Contribution of Lower Extremity Joints on Energy Absorption during Soft Landing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Data Processing
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leppänen, M.; Pasanen, K.; Krosshaug, T.; Kannus, P.; Vasankari, T.; Kujala, U.M.; Bahr, R.; Perttunen, J.; Parkkari, J. Sagittal Plane Hip, Knee, and Ankle Biomechanics and the Risk of Anterior Cruciate Ligament Injury: A Prospective Study. Orthop. J. Sports Med. 2017, 5, 2325967117745487. [Google Scholar] [CrossRef] [Green Version]
- Chappell, J.D.; Creighton, R.A.; Giuliani, C.; Yu, B.; Garrett, W.E. Kinematics and electromyography of landing preparation in vertical stop-jump: Risks for noncontact anterior cruciate ligament injury. Am. J. Sports Med. 2007, 35, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Sinsurin, K.; Vachalathiti, R.; Jalayondeja, W.; Limroongreungrat, W. Different Sagittal Angles and Moments of Lower Extremity Joints during Single-leg Jump Landing among Various Directions in Basketball and Volleyball Athletes. J. Phys. Ther. Sci. 2013, 25, 1109–1113. [Google Scholar] [CrossRef] [Green Version]
- McCurdy, K.; Walker, J.; Saxe, J.; Woods, J. The effect of short-term resistance training on hip and knee kinematics during vertical drop jumps. J. Strength Cond. Res. 2012, 26, 1257–1264. [Google Scholar] [CrossRef] [PubMed]
- Ameer, M.A.; Muaidi, Q.I. Relation between peak knee flexion angle and knee ankle kinetics in single-leg jump landing from running: A pilot study on male handball players to prevent ACL injury. Phys. Sportsmed. 2017, 45, 337–343. [Google Scholar] [CrossRef]
- DeMorat, G.; Weinhold, P.; Blackburn, T.; Chudik, S.; Garrett, W. Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury. Am. J. Sports Med. 2004, 32, 477–483. [Google Scholar] [CrossRef]
- Boden, B.P.; Sheehan, F.T.; Torg, J.S.; Hewett, T.E. Non-contact ACL Injuries: Mechanisms and Risk Factors. J. Am. Acad. Orthop. Surg. 2010, 18, 520–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markolf, K.L.; Burchfield, D.M.; Shapiro, M.M.; Shepard, M.F.; Finerman, G.A.; Slauterbeck, J.L. Combined knee loading states that generate high anterior cruciate ligament forces. J. Orthop. Res. 1995, 13, 930–935. [Google Scholar] [CrossRef]
- Berns, G.S.; Hull, M.L.; Patterson, H.A. Strain in the anteromedial bundle of the anterior cruciate ligament under combination loading. J. Orthop. Res. 1992, 10, 167–176. [Google Scholar] [CrossRef]
- Verniba, D.; Vescovi, J.D.; Hood, D.A.; Gage, W.H. The analysis of knee joint loading during drop landing from different heights and under different instruction sets in healthy males. Sports Med. Open 2017, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- DeVita, P.; Skelly, W.A. Effect of landing stiffness on joint kinetics and energetics in the lower extremity. Med. Sci. Sports Exerc. 1992, 24, 108–115. [Google Scholar] [CrossRef] [Green Version]
- Iida, Y.; Kanehisa, H.; Inaba, Y.; Nakazawa, K. Activity modulations of trunk and lower limb muscles during impact-absorbing landing. J. Electromyogr. Kinesiol. 2011, 21, 602–609. [Google Scholar] [CrossRef]
- Norcross, M.F.; Blackburn, J.T.; Goerger, B.M.; Padua, D.A. The association between lower extremity energy absorption and biomechanical factors related to anterior cruciate ligament injury. Clin. Biomech. 2010, 25, 1031–1036. [Google Scholar] [CrossRef]
- Decker, M.J.; Torry, M.R.; Wyland, D.J.; Sterett, W.I.; Richard Steadman, J. Gender differences in lower extremity kinematics, kinetics and energy absorption during landing. Clin. Biomech. 2003, 18, 662–669. [Google Scholar] [CrossRef]
- Mandelbaum, B.R.; Silvers, H.J.; Watanabe, D.S.; Knarr, J.F.; Thomas, S.D.; Griffin, L.Y.; Kirkendall, D.T.; Garrett, W., Jr. Effectiveness of a neuromuscular and proprioceptive training program in preventing anterior cruciate ligament injuries in female athletes: 2-year follow-up. Am. J. Sports Med. 2005, 33, 1003–1010. [Google Scholar] [CrossRef]
- Hewett, T.E.; Stroupe, A.L.; Nance, T.A.; Noyes, F.R. Plyometric training in female athletes. Decreased impact forces and increased hamstring torques. Am. J. Sports Med. 1996, 24, 765–773. [Google Scholar] [CrossRef]
- Grimm, N.L.; Jacobs, J.C., Jr.; Kim, J.; Denney, B.S.; Shea, K.G. Anterior Cruciate Ligament and Knee Injury Prevention Programs for Soccer Players: A Systematic Review and Meta-analysis. Am. J. Sports Med. 2015, 43, 2049–2056. [Google Scholar] [CrossRef]
- Postma, W.F.; West, R.V. Anterior cruciate ligament injury-prevention programs. J. Bone Joint Surg. Am. 2013, 95, 661–669. [Google Scholar] [CrossRef]
- Gilchrist, J.; Mandelbaum, B.R.; Melancon, H.; Ryan, G.W.; Silvers, H.J.; Griffin, L.Y.; Watanabe, D.S.; Dick, R.W.; Dvorak, J. A randomized controlled trial to prevent noncontact anterior cruciate ligament injury in female collegiate soccer players. Am. J. Sports Med. 2008, 36, 1476–1483. [Google Scholar] [CrossRef]
- Hägglund, M.; Waldén, M.; Atroshi, I. Preventing knee injuries in adolescent female football players—Design of a cluster randomized controlled trial [NCT00894595]. BMC Musculoskelet. Disord. 2009, 10, 75. [Google Scholar] [CrossRef] [Green Version]
- Padua, D.A.; Marshall, S.W.; Boling, M.C.; Thigpen, C.A.; Garrett, W.E., Jr.; Beutler, A.I. The Landing Error Scoring System (LESS) Is a valid and reliable clinical assessment tool of jump-landing biomechanics: The JUMP-ACL study. Am. J. Sports Med. 2009, 37, 1996–2002. [Google Scholar] [CrossRef] [PubMed]
- Wernli, K.; Ng, L.; Phan, X.; Davey, P.; Grisbrook, T. The relationship between landing sound, vertical ground reaction force, and kinematics of the lower limb during drop landings in healthy men. J. Orthop Sports Phys. Ther. 2016, 46, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Tamura, A.; Akasaka, K.; Otsudo, T.; Shiozawa, J.; Toda, Y.; Yamada, K. Dynamic knee valgus alignment influences impact attenuation in the lower extremity during the deceleration phase of a single-leg landing. PLoS ONE 2017, 12, e0179810. [Google Scholar] [CrossRef]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Heidt, R.S., Jr.; Colosimo, A.J.; McLean, S.G.; van den Bogert, A.J.; Paterno, M.V.; Succop, P. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: A prospective study. Am. J. Sports Med. 2005, 33, 492–501. [Google Scholar] [CrossRef] [Green Version]
- Lucci, S.; Cortes, N.; Van Lunen, B.; Ringleb, S.; Onate, J. Knee and hip sagittal and transverse plane changes after two fatigue protocols. J. Sci Med. Sport 2011, 14, 453–459. [Google Scholar] [CrossRef] [Green Version]
- Peterno, M.V.; Schmitt, L.C.; Ford, K.R.; Rauh, M.J.; Myer, G.D.; Huang, B.; Hewett, T.E. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am. J. Sports Med. 2010, 38, 1968–1978. [Google Scholar] [CrossRef]
- Yu, B.; Lin, C.F.; Garrett, W.E. Lower extremity biomechanics during the landing of a stop-jump task. Clin. Biomech. 2006, 21, 297–305. [Google Scholar] [CrossRef]
- Myers, C.A.; Torry, M.R.; Peterson, D.S.; Shelburne, K.B.; Giphart, J.E.; Krong, J.P.; Woo, S.L.; Steadman, J.R. Measurements of tibiofemoral kinematics during soft and stiff drop landings using biplane fluoroscopy. Am. J. Sports Med. 2011, 39, 1714–1722. [Google Scholar] [CrossRef] [Green Version]
- Winter, D.A. Biomechanics and Motor Control. of Human Movement, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; Volume 2009. [Google Scholar]
- Kulas, A.S.; Schmitz, R.J.; Schultz, S.J.; Watson, M.A.; Perrin, D.H. Energy absorption as a predictor of leg impedance in highly trained females. J. Appl. Biomech. 2006, 22, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Brown, T.N.; O’Donovan, M.; Hasselquist, L.; Corner, B.; Schiffman, J.M. Lower limb flexion posture relates to energy absorption during drop landings with soldier-relevant body borne loads. Appl. Ergon. 2016, 52, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Coventry, E.; O’Connor, K.M.; Hart, B.A.; Earl, J.E.; Ebersole, K.T. The effect of lower extremity fatigue on shock attenuation during single-leg landing. Clin. Biomech. 2006, 21, 1090–1097. [Google Scholar] [CrossRef]
- Ferber, R.; Davis, I.M.; Williams, D.S., 3rd. Gender differences in lower extremity mechanics during running. Clin. Biomech. 2003, 18, 350–357. [Google Scholar] [CrossRef]
- Moran, K.A.; Wallace, E.S. Eccentric loading and range of knee joint motion effects on performance enhancement in vertical jumping. Hum. Mov. Sci. 2007, 26, 824–840. [Google Scholar] [CrossRef]
- Derrick, T.R. The effects of knee contact angle on impact forces and accelerations. Med. Sci. Sports Exerc. 2004, 36, 832–837. [Google Scholar] [CrossRef]
- Hewett, T.E.; Zazulak, B.T.; Myer, G.D.; Ford, K.R. A review of electromyographic activation levels, timing differences, and increased anterior cruciate ligament injury incidence in female athletes. Br. J. Sports Med. 2005, 39, 347–350. [Google Scholar] [CrossRef] [Green Version]
- Walsh, M.; Boling, M.C.; McGrath, M.; Blackburn, J.T.; Padua, D.A. Lower extremity muscle activation and knee flexion during a jump-landing task. J. Athl. Train. 2012, 47, 406–413. [Google Scholar] [CrossRef] [Green Version]
- Zazulak, B.T.; Ponce, P.L.; Straub, S.J.; Medvecky, M.J.; Avedisian, L.; Hewett, T.E. Gender comparison of hip muscle activity during single-leg landing. J. Orthop. Sports Phys. Ther. 2005, 35, 292–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dargel, J.; Gotter, M.; Mader, K.; Pennig, D.; Koebke, J.; Schmidt-Wiethoff, R. Biomechanics of the anterior cruciate ligament and implications for surgical reconstruction. Strateg. Trauma Limb Reconstr. 2007, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.N.; Bates, B.T.; Dufek, J.S. Contributions of lower extremity joints to energy dissipation during landings. Med. Sci. Sports Exerc. 2000, 32, 812–819. [Google Scholar] [CrossRef]
- Dingenen, B.; Malfait, B.; Vanrenterghem, J.; Robinson, M.A.; Verschueren, S.M.; Staes, F.F. Can two-dimensional measured peak sagittal plane excursions during drop vertical jumps help identify three-dimensional measured joint moments? Knee 2015, 22, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Stanley, L.E.; Harkey, M.; Luc-Harkey, B.; Frank, B.S.; Pietrosimone, B.; Blackburn, J.T.; Padua, D.A. Ankle Dorsiflexion displacement is associated with hip and knee kinematics in females following anterior cruciate ligament reconstruction. Res. Sports Med. 2018, 7, 1–13. [Google Scholar] [CrossRef]
- Sheehan, F.T.; Sipprell, W.H., 3rd; Boden, B.P. Dynamic sagittal plane trunk control during anterior cruciate ligament injury. Am. J. Sports Med. 2012, 40, 1068–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortiz, A.; Olson, S.; Libby, C.L.; Trudelle-Jackson, E.; Kwon, Y.H.; Etnyre, B.; Bartlett, W. Landing mechanics between noninjured women and women with anterior cruciate ligament reconstruction during 2 jump tasks. Am. J. Sports Med. 2008, 36, 149–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gokeler, A.; Hof, A.L.; Arnold, M.P.; Dijkstra, P.U.; Postema, K.; Otten, E. Abnormal landing strategies after ACL reconstruction. Scand. J. Med. Sci. Sports 2010, 20, e12–e19. [Google Scholar] [CrossRef] [PubMed]
All Participants | Soft Landing Group | Stiff Landing Group | p Value b | |
---|---|---|---|---|
Individuals | 20 | 10 | 10 | - |
Age (years old) | 21.0 (0.9) | 20.8 (0.7) | 21.5 (0.6) | >0.05 |
Height (cm) | 160.4 (3.9) | 161.1 (3.9) | 160.0 (4.5) | >0.05 |
Weight (kg) | 53.6 (6.3) | 55.6 (6.0) | 52.6 (7.3) | >0.05 |
Title | Soft Landing Group (n = 10) | Stiff Landing Group (n = 10) | p Value b | Effect Size e |
---|---|---|---|---|
Joint Angles (degree) | ||||
Hip Flexion | 61.61 (9.87) | 51.87 (12.25) | 0.08 | 0.87 |
Hip Adduction | 3.73 (6.19) | 0.01 (5.47) | 0.19 | 0.63 |
Knee Flexion | 80.99 (8.07) | 63.34 (5.87) | 0.00 c | 2.39 |
Knee Abduction | −2.60 (2.94) | −3.18 (3.90) | 0.72 | 0.10 |
Ankle Dorsi-Flexion | 37.10 (5.30) | 31.56 (5.10) | 0.04 d | 1.07 c |
Joint Moment (N∙m/kg) | ||||
Hip Extensor | 1.90 (0.52) | 2.23(0.57) | 0.22 | −0.59 |
Hip Abductor | 0.79 (0.45) | 0.79 (0.31) | 0.98 | 0.01 |
Knee Extensor | 1.45 (0.32) | 1.39 (0.40) | 0.72 | 0.17 |
Knee Adductor | 0.40 (0.21) | 0.47 (0.25) | 0.56 | −0.28 |
Ankle Plantar Flexor | 1.88 (0.31) | 2.16 (0.49) | 0.16 | −0.69 |
Joint Power (W/kg) | ||||
Hip Extensor | −9.18 (4.63) | −10.61(4.56) | 0.52 | 0.31 |
Hip Abductor | −2.40 (1.20) | −3.44 (2.81) | 0.32 | 0.48 |
Knee Extensor | −13.18 (3.82) | −11.49 (3.26) | 0.33 | −0.48 |
Knee Adductor | −1.79 (0.87) | −1.72 (0.99) | 0.88 | −0.07 |
Ankle Plantar Flexor | −18.23 (5.61) | −19.40 (4.31) | 0.62 | 0.23 |
vGRF (N/kg) | 2.00 (0.53) | 2.37 (0.38) | 0.11 | −0.79 |
Unstandardized Coefficients | Standardized Coefficients | t Value | p Value | 95% CI a | ||
---|---|---|---|---|---|---|
B | B SE | β | ||||
Hip Joint Work | −28.85 | 8.29 | −0.57 | −3.47 | 0.003 b | −46.43, −11.27 |
Knee Joint Work | −32.8 | 5.11 | −0.64 | −6.42 | 0.000 b | −43.66, −21.97 |
Ankle Joint Work | 31.01 | 7.20 | 0.61 | −4.31 | 0.001 b | 15.75, 46.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamura, A.; Akasaka, K.; Otsudo, T. Contribution of Lower Extremity Joints on Energy Absorption during Soft Landing. Int. J. Environ. Res. Public Health 2021, 18, 5130. https://doi.org/10.3390/ijerph18105130
Tamura A, Akasaka K, Otsudo T. Contribution of Lower Extremity Joints on Energy Absorption during Soft Landing. International Journal of Environmental Research and Public Health. 2021; 18(10):5130. https://doi.org/10.3390/ijerph18105130
Chicago/Turabian StyleTamura, Akihiro, Kiyokazu Akasaka, and Takahiro Otsudo. 2021. "Contribution of Lower Extremity Joints on Energy Absorption during Soft Landing" International Journal of Environmental Research and Public Health 18, no. 10: 5130. https://doi.org/10.3390/ijerph18105130
APA StyleTamura, A., Akasaka, K., & Otsudo, T. (2021). Contribution of Lower Extremity Joints on Energy Absorption during Soft Landing. International Journal of Environmental Research and Public Health, 18(10), 5130. https://doi.org/10.3390/ijerph18105130