16, 3767. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Li, T.; Lv, Y.; Kraus, V.B.; Zhang, Y.; Mao, C.; Yin, Z.; Shi, W.; Zhou, J.; Zheng, T.; et al. Fine Particulate Matter and Poor Cognitive Function among Chinese Older Adults: Evidence from a Community-Based, 12-Year Prospective Cohort Study. Environ. Health Perspect. 2020, 128, 67013. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Garcidueñas, L.; Mukherjee, P.S.; Kulesza, R.J.; Torres-Jardón, R.; Hernández-Luna, J.; Ávila-Cervantes, R.; Macías-Escobedo, E.; González-González, O.; González-Maciel, A.; García-Hernández, K.; et al. Mild Cognitive Impairment and Dementia Involving Multiple Cognitive Domains in Mexican Urbanites. J. Alzheimers Dis. 2019, 68, 1113–1123. [Google Scholar]
- Pun, V.C.; Manjourides, J.; Suh, H. Association of ambient air pollution with depressive and anxiety symptoms in older adults: Results from the NSHAP study. Environ. Health Perspect. 2017, 125, 342–348. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.-B.; Shen, Y.; Plane, J.M.; Deng, W. Vulnerability of premyelinating oligodendrocytes to white-matter damage in neonatal brain injury. Neurosci. Bull. 2013, 29, 229–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Xiong, L.; Tang, M. Toxicity of inhaled particulate matter on the central nervous system: Neuroinflammation, neuropsychological effects and neurodegenerative disease. J. Appl. Toxicol. 2017, 37, 644–667. [Google Scholar] [CrossRef] [PubMed]
- Bencsik, A.; Lestaevel, P.; Guseva Canu, I. Nano- and neurotoxicology: An emerging discipline. Prog. Neurobiol. 2018, 160, 45–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shou, Y.; Huang, Y.; Zhu, X.; Liu, C.; Hu, Y.; Wang, H. A review of the possible associations between ambient PM2. 5 exposures and the development of Alzheimer’s disease. Ecotoxicol. Environ. Saf. 2019, 174, 344–352. [Google Scholar] [CrossRef]
- Cacciottolo, M.; Wang, X.; Driscoll, I.; Woodward, N.; Saffari, A.; Reyes, J.; Serre, M.L.; Vizuete, W.; Sioutas, C.; Morgan, T.E.; et al. Particulate air pollutants, APOE alleles and their contributions to cognitive impairment in older women and to amyloidogenesis in experimental models. Transl. Psychiatry 2017, 7, e1022. [Google Scholar] [CrossRef]
- Bhatt, D.P.; Puig, K.L.; Gorr, M.W.; Wold, L.E.; Combs, C.K. A pilot study to assess effects of long-term inhalation of airborne particulate matter on early Alzheimer-like changes in the mouse brain. PLoS ONE 2015, 10, e0127102. [Google Scholar] [CrossRef] [Green Version]
- Hedges, D.W.; Erickson, L.D.; Kunzelman, J.; Brown, B.L.; Gale, S.D. Association between exposure to air pollution and hippocampal volume in adults in the UK Biobank. Neurotoxicology 2019, 74, 108–120. [Google Scholar] [CrossRef]
- Chen, J.-C.; Schwartz, J. Neurobehavioral effects of ambient air pollution on cognitive performance in US adults. Neurotoxicology 2009, 30, 231–239. [Google Scholar] [CrossRef]
- Tonne, C.; Elbaz, A.; Beevers, S.; Singh-Manoux, A. Traffic-related air pollution in relation to cognitive function in older adults. Epidemiology 2014, 25, 674–681. [Google Scholar] [CrossRef] [Green Version]
- Schikowski, T.; Vossoughi, M.; Vierkötter, A.; Schulte, T.; Teichert, T.; Sugiri, D.; Fehsel, K.; Tzivian, L.; Bae, I.S.; Ranft, U.; et al. Association of air pollution with cognitive functions and its modification by APOE gene variants in elderly women. Environ. Res. 2015, 142, 10–16. [Google Scholar] [CrossRef]
- Gatto, N.M.; Henderson, V.W.; Hodis, H.N.; St John, J.A.; Lurmann, F.; Chen, J.C.; Mack, W.J. Components of air pollution and cognitive function in middle-aged and older adults in Los Angeles. Neurotoxicology 2014, 40, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cleary, E.G.; Cifuentes, M.; Grinstein, G.; Brugge, D.; Shea, T.B. Association of low-level ozone with cognitive decline in older adults. J. Alzheimer’s Dis. 2018, 61, 67–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carey, I.M.; Anderson, H.R.; Atkinson, R.W.; Beevers, S.D.; Cook, D.G.; Strachan, D.P.; Dajnak, D.; Gulliver, J.; Kelly, F.J. Are noise and air pollution related to the incidence of dementia? A cohort study in London, England. BMJ Open 2018, 8, e022404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galiè, M.; Covi, V.; Tabaracci, G.; Malatesta, M. The role of Nrf2 in the antioxidant cellular response to medical ozone exposure. Int. J. Mol. Sci. 2019, 20, 4009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doyle, K.P.; Simon, R.P.; Stenzel-Poore, M.P. Mechanisms of ischemic brain damage. Neuropharmacology 2008, 55, 310–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rose, J.J.; Wang, L.; Xu, Q.; McTiernan, C.F.; Shiva, S.; Tejero, J.; Gladwin, M.T. Carbon Monoxide Poisoning: Pathogenesis, Management, and Future Directions of Therapy. Am. J. Respir. Crit. Care Med. 2017, 195, 596–606. [Google Scholar] [CrossRef]
- Nakamura, T.; Setsu, K.; Takahashi, T.; Miyashita, M.; Sugiyama, N.; Washizuka, S.; Murata, S.; Hanihara, T.; Amano, N. Chronic exposure to carbon monoxide in two elderly patients using a kotatsu, a traditional Japanese charcoal-based heater. Psychogeriatrics 2016, 16, 323–326. [Google Scholar] [CrossRef]
- Chen, P.C.; Chen, M.H.; Chen, H.L.; Lu, C.H.; Chou, K.H.; Wu, R.W.; Tsai, N.W.; Lin, C.P.; Li, S.H.; Chen, Y.W.; et al. Callosal damage and cognitive deficits in chronic carbon monoxide intoxication: A diffusion tensor imaging study. J. Neurol. Sci. 2015, 355, 101–107. [Google Scholar] [CrossRef]
- Hersi, M.; Irvine, B.; Gupta, P.; Gomes, J.; Birkett, N.; Krewski, D. Risk factors associated with the onset and progression of Alzheimer’s disease: A systematic review of the evidence. Neurotoxicology 2017, 61, 143–187. [Google Scholar] [CrossRef]
- Durazzo, T.C.; Meyerhoff, D.J.; Nixon, S.J. Chronic cigarette smoking: Implications for neurocognition and brain neurobiology. Int. J. Environ. Res. Public Health 2010, 7, 3760–3791. [Google Scholar] [CrossRef] [Green Version]
- Gui, Z.; Cai, L.; Zhang, J.; Zeng, X.; Lai, L.; Lv, Y.; Huang, C.; Chen, Y. Exposure to ambient air pollution and executive function among Chinese primary schoolchildren. Int. J. Hyg. Environ. Health 2020, 229, 113583. [Google Scholar] [CrossRef] [PubMed]
- Ab Manan, N.; Noor Aizuddin, A.; Hod, R. Effect of Air Pollution and Hospital Admission: A Systematic Review. Ann. Glob. Health 2018, 84, 670–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, W.; Jin, H.; Tang, C.; Du, J.; Zhang, Z. Sulfur-containing gaseous signal molecules, ion channels and cardiovascular diseases. Br. J. Pharmacol. 2018, 175, 1114–1125. [Google Scholar] [CrossRef] [PubMed]
- Yun, Y.; Yao, G.; Yue, H.; Guo, L.; Qin, G.; Li, G.; Sang, N. SO2 inhalation causes synaptic injury in rat hippocampus via its derivatives in vivo. Chemosphere 2013, 93, 2426–2432. [Google Scholar] [CrossRef] [PubMed]
- Ku, T.; Chen, M.; Li, B.; Yun, Y.; Li, G.; Sang, N. Synergistic effects of particulate matter (PM2.5) and sulfur dioxide (SO2) on neurodegeneration via the microRNA-mediated regulation of tau phosphorylation. Toxicol. Res. 2017, 6, 7–16. [Google Scholar] [CrossRef] [Green Version]
- Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 2007, 87, 315–424. [Google Scholar] [CrossRef] [Green Version]
- Sultana, R.; Poon, H.F.; Cai, J.; Pierce, W.M.; Merchant, M.; Klein, J.B.; Markesbery, W.R.; Butterfield, D.A. Identification of nitrated proteins in Alzheimer’s disease brain using a redox proteomics approach. Neurobiol. Dis. 2006, 22, 76–87. [Google Scholar] [CrossRef]
- Guix, F.; Uribesalgo, I.; Coma, M.; Munoz, F. The physiology and pathophysiology of nitric oxide in the brain. Prog. Neurobiol. 2005, 76, 126–152. [Google Scholar] [CrossRef]
- Mancuso, C.; Scapagini, G.; Curro, D.; Giuffrida Stella, A.M.; De Marco, C.; Butterfield, D.A.; Calabrese, V. Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Front. Biosci. 2007, 12, 1107–1123. [Google Scholar] [CrossRef] [Green Version]
- Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Stella, A.M.G. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nat. Rev. Neurosci. 2007, 8, 766–775. [Google Scholar] [CrossRef]
- Lertxundi, A.; Baccini, M.; Lertxundi, N.; Fano, E.; Aranbarri, A.; Martínez, M.D.; Ayerdi, M.; Álvarez, J.; Santa-Marina, L.; Dorronsoro, M.; et al. Exposure to fine particle matter, nitrogen dioxide and benzene during pregnancy and cognitive and psychomotor developments in children at 15 months of age. Environ. Int. 2015, 80, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Mattson, M.P. Mechanisms of Neuronal Apoptosis and Excitotoxicity. In Pathogenesis of Neurodegenerative Disorders; Springer: New York, NY, USA, 2001; pp. 1–20. [Google Scholar]
- Yan, W.; Ji, X.; Shi, J.; Li, G.; Sang, N. Acute nitrogen dioxide inhalation induces mitochondrial dysfunction in rat brain. Environ. Res. 2015, 138, 416–424. [Google Scholar] [CrossRef] [PubMed]
Characteristics | All (n = 1054) | MMSE ≥ 24 (n = 914) | MMSE < 24 (n = 140) | p |
---|---|---|---|---|
Age (year) | 64.0 ± 2.9 | 63.9 ± 2.9 | 64.6 ± 2.8 | 0.015 |
Male gender (%) | 49.2 | 50.8 | 39.3 | 0.011 |
Smoking history (%) | 24.8 | 25.5 | 20.0 | 0.161 |
Alcohol history (%) | 5.7 | 5.8 | 5.0 | 0.704 |
DM (%) | 11.5 | 11.4 | 12.1 | 0.792 |
Hypertension (%) | 24.2 | 24.4 | 22.9 | 0.692 |
Cerebrovascular disease (%) | 1.1 | 1.2 | 0.7 | 1.000 |
Education (years) | 4.8 ± 1.2 | 5.0 ± 1.1 | 3.7 ± 1.3 | <0.001 |
Living alone (%) | 9.2 | 9.4 | 7.9 | 0.554 |
Having job (%) | 25.0 | 24.2 | 30.1 | 0.146 |
BMI (kg/m2) | 24.4 ± 3.0 | 24.3 ± 3.0 | 24.8 ± 3.1 | 0.093 |
SBP (mmHg) | 126.1 ± 17.2 | 125.9 ± 17.1 | 127.7 ± 17.8 | 0.251 |
DBP (mmHg) | 72.4 ± 10.6 | 72.5 ± 10.7 | 72.0 ± 10.4 | 0.617 |
Laboratory parameters | ||||
Fasting glucose (mg/dL) | 102.0 ± 22.4 | 101.6 ± 22.0 | 104.1 ± 24.6 | 0.229 |
Triglyceride (mg/dL) | 100 (73–137) | 100 (73–136.25) | 106.5 (78–138.5) | 0.695 |
Total cholesterol (mg/dL) | 201.1 ± 36.5 | 201.3 ± 36.9 | 199.9 ± 34.0 | 0.678 |
Hemoglobin (g/dL) | 14.0 ± 1.4 | 14.1 ± 1.4 | 13.9 ± 1.3 | 0.383 |
eGFR (mL/min/1.73 m2) | 88.5 ± 28.3 | 88.2 ± 28.3 | 90.6 ± 28.4 | 0.354 |
Uric acid (mg/dL) | 5.7 ± 1.4 | 5.7 ± 1.4 | 5.7 ± 1.4 | 0.915 |
Air pollutants | ||||
PM2.5 (μg/m3) | 35.2 ± 11.5 | 35.0 ± 11.7 | 36.5 ± 10.3 | 0.158 |
PM10 (μg/m3) | 62.9 ± 19.7 | 62.7 ± 19.9 | 64.1 ± 18.1 | 0.436 |
O3 (ppb) | 30.9 ± 4.1 | 31.0 ± 4.1 | 30.1 ± 3.8 | 0.012 |
CO (ppm) | 0.45 ± 0.21 | 0.45 ± 0.21 | 0.47 ± 0.20 | 0.278 |
SO2 (ppb) | 3.5 ± 1.4 | 3.5 ± 1.4 | 3.7 ± 1.2 | 0.154 |
NO (ppb) | 4.3 ± 4.4 | 4.3 ± 4.4 | 4.7 ± 4.5 | 0.351 |
NO2 (ppb) | 14.6 ± 6.8 | 14.4 ± 6.9 | 15.5 ± 6.0 | 0.064 |
NOx (ppb) | 18.9 ± 10.4 | 18.7 ± 10.5 | 20.1 ± 9.8 | 0.131 |
MMSE | ||||
G1 (Orientation) | 9.5 ± 0.8 | 9.6 ± 0.6 | 8.6 ± 1.3 | <0.001 |
G2 (Registration) | 2.9 ± 0.4 | 2.9 ± 0.3 | 2.7 ± 0.6 | <0.001 |
G3 (Attention and Calculation) | 3.7 ± 1.7 | 4.1 ± 1.5 | 1.4 ± 1.2 | <0.001 |
G4 (Recall) | 2.2 ± 0.9 | 2.3 ± 0.8 | 1.3 ± 1.1 | <0.001 |
G5 (Language, construction, and obey) | 8.4 ± 0.9 | 8.5 ± 0.7 | 7.3 ± 1.2 | <0.001 |
MMSE total | 26.7 ± 2.8 | 27.5 ± 1.9 | 21.3 ± 1.8 | <0.001 |
Characteristics | Univariable | |
---|---|---|
Unstandardized Coefficient β (95% CI) | p | |
Age (per 1 year) | −0.006 (−0.011, −0.002) | 0.009 |
Male gender (vs. female) | 0.534 (0.194, 0.874) | 0.002 |
Smoking history | 0.340 (−0.055, 0.735) | 0.092 |
Alcohol history | 0.355 (−0.381, 1.092) | 0.344 |
DM | −0.359 (−0.895, 0.176) | 0.188 |
Hypertension | −0.104 (−0.502, 0.295) | 0.610 |
Cerebrovascular disease | 0.137 (−1.473, 1.746) | 0.868 |
Education (per 1 years) | 0.950 (0.825, 1.075) | <0.001 |
Living alone | −0.012 (−0.058, 0.034) | 0.619 |
Having job | −0.325 (−0.716, 0.067) | 0.104 |
BMI (per 1 kg/m2) | −0.092 (−0.148, −0.037) | 0.001 |
SBP (per 1 mmHg) | −0.003 (−0.013, 0.007) | 0.547 |
DBP (per 1 mmHg) | 0.011 (−0.005, 0.027) | 0.192 |
Laboratory parameters | ||
Fasting glucose (per 1 mg/dL) | −0.007 (−0.015, 0.001) | 0.069 |
Triglyceride (log per 1 mg/dL) | −0.539 (−1.354, 0.276) | 0.195 |
Total cholesterol (per 1 mg/dL) | 0.002 (−0.002, 0.007) | 0.352 |
Hemoglobin (per 1 g/dL) | 0.069 (−0.054, 0.193) | 0.272 |
eGFR (per 1 mL/min/1.73 m2) | −0.004 (−0.010, 0.002) | 0.171 |
Uric acid (per 1 mg/dL) | −0.025 (−0.147, 0.097) | 0.688 |
Air pollutants | ||
PM2.5 (per 1 μg/m3) | −0.010 (−0.025, 0.005) | 0.182 |
PM10 (per 1 μg/m3) | −0.004 (−0.013, 0.004) | 0.328 |
O3 (per 1 ppb) | 0.047 (0.005, 0.089) | 0.029 |
CO (per 1 ppm) | −0.380 (−1.222, 0.462) | 0.376 |
SO2 (per 1 ppb) | −0.145 (−0.270, −0.021) | 0.022 |
NO (per 1 ppb) | −0.016 (−0.055, 0.023) | 0.426 |
NO2 (per 1 ppb) | −0.023 (−0.048, 0.003) | 0.080 |
NOx (per 1 ppb) | −0.013 (−0.029, 0.004) | 0.135 |
Air Pollutants | Multivariable | |
---|---|---|
Unstandardized Coefficient β (95% CI) | p | |
PM2.5 (per 1 μg/m3) | −0.014 (−0.028, 0) | 0.039 |
PM10 (per 1 μg/m3) | −0.006 (−0.015, 0.002) | 0.131 |
O3 (per 1 ppb) | 0.078 (0.039, 0.117) | <0.001 |
CO (per 1 ppm) | −1.133 (−1.915, −0.351) | 0.005 |
SO2 (per 1 ppb) | −0.227 (−0.342, −0.111) | <0.001 |
NO (per 1 ppb) | −0.042 (−0.079, −0.006) | 0.022 |
NO2 (per 1 ppb) | −0.043 (−0.067, −0.019) | <0.001 |
NOx (per 1 ppb) | −0.026 (−0.042, −0.011) | 0.001 |
Air Pollutants | Multivariable | |
---|---|---|
Unstandardized Coefficient β (95% CI) | p | |
PM2.5 (per 1 μg/m3) | −0.001 (−0.006, 0.003) | 0.532 |
PM10 (per 1 μg/m3) | 0 (−0.003, 0.002) | 0.757 |
O3 (per 1 ppb) | 0.014 (0.002, 0.026) | 0.020 |
CO (per 1 ppm) | −0.175 (−0.413, 0.063) | 0.150 |
SO2 (per 1 ppb) | −0.044 (−0.079, −0.009) | 0.015 |
NO (per 1 ppb) | −0.010 (−0.021, 0.001) | 0.082 |
NO2 (per 1 ppb) | −0.004 (−0.012, 0.003) | 0.232 |
NOx (per 1 ppb) | −0.004 (−0.008, 0.001) | 0.128 |
Air Pollutants | Multivariable | |
---|---|---|
Unstandardized Coefficient β (95% CI) | p | |
PM2.5 (per 1 μg/m3) | −0.002 (−0.007, 0.003) | 0.375 |
PM10 (per 1 μg/m3) | −0.002 (−0.005, 0.001) | 0.178 |
O3 (per 1 ppb) | 0.016 (0.002, 0.030) | 0.023 |
CO (per 1 ppm) | −0.284 (−0.565, −0.003) | 0.047 |
SO2 (per 1 ppb) | −0.065 (−0.107, −0.024) | 0.002 |
NO (per 1 ppb) | −0.010 (−0.023, 0.003) | 0.121 |
NO2 (per 1 ppb) | −0.010 (−0.019, −0.002) | 0.019 |
NOx (per 1 ppb) | −0.006 (−0.012, 0) | 0.026 |
Air Pollutants | Multivariable | |
---|---|---|
Unstandardized Coefficient β (95% CI) | p | |
PM2.5 (per 1 μg/m3) | −0.005 (−0.010, 0) | 0.022 |
PM10 (per 1 μg/m3) | −0.003 (−0.006,0) | 0.013 |
O3 (per 1 ppb) | 0.012 (0, 0.025) | 0.058 |
CO (per 1 ppm) | −0.247 (−0.504, 0.011) | 0.061 |
SO2 (per 1 ppb) | −0.057 (−0.095, −0.019) | 0.003 |
NO (per 1 ppb) | −0.008 (−0.020, 0.004) | 0.196 |
NO2 (per 1 ppb) | −0.011 (−0.019, −0.003) | 0.006 |
NOx (per 1 ppb) | −0.006 (−0.011, 0) | 0.020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.-C.; Wang, C.-F.; Lai, B.-C.; Hsieh, S.-W.; Chen, S.-C.; Hung, C.-H.; Kuo, C.-H. Air Pollution Is Associated with Poor Cognitive Function in Taiwanese Adults. Int. J. Environ. Res. Public Health 2021, 18, 316. https://doi.org/10.3390/ijerph18010316
Chen M-C, Wang C-F, Lai B-C, Hsieh S-W, Chen S-C, Hung C-H, Kuo C-H. Air Pollution Is Associated with Poor Cognitive Function in Taiwanese Adults. International Journal of Environmental Research and Public Health. 2021; 18(1):316. https://doi.org/10.3390/ijerph18010316
Chicago/Turabian StyleChen, Meng-Chieh, Chen-Feng Wang, Bo-Cheng Lai, Sun-Wung Hsieh, Szu-Chia Chen, Chih-Hsing Hung, and Chao-Hung Kuo. 2021. "Air Pollution Is Associated with Poor Cognitive Function in Taiwanese Adults" International Journal of Environmental Research and Public Health 18, no. 1: 316. https://doi.org/10.3390/ijerph18010316
APA StyleChen, M. -C., Wang, C. -F., Lai, B. -C., Hsieh, S. -W., Chen, S. -C., Hung, C. -H., & Kuo, C. -H. (2021). Air Pollution Is Associated with Poor Cognitive Function in Taiwanese Adults. International Journal of Environmental Research and Public Health, 18(1), 316. https://doi.org/10.3390/ijerph18010316