Gynecology Meets Big Data in the Disruptive Innovation Medical Era: State-of-Art and Future Prospects
Abstract
:1. Theoretical Background: The Current Medical Era as the “Disruptive Innovation Era”
- the internet of gynecological things.
- eGynecology (from the combination of gynecology and eHealth, which, in turn, is an abbreviation for electronic health, conceived as the use of electronic devices and tools aimed at improving and enhancing health-related outcomes) [3].
- mGynecology (from the combination of gynecology and mHealth, which, in turn, is an abbreviation for mobile health, that is to say the use of mobile and wireless technologies to achieve health-related purposes and objectives).
- uGynecology (from the combination of gynecology and uHealth, which, in turn, is an abbreviation for ubiquitous health, or the application of wearable sensors to constantly monitor in real-time the health status of individuals).
- tele-gynecology (from the combination of gynecology and tele-health/tele-medicine, which refers to the innovative and emerging practice of delivering healthcare provisions remotely).
- nano-gynecology (from the combination of gynecology and nano-medicine, which is the practice of the medicine at the nano-scale level) [4].
- precision and predictive gynecology (which implies the customizing, tailoring, and individualizing of healthcare provisions related to gynecology, based on the individual features of each patient).
- big and smart gynecology.
- 3D gynecology (which is the application of bioengineering and additive manufacturing processes to deposit bio-active materials, known as bio-inks, in order to develop and create tissue-like structures for regenerative or other medical purposes) [5].
- velocity (so-called “fast data”, which indicates the speed at which big data can be generated, released, and analyzed, almost in real-time, enabling data prediction, such as nowcasting or forecasting).
- variety (because they can be produced by various channels and sources).
- variability (since they are changeable and constantly in flux).
- volume (related to the amount and magnitude of available data and information).
- veracity/verification (related to data trustworthiness, accuracy, and reliability).
- visualization (related to readability, affordability, and accessibility of data).
- visibility (referring to the state of being able to be seen, this state is also known as “big visibility”).
- virality (the speed at which data and related information spread along a people to people (P2P) network).
- viscosity (or data friction or resistance, which refers to the heterogeneity of particularly complex data, which may be difficult to incorporate, integrate and combine).
- virtual (referring to the digital/computational nature of big data).
- value (in terms of advantages and benefits deriving from the collection, use, and analysis of big data). This implies that, after processing and analysis, big data can become smart and insightful Data.
2. The Aims of the Present Integrative Review
3. Gynecology and OMICS Data
4. Gynecology and Computational/Clinical Data
5. Gynecology and Imaging/Wearable Sensor Data
6. Gynecology and Infodemiology
7. An Overview of Use of Big Data in the Field of Gynecology
8. Pitfalls and Limitations of Big Data
9. Areas for Future Research
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bragazzi, N.L. From P0 to P6 medicine, a model of highly participatory, narrative, interactive, and “augmented” medicine: Some considerations on Salvatore Iaconesi’s clinical story. Patient Prefer. Adherence 2013, 7, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Wiweko, B.; Zakirah, S.C. Future of Health Services: The Role of Physicians in the Disruptive Era. J. Hum. Reprod. Sci. 2020, 13, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.; Rizo, C.; Enkin, M.; Jadad, A. What is eHealth (3): A systematic review of published definitions. J. Med. Internet Res. 2005, 7, e1. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Singh, A. Current status of nanomedicine and nanosurgery. Anesth. Essays Res. 2013, 7, 237–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, C.; Zheng, J.; Li, Z.; Qi, X.; Tian, Y.; Zhang, M.; Zhang, J.; Huang, X. Printing 3D vagina tissue analogues with vagina decellularized extracellular matrix bioink. Int. J. Biol. Macromol. 2021, 180, 177–186. [Google Scholar] [CrossRef]
- Dini, G.; Bragazzi, N.L.; Montecucco, A.; Toletone, A.; Debarbieri, N.; Durando, P. Big Data in occupational medicine: The convergence of -omics sciences, participatory research and e-health. Med. Lav. 2019, 110, 102–114. [Google Scholar]
- Krumholz, H.M. Big data and new knowledge in medicine: The thinking, training, and tools needed for a learning health system. Health Aff. 2014, 33, 1163–1170. [Google Scholar] [CrossRef]
- Delude, C.M. Deep phenotyping: The details of disease. Nature 2015, 527, S14–S15. [Google Scholar] [CrossRef] [PubMed]
- Robinson, P.N. Deep phenotyping for precision medicine. Hum. Mutat. 2012, 33, 777–780. [Google Scholar] [CrossRef]
- Muinao, T.; Deka Boruah, H.P.; Pal, M. Multi-biomarker panel signature as the key to diagnosis of ovarian cancer. Heliyon 2019, 5, e02826. [Google Scholar] [CrossRef] [Green Version]
- Talhouk, A.; George, J.; Wang, C.; Budden, T.; Tan, T.Z.; Chiu, D.S.; Kommoss, S.; San Leong, H.; Chen, S.; Intermaggio, M.P.; et al. Development and Validation of the Gene Expression Predictor of High-grade Serous Ovarian Carcinoma Molecular SubTYPE (PrOTYPE). Clin. Cancer Res. 2020, 26, 5411–5423. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.S.; Yeom, J.; Yu, J.; Kwon, Y.I.; Kim, J.H.; Kim, K. Convergence of Plasma Metabolomics and Proteomics Analysis to Discover Signatures of High-Grade Serous Ovarian Cancer. Cancers 2020, 12, 3447. [Google Scholar] [CrossRef] [PubMed]
- Daly, M.B.; Ozols, R.F. The search for predictive patterns in ovarian cancer: Proteomics meets bioinformatics. Cancer Cell 2002, 1, 111–112. [Google Scholar] [CrossRef] [Green Version]
- Lekhwani, S.; Shankar, V.; Vaswani, N.D. Proteomics in obstetrics and gynecology. Indian J. Hum. Genet. 2011, 17, 3–6. [Google Scholar] [CrossRef] [Green Version]
- Timms, J.F.; Arslan-Low, E.; Kabir, M.; Worthington, J.; Camuzeaux, S.; Sinclair, J.; Szaub, J.; Afrough, B.; Podust, V.N.; Fourkala, E.O.; et al. Discovery of serum biomarkers of ovarian cancer using complementary proteomic profiling strategies. Proteom. Clin. Appl. 2014, 8, 982–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esfandyari, S.; Elkafas, H.; Chugh, R.M.; Park, H.S.; Navarro, A.; Al-Hendy, A. Exosomes as Biomarkers for Female Reproductive Diseases Diagnosis and Therapy. Int. J. Mol. Sci. 2021, 22, 2165. [Google Scholar] [CrossRef]
- Bulloch, R.E.; Wall, C.R.; McCowan, L.M.E.; Taylor, R.S.; Roberts, C.T.; Thompson, J.M.D. The Effect of Interactions between Folic Acid Supplementation and One Carbon Metabolism Gene Variants on Small-for-Gestational-Age Births in the Screening for Pregnancy Endpoints (SCOPE) Cohort Study. Nutrients 2020, 12, 1677. [Google Scholar] [CrossRef]
- Sellami, M.; Bragazzi, N.L. Nutrigenomics and Breast Cancer: State-of-Art, Future Perspectives and Insights for Prevention. Nutrients 2020, 12, 512. [Google Scholar] [CrossRef] [Green Version]
- Ronkainen, J.; Heiskala, A.; Vehmeijer, F.O.L.; Lowry, E.; Caramaschi, D.; Estrada Gutierrez, G.; Heiss, J.A.; Hummel, N.; Keikkala, E.; Kvist, T.; et al. Maternal haemoglobin levels in pregnancy and child DNA methylation: A study in the pregnancy and childhood epigenetics consortium. Epigenetics 2021, 1–13. [Google Scholar] [CrossRef]
- Do, W.L.; Whitsel, E.A.; Costeira, R.; Masachs, O.M.; Le Roy, C.I.; Bell, J.T.R.; Staimez, L.; Stein, A.D.; Smith, A.K.; Horvath, S.; et al. Epigenome-wide association study of diet quality in the Women’s Health Initiative and TwinsUK cohort. Int. J. Epidemiol. 2020. [Google Scholar] [CrossRef]
- Bordoni, L.; Gabbianelli, R. Primers on nutrigenetics and nutri(epi)genomics: Origins and development of precision nutrition. Biochimie 2019, 160, 156–171. [Google Scholar] [CrossRef]
- Veenstra, T.D. Omics in Systems Biology: Current Progress and Future Outlook. Proteomics 2021, 21, e2000235. [Google Scholar] [CrossRef]
- Allain, G. Genomics, proteomics, cytomics, and genetic. MLO. Med. Lab. Obs. 2012, 44, 36–37. [Google Scholar]
- Ke, J.; Shen, Y.; Lu, Y.; Deng, J.; Wright, J.D.; Zhang, Y.; Huang, Q.; Wang, D.; Jing, N.; Liang, X.; et al. Quantitative analysis of abnormalities in gynecologic cytopathology with deep learning. Lab. Investig. 2021. [Google Scholar] [CrossRef]
- Tamarelle, J.; Thiébaut, A.C.M.; de Barbeyrac, B.; Bébéar, C.; Ravel, J.; Delarocque-Astagneau, E. The vaginal microbiota and its association with human papillomavirus, Chlamydia trachomatis, Neisseria gonorrhoeae and Mycoplasma genitalium infections: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2019, 25, 35–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, T.; Neal, A.S.; Moatamed, N.A.; Memarzadeh, S. Exploring the Potential of Drug Response Assays for Precision Medicine in Ovarian Cancer. Int. J. Mol. Sci. 2020, 22, 305. [Google Scholar] [CrossRef]
- Mancabelli, L.; Tarracchini, C.; Milani, C.; Lugli, G.A.; Fontana, F.; Turroni, F.; van Sinderen, D.; Ventura, M. Vaginotypes of the human vaginal microbiome. Environ. Microbiol. 2021. [Google Scholar] [CrossRef]
- Liu, J.; Luo, M.; Zhang, Y.; Cao, G.; Wang, S. Association of high-risk human papillomavirus infection duration and cervical lesions with vaginal microbiota composition. Ann. Transl. Med. 2020, 8, 1161. [Google Scholar] [CrossRef]
- Lee, C.Y.; Cheu, R.K.; Lemke, M.M.; Gustin, A.T.; France, M.T.; Hampel, B.; Thurman, A.R.; Doncel, G.F.; Ravel, J.; Klatt, N.R.; et al. Quantitative modeling predicts mechanistic links between pre-treatment microbiome composition and metronidazole efficacy in bacterial vaginosis. Nat. Commun. 2020, 11, 6147. [Google Scholar] [CrossRef]
- Di Simone, N.; Santamaria Ortiz, A.; Specchia, M.; Tersigni, C.; Villa, P.; Gasbarrini, A.; Scambia, G.; D’Ippolito, S. Recent Insights on the Maternal Microbiota: Impact on Pregnancy Outcomes. Front. Immunol. 2020, 11, 528202. [Google Scholar] [CrossRef]
- Fettweis, J.M.; Serrano, M.G.; Brooks, J.P.; Edwards, D.J.; Girerd, P.H.; Parikh, H.I.; Huang, B.; Arodz, T.J.; Edupuganti, L.; Glascock, A.L.; et al. The vaginal microbiome and preterm birth. Nat. Med. 2019, 25, 1012–1021. [Google Scholar] [CrossRef] [Green Version]
- Susic, D.; Davis, G.; O’ Sullivan, A.J.; McGovern, E.; Harris, K.; Roberts, L.M.; Craig, M.E.; Mangos, G.; Hold, G.L.; El-Omar, E.M.; et al. Microbiome Understanding in Maternity Study (MUMS), an Australian prospective longitudinal cohort study of maternal and infant microbiota: Study protocol. BMJ Open 2020, 10, e040189. [Google Scholar]
- Diop, K.; Diop, A.; Levasseur, A.; Mediannikov, O.; Robert, C.; Armstrong, N.; Couderc, C.; Bretelle, F.; Raoult, D.; Fournier, P.E.; et al. Microbial Culturomics Broadens Human Vaginal Flora Diversity: Genome Sequence and Description of Prevotella lascolaii sp. nov. Isolated from a Patient with Bacterial Vaginosis. OMICS 2018, 22, 210–222. [Google Scholar] [CrossRef]
- ElRakaiby, M.; Dutilh, B.E.; Rizkallah, M.R.; Boleij, A.; Cole, J.N.; Aziz, R.K. Pharmacomicrobiomics: The impact of human microbiome variations on systems pharmacology and personalized therapeutics. OMICS 2014, 18, 402–414. [Google Scholar] [CrossRef] [Green Version]
- Harden, S.L.; Zhou, J.; Gharanei, S.; Diniz-da-Costa, M.; Lucas, E.S.; Cui, L.; Murakami, K.; Fang, J.; Chen, Q.; Brosens, J.J.; et al. Exometabolomic Analysis of Decidualizing Human Endometrial Stromal and Perivascular Cells. Front. Cell. Dev. Biol. 2021. [Google Scholar] [CrossRef]
- Jehan, F.; Sazawal, S.; Baqui, A.H.; Nisar, M.I.; Dhingra, U.; Khanam, R.; Ilyas, M.; Dutta, A.; Mitra, D.K.; Mehmood, U.; et al. Multiomics Characterization of Preterm Birth in Low- and Middle-Income Countries. JAMA. Netw. Open 2020, 3, e2029655. [Google Scholar] [CrossRef]
- Li, J.Y.; Li, C.J.; Lin, L.T.; Tsui, K.H. Multi-Omics Analysis Identifying Key Biomarkers in Ovarian Cancer. Cancer Control. 2020, 27, 1073274820976671. [Google Scholar] [CrossRef]
- Westergaard, D.; Nielsen, A.P.; Mortensen, L.H.; Nielsen, H.S.; Brunak, S. Phenome-Wide Analysis of Short- and Long-Run Disease Incidence Following Recurrent Pregnancy Loss Using Data From a 39-Year Period. J. Am. Heart Assoc. 2020, 9, e015069. [Google Scholar] [CrossRef]
- Joo, Y.Y.; Actkins, K.; Pacheco, J.A.; Basile, A.O.; Carroll, R.; Crosslin, D.R.; Hakonarson, H.; Harley, J.B. A Polygenic and Phenotypic Risk Prediction for Polycystic Ovary Syndrome Evaluated by Phenome-Wide Association Studies. J. Clin. Endocrinol. Metab. 2020, 105, 1918–1936. [Google Scholar] [CrossRef] [PubMed]
- Vitonis, A.F.; Vincent, K.; Rahmioglu, N.; Fassbender, A.; Buck Louis, G.M.; Hummelshoj, L.; Giudice, L.C.; Stratton, P.; Adamson, G.D.; Becker, C.M.; et al. World Endometriosis Research Foundation Endometriosis Phenome and Biobanking Harmonization Project: II. Clinical and covariate phenotype data collection in endometriosis research. Fertil. Steril. 2014, 102, 1223–1232. [Google Scholar] [CrossRef]
- Rahmioglu, N.; Fassbender, A.; Vitonis, A.F.; Tworoger, S.S.; Hummelshoj, L.; D’Hooghe, T.M.; Adamson, G.D.; Giudice, L.C.; Becker, C.M.; Zondervan, K.T.; et al. World Endometriosis Research Foundation Endometriosis Phenome and Biobanking Harmonization Project: III. Fluid biospecimen collection, processing, and storage in endometriosis research. Fertil. Steril. 2014, 102, 1233–1243. [Google Scholar] [CrossRef] [PubMed]
- Fassbender, A.; Rahmioglu, N.; Vitonis, A.F.; Viganò, P.; Giudice, L.C.; D’Hooghe, T.M.; Hummelshoj, L.; Adamson, G.D.; Becker, C.M.; Missmer, S.A.; et al. World Endometriosis Research Foundation Endometriosis Phenome and Biobanking Harmonisation Project: IV. Tissue collection, processing, and storage in endometriosis research. Fertil. Steril. 2014, 102, 1244–1253. [Google Scholar] [CrossRef]
- Becker, C.M.; Laufer, M.R.; Stratton, P.; Hummelshoj, L.; Missmer, S.A.; Zondervan, K.T.; Adamson, G.D.; WERF EPHect Working Group. World Endometriosis Research Foundation Endometriosis Phenome and Biobanking Harmonisation Project: I. Surgical phenotype data collection in endometriosis research. Fertil. Steril. 2014, 102, 1213–1222. [Google Scholar] [CrossRef]
- Viganò, P.; Somigliana, E.; Panina, P.; Rabellotti, E.; Vercellini, P.; Candiani, M. Principles of phenomics in endometriosis. Hum. Reprod. Update 2012, 18, 248–259. [Google Scholar] [CrossRef]
- Magee, L.A.; Strang, A.; Li, L.; Tu, D.; Tumtaweetikul, W.; Craik, R.; Daniele, M.; Etyang, A.K.; D’Alessandro, U.; Ogochukwu, O.; et al. The PRECISE (PREgnancy Care Integrating translational Science, Everywhere) database: Open-access data collection in maternal and newborn health. Reprod. Health 2020, 17, 50. [Google Scholar] [CrossRef]
- Erekson, E.A.; Iglesia, C.B. Improving Patient Outcomes in Gynecology: The Role of Large Data Registries and Big Data Analytics. J. Minim. Invasive Gynecol. 2015, 22, 1124–1129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzo, S.; Botta, F.; Raimondi, S.; Origgi, D.; Fanciullo, C.; Morganti, A.G.; Bellomi, M. Radiomics: The facts and the challenges of image analysis. Eur. Radiol. Exp. 2018, 2, 36. [Google Scholar] [CrossRef]
- Rizzo, S.; Manganaro, L.; Dolciami, M.; Gasparri, M.L.; Papadia, A.; Del Grande, F. Computed Tomography Based Radiomics as a Predictor of Survival in Ovarian Cancer Patients: A Systematic Review. Cancers 2021, 13, 573. [Google Scholar] [CrossRef]
- Yoldemir, T. Internet of Things and women’s health. Climacteric 2020, 23, 423–425. [Google Scholar] [CrossRef] [PubMed]
- Runkle, J.; Sugg, M.; Boase, D.; Galvin, S.L.C.; Coulson, C. Use of wearable sensors for pregnancy health and environmental monitoring: Descriptive findings from the perspective of patients and providers. Digit. Health 2019, 5, 2055207619828220. [Google Scholar] [CrossRef] [Green Version]
- Niela-Vilén, H.; Auxier, J.; Ekholm, E.; Sarhaddi, F.; Asgari Mehrabadi, M.; Mahmoudzadeh, A.; Azimi, I.; Liljeberg, P.; Rahmani, A.M.; Axelin, A. Pregnant women’s daily patterns of well-being before and during the COVID-19 pandemic in Finland: Longitudinal monitoring through smartwatch technology. PLoS ONE 2021, 16, e0246494. [Google Scholar] [CrossRef] [PubMed]
- Eysenbach, G. Infodemiology and infoveillance: Framework for an emerging set of public health informatics methods to analyze search, communication and publication behavior on the Internet. J. Med. Internet Res. 2009, 11, e11. [Google Scholar] [CrossRef]
- Suchard, M.A.; Hadfield, R.; Elliott, T.; Kennedy, S. Beyond providing information: The Internet as a research tool in reproductive medicine. Hum. Reprod. 1998, 13, 6–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deevey, S. Endometriosis: Internet resources. Med. Ref. Serv. Q. 2005, 24, 67–76. [Google Scholar] [CrossRef]
- Rezniczek, G.A.; Küppers, L.; Heuer, H.; Hefler, L.A.; Buerkle, B.; Tempfer, C.B. Quality of websites of obstetrics and gynecology departments: A cross-sectional study. BMC Pregnancy Childbirth 2015, 15, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, L.; Boniface, E.R.; Han, L.Y.; Albright, J.; Doty, N.; Darney, B.G. The Abortion Web Ecosystem: Cross-Sectional Analysis of Trustworthiness and Bias. J. Med. Internet Res. 2020, 22, e20619. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, M.; Aggarwal, S.; Barker, C.; Davis, C.J.; Duffy, J.M.N. Googling endometriosis: A systematic review of information available on the Internet. Am. J. Obstet. Gynecol. 2017, 216, 451–458.e1. [Google Scholar] [CrossRef] [Green Version]
- Adawi, M.; Martini, M.; Watad, A.; Tornali, C.; Barberis, I.; Borromeo, F.; Bragazzi, N.L. Celebrity effect in public health and bioethics: An “Italian case” in endometriosis prevention communication. Acta Med. Mediterr. 2019, 35, 913. [Google Scholar]
- Wilson, S.; Mogan, S.; Kaur, K. Understanding the role of Facebook to support women with endometriosis: A Malaysian perspective. Int. J. Nurs. Pract. 2020, 26, e12833. [Google Scholar] [CrossRef]
- Carneiro, M.M.; Farace, B.L.; Ribeiro, L.S.C.; Silverio, R.C.C.C.; Moreira, T.; Filho, A.L.D.S.; Baroni, A.L.L.R.; Ferreira, M.C.F. Using social media to educate women and healthcare providers on endometriosis: Preliminary results. JBRA. Assist. Reprod. 2020, 24, 9–12. [Google Scholar] [CrossRef]
- Shadbolt, N.A.; Parker, M.A.; Orthia, L.A. Communicating endometriosis with young women to decrease diagnosis time. Health Promot. J. Aust. 2013, 24, 151–154. [Google Scholar] [CrossRef]
- Blakemore, J.K.; Bayer, A.H.; Smith, M.B.; Grifo, J.A. Infertility influencers: An analysis of information and influence in the fertility webspace. J. Assist. Reprod. Genet. 2020, 37, 1371–1378. [Google Scholar] [CrossRef] [PubMed]
- Ebbesen, M.; Jensen, T.G. Nanomedicine: Techniques, potentials, and ethical implications. J. Biomed. Biotechnol. 2006, 2006, 51516. [Google Scholar] [CrossRef]
- Nateghi, R.; Aven, T. Risk Analysis in the Age of Big Data: The Promises and Pitfalls. Risk Anal. 2021. [Google Scholar] [CrossRef] [PubMed]
Type of Big Data | Sources |
---|---|
Molecular Big Data | Wet-lab, microarrays Bioinformatics/cheminformatics repositories |
Computational/Clinical Big Data | Electronic Health Records (EHRs) and clinical databases |
Imaging Big Data | Wearable sensors, imaging approaches |
Digital Big Data | Website searches |
OMICS Discipline | Example | References |
---|---|---|
Genomics | Cancer genomics | [10,11] |
Nutrigenomics | [17,18] | |
Epigenomics | [19] | |
Nutriepigenomics | [20,21] | |
Exosome genomics | [16] | |
Proteomics | Cancer proteomics | [12,13,14,15] |
Exosome proteomics | [16] | |
Transcriptomics | Cancer transcriptomics | [22] |
Cytomics | Cancer cytomics | [22,23,24] |
Metabolomics/metabonomics | Metabolomics | [16,35] |
Exometabolomics/microbial exometabolomics | ||
Microbiomics | Vaginal and maternal microbiomics; microbial culturomics | [25,26,27,28,29,30,31,32,33] |
Pharmacomicrobiomics and pharmacoculturomics | Cancer pharmacomicrobiomics | [34] |
Multi-omics | Multi-omics of preterm birth | [36] |
Multi-omics of gynecological cancers | [37] | |
Phenomics | Cancer and infertility phenomics | [38,39,40,41,42,43,44] |
Database | Extended Title |
---|---|
COEMIG | Center of Excellence in Minimally Invasive Gynecology |
COMPARE-UF | Patient Centered Results for Uterine Fibroids |
GynOp | National Quality Registry for Gynaecological Surgery |
PanCareLIFE | PanCare Studies in Fertility and Ototoxicity to Improve Quality of Life after Cancer during Childhood, Adolescence and Young Adulthood |
PFD Registry | Pelvic Floor Disorders |
PRECISE Registry | PREgnancy Care Integrating translational Science, Everywhere |
SART Registry | Society for Assisted Reproductive Technology |
Gynecology Sub-Field Potentially Interested by Big Data | Examples |
---|---|
Reproductive health (pregnancy, infertility, abortion, endometriosis) and link to mental health and psychological well-being | Physiological and physio-pathological insights Health-related literacy |
Assisted reproduction | Public interest and health-related literacy |
Sexually transmitted diseases (such as HPV) | Health-related literacy |
Gynecological cancers (endometrial, cervical, and ovarian cancers) | Molecular and cellular characterizations Clinical outcomes Health-related literacy |
Potential Pitfall |
---|
Technical Challenge |
Data integration and combination |
Data portability |
Ethical/Legal Challenge |
Blurred distinction between data owner and data user |
Ethical consent |
Data privacy and data protection |
Data portability |
Data sharing |
Data integrity |
Data transparency |
Data replicability/reproducibility |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khamisy-Farah, R.; Furstenau, L.B.; Kong, J.D.; Wu, J.; Bragazzi, N.L. Gynecology Meets Big Data in the Disruptive Innovation Medical Era: State-of-Art and Future Prospects. Int. J. Environ. Res. Public Health 2021, 18, 5058. https://doi.org/10.3390/ijerph18105058
Khamisy-Farah R, Furstenau LB, Kong JD, Wu J, Bragazzi NL. Gynecology Meets Big Data in the Disruptive Innovation Medical Era: State-of-Art and Future Prospects. International Journal of Environmental Research and Public Health. 2021; 18(10):5058. https://doi.org/10.3390/ijerph18105058
Chicago/Turabian StyleKhamisy-Farah, Rola, Leonardo B. Furstenau, Jude Dzevela Kong, Jianhong Wu, and Nicola Luigi Bragazzi. 2021. "Gynecology Meets Big Data in the Disruptive Innovation Medical Era: State-of-Art and Future Prospects" International Journal of Environmental Research and Public Health 18, no. 10: 5058. https://doi.org/10.3390/ijerph18105058
APA StyleKhamisy-Farah, R., Furstenau, L. B., Kong, J. D., Wu, J., & Bragazzi, N. L. (2021). Gynecology Meets Big Data in the Disruptive Innovation Medical Era: State-of-Art and Future Prospects. International Journal of Environmental Research and Public Health, 18(10), 5058. https://doi.org/10.3390/ijerph18105058