Personal Profiles, Family Environment, Patterns of Smartphone Use, Nomophobia, and Smartphone Addiction across Low, Average, and High Perceived Academic Performance Levels among High School Students in the Philippines
Abstract
:1. Introduction
1.1. Smartphone Use, Nomophobia, Smartphone Addiction, and Academic Performance
1.2. Nomophobia and Smartphone Addiction in the Philippines
1.3. Personal Profiles, Family Environment, Patterns of Smartphone Use, Nomophobia, Smartphone Addiction, and Academic Performance
1.4. Academic Performance and Perceived Academic Performance
1.5. Conceptual Framework
2. Materials and Methods
2.1. Participants and Design
2.2. Procedure
2.3. Materials
2.3.1. Demographics (Personal Profiles and Family Environment), Smartphone Usage Questionnaire, and Perceived Academic Performance
2.3.2. Nomophobia (NMP-Q Scale)
2.3.3. Smartphone Addiction Scale-Short Version
2.4. Statistical Analyses
3. Results
3.1. General Characteristics of Variables
3.2. Association between Personal Profiles, Patterns of Smartphone Use, Nomophobia, Smartphone Addiction, and Perceived Academic Performance
3.3. Differences in Personal Profiles, Family Environment, Patterns of Smartphone Usage, Nomophobia, and Smartphone Addiction across Different Academic Performance Groups
3.4. Predicton Factors of Low, Average, and High Perceived Academic Performance
4. Discussion
5. Conclusions
5.1. Implications
5.2. Limitations and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Samaha, M.; Hawi, N.S. Relationships among smartphone addiction, stress, academic performance, and satisfaction with life. Comput. Hum. Behav. 2016, 57, 321–325. [Google Scholar] [CrossRef]
- Haug, S.; Castro, R.P.; Kwon, M.; Filler, A.; Kowatsch, T.; Schaub, M.P. Smartphone use and smartphone addiction among young people in Switzerland. J. Behav. Addict. 2015, 4, 299–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, M.; Lee, J.Y.; Won, W.Y.; Park, J.W.; Min, J.A.; Hahn, C.; Gu, X.; Choi, J.H.; Kim, D.J. Development and validation of a Smartphone Addiction Scale (SAS). PLoS ONE 2013, 8, e56936. [Google Scholar] [CrossRef] [PubMed]
- Lemola, S.; Perkinson-Gloor, N.; Brand, S.; Dewald-Kaufmann, J.F.; Grob, A. Adolescents’ electronic media use at night, sleep disturbance, and depressive symptoms in the smartphone age. J. Youth Adolesc. 2015, 44, 405–418. [Google Scholar] [CrossRef]
- Tamura, H.; Nishida, T.; Tsuji, A.; Sakakibara, H. Association between excessive use of mobile phone and insomnia and depression among Japanese adolescents. Int. J. Environ. Res. Public Health 2017, 14, 701. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, R.R.; Salman, F.; Malik, S.A.; Streimikiene, D.; Soomro, R.H.; Pahi, M.H. Smartphone use and academic performance of university students: A mediation and moderation analysis. Sustainability 2020, 12, 439. [Google Scholar] [CrossRef] [Green Version]
- Amez, S.; Vujic, S.; De Marez, L.; Baert, S. Smartphone Use and Academic Performance: First Evidence from Longitudinal Data. IZA Discussion Paper No. 12862. Available online: https://ssrn.com/abstract=3521679 (accessed on 15 August 2020).
- Amez, S.; Baert, S. Smartphone use and academic performance: A literature review. Int. J. Educ. Res. 2020, 103, 101618. [Google Scholar] [CrossRef]
- Baert, S.; Vujić, S.; Amez, S.; Claeskens, M.; Daman, T.; Maeckelberghe, A.; Omey, E.; De Marez, L. Smartphone use and academic performance: Correlation or causal relationship? Kyklos 2020, 73, 22–46. [Google Scholar] [CrossRef] [Green Version]
- Chaudhury, P.; Tripathy, H.K. A study on impact of smartphone addiction on academic performance. Int. J. Eng. Technol. 2018, 7, 50–53. [Google Scholar] [CrossRef] [Green Version]
- Felisoni, D.D.; Godoi, A.S. Cell phone usage and academic performance: An experiment. Comput. Educ. 2018, 117, 175–187. [Google Scholar] [CrossRef]
- Grant, J.E.; Lust, K.; Chamberlain, S.R. Problematic smartphone use associated with greater alcohol consumption, mental health issues, poorer academic performance, and impulsivity. J. Behav. Addict. 2019, 8, 335–342. [Google Scholar] [CrossRef]
- Hawi, N.S.; Samaha, M. To excel or not to excel: Strong evidence on the adverse effect of smartphone addiction on academic performance. Comput. Educ. 2016, 98, 81–89. [Google Scholar] [CrossRef]
- Kim, M.H.; Min, S.; Ahn, J.S.; An, C.; Lee, J. Association between high adolescent smartphone use and academic impairment, conflicts with family members or friends, and suicide attempts. PLoS ONE 2019, 14, e0219831. [Google Scholar] [CrossRef] [Green Version]
- Nayak, J.K. Relationship among smartphone usage, addiction, academic performance and the moderating role of gender: A study of higher education students in India. Comput. Educ. 2018, 123, 164–173. [Google Scholar] [CrossRef]
- Omer, O.Z.E.R. Smartphone addiction and fear of missing out: Does smartphone use matter for students’ academic performance? J. Comput. Educ. Res. 2020, 8, 344–355. [Google Scholar] [CrossRef]
- Yildiz Durak, H.Y. Investigation of nomophobia and smartphone addiction predictors among adolescents in Turkey: Demographic variables and academic performance. Soc. Sc. J. 2019, 56, 492–517. [Google Scholar] [CrossRef]
- Ng, S.F.; Hassan, N.S.I.C.; Nor, N.H.M.; Malek, N.A.A. The relationship between smartphone use and academic performance: A case of students in a Malaysian tertiary institution. Malays. Online J. Educ. Technol. 2017, 5, 58–70. [Google Scholar]
- Kibona, L.; Mgaya, G. Smartphones’ effects on academic performance of higher learning students. J. Multidiscip. Eng. Sci. Technol. 2015, 2, 777–784. [Google Scholar]
- Yi, Y.J.; You, S.; Bae, B.J. The influence of smartphones on academic performance: The development of the technology-to-performance chain model. Library Hi Tech 2016, 34, 480–499. [Google Scholar] [CrossRef]
- Troll, E.S.; Friese, M.; Loschelder, D.D. How students’ self-control and smartphone-use explain their academic performance. Comput. Hum. Behav. 2020, 106624. [Google Scholar] [CrossRef]
- Han, S.; Yi, Y.J. How does the smartphone usage of college students affect academic performance? J. Comput. Assist. Learn. 2019, 35, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.T.; Chiang, Y.H. Investigating predictors of smartphone dependency symptoms and effects on academic performance, improper phone use and perceived sociability. Int. J. Mob. Commun. 2017, 15, 655–676. [Google Scholar] [CrossRef]
- Giunchiglia, F.; Zeni, M.; Gobbi, E.; Bignotti, E.; Bison, I. Mobile social media usage and academic performance. Comput. Hum. Behav. 2018, 82, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Yıldız Durak, H.Y. What would you do without your smartphone? Adolescents’ social media usage, locus of control, and loneliness as a predictor of nomophobia. Addicta Turk. J. Addict. 2019, 5, 1–15. [Google Scholar]
- Bian, M.; Leung, L. Linking loneliness, shyness, smartphone addiction symptoms, and patterns of smartphone use to social capital. Soc. Sci. Comput. Rev. 2015, 33, 61–79. [Google Scholar] [CrossRef] [Green Version]
- Emanuel, R.; Bell, R.; Cotton, C.; Craig, J.; Drummond, D.; Gibson, S.; Harris, A.; Harris, M.; Hatcher-Vance, C.; Jones, S.; et al. The truth about smartphone addiction. Coll. Stud. J. 2015, 49, 291–299. [Google Scholar]
- SecurEnvoy. 66% of the Population Suffer from Nomophobia the Fear of Being without Their Phone. Available online: http://www.securenvoy.com/blog/2012/02/16/66-of-the-population-suffer-fromnomophobia-the-fear-of-being-without-their-phone/ (accessed on 26 June 2018).
- Yildirim, C. Exploring the Dimensions of Nomophobia: Developing and Validating a Questionnaire Using Mixed Methods Research. Master’s Thesis, Iowa State University, Ames, IA, USA, 2014. [Google Scholar]
- Buctot, D.B.; Kim, N.; Park, K.E. Development and evaluation of smartphone detox program for university students. Int. J. Contents 2018, 14, 1–9. [Google Scholar] [CrossRef]
- Byeon, H.S. The review of needs and benefits of digital detox. Kor. Man. Consult. Rev. 2017, 17, 71–78. [Google Scholar]
- Griffiths, M.D. A components model of addiction within a biopsychosocial framework. J. Subst. Use 2005, 10, 191–197. [Google Scholar] [CrossRef]
- Goswami, V.; Singh, D.R. Impact of mobile phone addiction on adolescent’s life: A literature review. Int. J. Home Sci. 2016, 2, 69–74. [Google Scholar]
- Gurbuz, I.B.; Ozkan, G. What is your level of nomophobia? An investigation of prevalence and level of nomophobia among young people in Turkey. Commun. Ment. Health J. 2020, 56, 814–822. [Google Scholar] [CrossRef] [PubMed]
- Güzel, Ş. Fear of the age: Nomophobia (No-Mobile-Phone). J. Acad. Perspect. Soc. Stud. 2018, 1, 20–24. [Google Scholar] [CrossRef] [Green Version]
- Gezgin, D.M.; Şumuer, E.; Arslan, O.; Yildirim, S. Nomophobia prevalence among pre-service teachers: A case of Trakya University. Trakya Üniversitesi Eğitim Fakültesi Dergisi 2017, 7, 86–95. [Google Scholar]
- Lucas, D.L. Using Smartphones among Filipinos’ Top Daily Activities. Available online: http://business.inquirer.net/183389/using-smartphones-Among-filipinos-top-daily-activities#ixzz5JLd1GHex/ (accessed on 25 June 2018).
- Sanchez, M.J. Smartphone Users in the Philippines 2017. Available online: https://www.statista.com/statistics/467186/forecast-of-smartphone-users-in-the-philippines/ (accessed on 10 April 2021).
- Buctot, D.B.; Kim, N.; Kim, J.J. Factors associated with smartphone addiction prevalence and its predictive capacity for health-related quality of life among Filipino adolescents. Child. Youth Serv. Rev. 2020, 104758. [Google Scholar] [CrossRef]
- Roa, A. One of 3 Filipinos Can’t Live without Cell Phones—Survey. Available online: http://technology.inquirer.net/18168/one-of-3-filipinos-cant-live-without-cell-phones-survey#ixzz5JLeeJKWO (accessed on 25 June 2018).
- DepEd News. DepEd Order Prohibits the Use of Cell Phones during Class Hours. Available online: https://www.depedclick.cf/2019/04/deped-order-prohibits-use-of-cell.html (accessed on 6 December 2020).
- Van Deursen, A.J.; Bolle, C.L.; Hegner, S.M.; Kommers, P.A. Modeling habitual and addictive smartphone behavior: The role of smartphone usage types, emotional intelligence, social stress, self-regulation, age, and gender. Comput. Hum. Behav. 2015, 45, 411–420. [Google Scholar] [CrossRef] [Green Version]
- Roberts, J.A.; Yaya, L.H.; Manolis, C. The invisible addiction: Cell-phone activities and addiction among male and female college students. J. Behav. Addict. 2014, 3, 254–265. [Google Scholar] [CrossRef] [Green Version]
- Smetaniuk, P. A preliminary investigation into the prevalence and prediction of problematic cell phone use. J. Behav. Addict. 2014, 3, 41–53. [Google Scholar] [CrossRef] [Green Version]
- Buctot, D.B.; Kim, N.; Kim, S.H. The role of nomophobia and smartphone addiction in the lifestyle profiles of junior and senior high school students in the Philippines. Soc. Sci. Humanit. Open 2020, 2, 100035. [Google Scholar]
- Tran, D. Classifying nomophobia as smart-phone addiction disorder. UC Merced Undergrad. Res. J. 2016, 9, 1–22. [Google Scholar]
- Kim, H.J.; Min, J.Y.; Min, K.B.; Lee, T.J.; Yoo, S. Relationship among family environment, self-control, friendship quality, and adolescents’ smartphone addiction in South Korea: Findings from nationwide data. PLoS ONE 2018, 13, e0190896. [Google Scholar] [CrossRef] [Green Version]
- Dinc, M. Technology dependence and youth. J. Youth Stud. 2015, 3, 31–65. [Google Scholar]
- Soharwardi, M.A.; Fatima, A.; Nazir, R.; Firdous, A. Impact of parental socioeconomic status on academic performance of students: A case study of Bahawalpur, Pakistan. J. Econ. Econ. Educ. Res. 2020, 21, 1–8. [Google Scholar]
- Boateng, S.; Asare, D.; Manu, P.T.; Sefah, E.A.; Adomako, J. Relationship between students’ home background and their academic performance: A case of some selected senior high school students in rural districts in Ashanti Region, Ghana. J. Educ. 2020. [CrossRef]
- Park, H.; Lee, K.S. The association of family structure with health behavior, mental health, and perceived academic achievement among adolescents: A 2018 Korean nationally representative survey. BMC Public Health 2020, 20, 510. [Google Scholar] [CrossRef]
- Gezgin, D.M.; Cakir, O.; Yildirim, S. The relationship between levels of nomophobia prevalence and internet addiction among high school students: The factors influencing nomophobia. Int. J. Res. Educ. Sci. 2018, 4, 215–225. [Google Scholar] [CrossRef] [Green Version]
- Jilisha, G.; Venkatachalam, J.; Menon, V.; Olickal, J.J. Nomophobia: A mixed-methods study on prevalence, associated factors, and perception among college students in Puducherry, India. Indian J. Psychol. Med. 2019, 41, 541–548. [Google Scholar] [CrossRef]
- Lee, H.; Ahn, H.; Choi, S.; Choi, W. The SAMS: Smartphone Addiction Management System and verification. J. Med. Syst. 2014, 38, 1. [Google Scholar] [CrossRef]
- Lin, Y.H.; Lin, Y.C.; Lee, Y.H.; Lin, P.H.; Lin, S.H.; Chang, L.R.; Tseng, H.W.; Yen, L.Y.; Yang, C.C.; Kuo, T.B. Time distortion associated with smartphone addiction: Identifying smartphone addiction via a mobile application (App). J. Psychiatr. Res. 2015, 65, 139–145. [Google Scholar] [CrossRef]
- Argumosa-Villar, L.; Boada-Grau, J.; Vigil-Colet, A. Exploratory investigation of theoretical predictors of nomophobia using the Mobile Phone Involvement Questionnaire (MPIQ). J. Adolesc. 2017, 56, 127–135. [Google Scholar] [CrossRef]
- Von Stumm, S.; Hell, B.; Premuzic, T. The hungry mind: Intellectual curiosity is the third pillar of academic performance. Perspect. Psychol. Sci. 2011, 6, 574–588. [Google Scholar] [CrossRef]
- Jayanthi, S.V.; Balakrishnan, S.; Ching, A.L.S.; Latiff, N.A.A.; Nasirudeen, A.M.A. Factors contributing to academic performance of students in a tertiary institution in Singapore. Am. J. Educ. Res. 2014, 2, 752–758. [Google Scholar] [CrossRef]
- Garton, B.L.; Ball, A.L.; Dyer, J.E. The academic performance and retention of college of agriculture students. J. Agric. Educ. 2002, 43, 46–56. [Google Scholar] [CrossRef] [Green Version]
- Kennett, D.J.; Reed, M.J. Factors influencing academic success and retention following a 1st-year post-secondary success course. Educ. Res. Eval. 2009, 15, 153–166. [Google Scholar] [CrossRef]
- Lei, P.W.; Bassiri, D.; Schultz, E.M. Alternatives to the Grade Point Average as a Measure of Academic Achievement in College; ACT Research Report Series; American Coll. Testing Program: Iowa City, IA, USA, 2001. Available online: https://eric.ed.gov/?id=ED462407 (accessed on 7 June 2020).
- Clarkson, R.K. Effect of Gratitude on Life Satisfaction and Perceived Academic Performance in Psychology Students. Master’s Thesis, The University of Waikato, Hamilton, New Zealand. Available online: https://hdl.handle.net/10289/13867 (accessed on 10 December 2020).
- Bandura, A. Human agency in social cognitive theory. Am. Psychol. 1989, 44, 1175–1184. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.A. A cognitive-behavioral model of pathological internet use. Comput. Hum. Behav. 2001, 17, 187–195. [Google Scholar] [CrossRef]
- Kwon, M.; Kim, D.J.; Cho, H.; Yang, S. The Smartphone Addiction Scale: Development and validation of a short version for adolescents. PLoS ONE 2013, 8, e83558. [Google Scholar] [CrossRef] [Green Version]
- IBM. SPSS Statistics for Windows, Version 23.0; IBM Corp.: Armonk, NY, USA, 2015. [Google Scholar]
- Schreiber-Gregory, D. Logistic and linear regression assumptions: Violation recognition and control. In Proceedings of the 26th SESUG Conference, St. Pete Beach, FL, USA, 14–17 October 2018; p. 247. [Google Scholar]
- Ghasemi, A.; Zahediasi, S. Normality tests for statistical analysis: A guide for non-statisticians. Int. J. Endocrinol. Metab. 2012, 10, 486–489. [Google Scholar] [CrossRef] [Green Version]
- Coakes, S.J. SPSS: Analysis without Anguish: Version 12.0 for Windows; Wiley: Queensland, Australia, 2005. [Google Scholar]
- Sadler-Smith, E. Approaches to studying: Age, gender and academic performance. Educ. Stud. 1996, 22, 367–379. [Google Scholar] [CrossRef]
- Momanyi, J.M.; Too, J.; Simiyu, C. Effect of students’ age on academic motivation and academic performance among high school students in Kenya. Asian J. Educ. E-learn. 2015, 3, 337–342. [Google Scholar]
- Liu, X.; Luo, Y.; Liu, Z.Z.; Yang, Y.; Liu, J.; Jia, C.X. Prolonged mobile phone use is associated with poor academic performance in adolescents. Cyberpsychol. Behav. Soc. Netw. 2020, 23, 303–311. [Google Scholar] [CrossRef]
- Woodcock, B.; Middleton, A.; Nortcliffe, A. Considering the Smartphone Learner: An investigation into student interest in the use of personal technology to enhance their learning. Stud. Engagem. Exp. J. 2012, 1, 1–15. [Google Scholar] [CrossRef]
- Zhao, J.; Yuping, W.; Maideen, I.; Moe, Z.K.; Nasirudeen, A.M.A. The relationship between smartphone use and academic performance in a sample of tertiary students in Singapore: A cross-sectional study. J. Educ. Technol. 2018, 14, 28–35. [Google Scholar]
- Junco, R.; Heiberger, G.; Loken, E. The effect of twitter on college student engagement and grades. J. Comput. Assist. Learn. 2011, 27, 119–132. [Google Scholar] [CrossRef]
- Junco, R. The relationship between frequency of Facebook use, participation in Facebook activities, and student engagement. Comput. Educ. 2012, 58, 162–171. [Google Scholar] [CrossRef]
- Gezgin, D.M. Understanding patterns for smartphone addiction: Age, sleep duration, social network use and fear of missing out. Cypriot J. Educ. Sci. 2018, 13, 166–177. [Google Scholar] [CrossRef]
- Andreassen, C.S.; Pallesen, S.; Griffiths, M.D. The relationship between addictive use of social media, narcissism, and self-esteem: Findings from a large national survey. Addict. Behav. 2017, 64, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Masood, A.; Luqman, A.; Feng, Y.; Ali, A. Adverse consequences of excessive social networking site use on academic performance: Explaining underlying mechanism from stress perspective. Comput. Hum. Behav. 2020, 113, 106476. [Google Scholar] [CrossRef]
- Liu, D.; Kirschner, P.A.; Karpinski, A.C. A meta-analysis of the relationship of academic performance and Social Network Site use among adolescents and young adults. Comput. Hum. Behav. 2017, 77, 148–157. [Google Scholar] [CrossRef]
- Rodríguez-García, A.M.; Moreno-Guerrero, A.J.; López Belmonte, J. Nomophobia: An individual’s growing fear of being without a smartphone—A systematic literature review. Int. J. Environ. Res. Public Health 2020, 17, 580. [Google Scholar] [CrossRef] [Green Version]
- Qutishat, M.; Lazarus, E.R.; Razmy, M.; Packianathan, S. University students’ nomophobia prevalence, sociodemographic factors and relationship with academic performance at a university in Oman. Int. J. Africa Nurs. Sci. 2020, 100206. [Google Scholar] [CrossRef]
- Bjerre-Nielsen, A.; Andersen, A.; Minor, K.; Lassen, D.D. The negative effect of smartphone use on academic performance may be overestimated: Evidence from a 2-year panel study. Psychol. Sci. 2020, 31, 1351–1362. [Google Scholar] [CrossRef] [PubMed]
- Adelantado-Renau, M.; Moliner-Urdiales, D.; Cavero-Redondo, I.; Beltran-Valls, M.R.; Martínez-Vizcaíno, V.; Álvarez-Bueno, C. Association between screen media use and academic performance among children and adolescents: A systematic review and meta-analysis. JAMA Pediatr. 2019, 173, 1058–1067. [Google Scholar] [CrossRef] [PubMed]
- Wajcman, J.; Bittman, M.; Jones, P.; Johnstone, L.; Brown, J. The Impact of the Mobile Phone on Work/Life Balance. Survey Report; Australian Mobile Telecommunications Association & Australian National University: Canberra, Australia, 2007. [Google Scholar]
- Rozgonjuk, D.; Sindermann, C.; Elhai, J.D.; Montag, C. Fear of missing out (FOMO) and social media’s impact on daily-life and productivity at work: Do WhatsApp, Facebook, Instagram, and Snapchat use disorders mediate that association? Addict. Behav. 2020, 110, 106487. [Google Scholar] [CrossRef] [PubMed]
- Kuśnierz, C.; Rogowska, A.M.; Pavlova, I. Examining gender differences, personality traits, academic performance, and motivation in Ukrainian and Polish students of physical education: A cross-cultural study. Int. J. Environ. Res. Public Health 2020, 17, 5729. [Google Scholar] [CrossRef]
- Amoo, T.B.; Adeyinka, O.P.; Aderibigbe, A.D. Perceived effects of parental socio-economic status on students’ academic performance among teachers in Odeda Local Government, Ogun State, Nigeria. Int. J. Acad. Res. Bus. Soc. Sci. 2018, 8. [Google Scholar] [CrossRef]
- Tam, V.C. A comparison of fathers’ and mothers’ contributions in the prediction of academic performance of school-age children in Hong Kong. Int. J. Psychol. 2009, 44, 147–156. [Google Scholar] [CrossRef]
- Nora, A.; Snyder, B.P. Technology and higher education: The impact of e-learning approaches on student academic achievement, perceptions and persistence. J. Coll. Stud. Ret. 2008, 10, 3–19. [Google Scholar] [CrossRef]
Variables | n (M) | % (SD) | Variables | n (M) | % (SD) |
---|---|---|---|---|---|
Personal Profiles: | Time spent daily (on weekends): | (9.91) a | (5.82) a | ||
Gender: | Below 4 h | 285 | 8.4 | ||
Male | 1407 | 41.7 | 4 to 6 h | 671 | 19.9 |
Female | 1967 | 58.3 | 7 to 9 h | 799 | 23.7 |
Age: | (14.76) | (1.60) | 10 h or more | 1619 | 48.0 |
13 | 973 | 28.8 | Frequency of use (on weekdays): | (8.98) a | (14.50) a |
14 | 742 | 22 | 20 times or less | 3164 | 93.8 |
15 | 683 | 20.2 | 21 to 40 times | 114 | 3.4 |
16 | 357 | 10.6 | 41 to 60 times | 46 | 1.4 |
17 | 352 | 10.4 | 61 to 80 times | 11 | 0.3 |
18 | 267 | 7.9 | 81 times or more | 39 | 1.2 |
Grade Level: | (9.16) | (1.50) | Frequency of use of smartphones (on weekends): | (10.24) a | (27.09) a |
Junior high school: | 2036 | 60.3 | 20 times or less | 3131 | 92.8 |
7 | 508 | 15.1 | 21 to 40 times | 113 | 3.3 |
8 | 754 | 22.3 | 41 to 60 times | 68 | 2.0 |
9 | 774 | 22.9 | 61 to 80 times | 9 | 0.3 |
Senior high school: | 1338 | 49.7 | 81 times or more | 53 | 1.6 |
10 | 691 | 20.5 | Years of Smartphone Experience: | (4.90) a | (2.70) a |
11 | 332 | 9.8 | Below 3 years | 1113 | 33.0 |
12 | 315 | 9.3 | 3 to 6 years | 1422 | 42.1 |
Family Environment: | 7 to 10 years | 719 | 21.3 | ||
Mother’s Education: | 11 years and above | 120 | 3.6 | ||
PhD | 101 | 3.0 | Type of Internet Access: | ||
MA | 289 | 8.6 | Wi-Fi | 1834 | 54.4 |
Bachelor’s | 868 | 25.7 | Prepaid Internet card | 929 | 27.5 |
Associate | 534 | 15.8 | Monthly subscription | 137 | 4.1 |
High School | 1331 | 39.4 | Other | 474 | 14.0 |
Middle School | 65 | 1.9 | Purpose of Smartphone Use: | ||
Elementary | 178 | 5.3 | SNS | 1700 | 50.4 |
Never studied | 8 | 0.2 | Phone Calls | 121 | 3.6 |
Father’s Education: | Play Games | 382 | 11.3 | ||
PhD | 99 | 2.9 | SMS | 57 | 1.7 |
MA | 294 | 8.7 | Chatting online | 562 | 16.7 |
Bachelor’s | 837 | 24.8 | Checking emails | 13 | 0.4 |
Associate | 538 | 15.9 | Watching videos/movies | 165 | 4.9 |
High School | 1275 | 37.8 | Listening to music | 166 | 4.9 |
Middle School | 81 | 2.4 | Reading the news | 20 | 0.6 |
Elementary | 229 | 6.8 | Taking pictures | 15 | 0.4 |
Never studied | 21 | 0.6 | Other | 173 | 5.1 |
Parents’ Marital Status: | Survival days without a smartphone: | ||||
Legally Married | 2417 | 71.6 | 3 days or less | 2015 | 59.7 |
Separated | 302 | 9.0 | 4 to 7 days | 819 | 24.3 |
Divorced | 38 | 1.1 | 8 to 11 days | 97 | 2.9 |
Annulled | 36 | 1.1 | 12 to 15 days | 85 | 2.5 |
Single Parent | 308 | 9.1 | 16 to 20 days | 25 | 0.7 |
Widowed | 0 | 0 | 21 to 25 days | 24 | 0.7 |
Other | 273 | 8.1 | 26 to 30 days | 94 | 2.8 |
Family Size: | (5.53) a | (2.73) a | 31 days or more | 215 | 6.4 |
3 people or less | 373 | 11.1 | Nomophobia Group: | ||
4 to 6 people | 2223 | 65.9 | Without Nomophobia | 17 | 0.5 |
7 to 9 people | 608 | 18.0 | With Nomophobia | 3357 | 99.5 |
10 people or more | 170 | 5.0 | Nomophobia Level: | ||
Family Income Type: | Absence of nomophobia | 17 | 0.5 | ||
Single Income household | 1507 | 44.7 | Mild nomophobia | 537 | 15.9 |
Double Income household | 1867 | 55.3 | Moderate nomophobia | 2055 | 60.9 |
Patterns of Smartphone Use: | Severe nomophobia | 765 | 22.7 | ||
Time gap from waking up until first smartphone use: | Smartphone Addiction Group: | ||||
Within 5 min | 1367 | 40.5 | Without smartphone addiction | 1269 | 37.6 |
Within 6–30 min | 1248 | 37.0 | With smartphone addiction | 2105 | 62.4 |
Within 31–60 min | 336 | 10.0 | Perceived Academic Performance: | ||
More than 60 min | 423 | 12.5 | Low | 574 | 17 |
Time spent daily(on weekdays): | (8.87) a | (11.78) a | Average | 2023 | 60 |
Below 4 h | 416 | 12.3 | High | 777 | 23 |
4 to 6 h | 904 | 26.8 | |||
7 to 9 h | 872 | 25.8 | |||
10 h and above | 1182 | 35.0 |
Personal Profiles | Family Environment | Smartphone Usage Patterns | D | E | F | G | H | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variables | A1 | A2 | A3 | A4 | B1 | B2 | B3 | B4 | B5 | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | |||||
A. Personal Profiles: | |||||||||||||||||||||||
1. Gender | − | ||||||||||||||||||||||
2. Age | 0.029 | − | |||||||||||||||||||||
3. GL | 0.081 ** | 0.883 ** | − | ||||||||||||||||||||
4. HSL | 0.059 ** | 0.767 ** | 0.846 ** | − | |||||||||||||||||||
B. Family Environment: | |||||||||||||||||||||||
1. ME | 0.120 ** | 0.036 * | 0.060 ** | 0.029 | − | ||||||||||||||||||
2. FE | 0.116 ** | 0.052 ** | 0.082 ** | 0.046 ** | 0.613 ** | − | |||||||||||||||||
3. PMS | −0.039 * | −0.043 * | −0.073 ** | −0.039 * | 0.083 ** | 0.090 ** | − | ||||||||||||||||
4. FIT | −0.077 ** | −0.025 | −0.051 ** | −0.024 | −0.177 ** | −0.150 ** | −0.070 ** | − | |||||||||||||||
5. FS | 0.015 | 0.025 | 0.014 | 0.004 | 0.109 ** | 0.0930 ** | −0.004 | −0.018 | − | ||||||||||||||
C. Smartphone Usage Patterns: | |||||||||||||||||||||||
1. TGWFSU | −0.061 ** | −0.045 ** | −0.046 ** | −0.006 | 0.004 | −0.012 | 0.036 * | −0.012 | 0.002 | − | |||||||||||||
2. TSDWd | 0.088 ** | 0.119 ** | 0.126 ** | 0.141 ** | −0.020 | −0.029 | 0.009 | 0.008 | 0.011 | 0.089 ** | − | ||||||||||||
3. TSDWe | 0.124 ** | 0.136 ** | 0.138 ** | 0.151 ** | −0.079 ** | −0.084 ** | −0.037 * | 0.025 | 0.001 | 0.078 ** | 0.631 ** | − | |||||||||||
4. FUWd | 0.045 ** | 0.081 ** | 0.078 ** | 0.084 ** | −0.101 ** | −0.114 ** | −0.066 ** | 0.019 | −0.025 | 0.000 | 0.179 ** | 0.208 ** | − | ||||||||||
5. FUWe | 0.049 ** | 0.064 ** | 0.068 ** | 0.640 ** | −0.079 ** | −0.080 ** | −0.057 ** | 0.021 | −0.016 | −0.001 | 0.110 ** | 0.162 ** | 0.633 ** | − | |||||||||
6. SYE | 0.044 * | 0.185 ** | 0.190 ** | 0.191 ** | −0.120 ** | −0.112 ** | −0.016 | 0.027 | −0.027 | −0.004 | 0.216 ** | 0.212 ** | 0.135 ** | 0.098 ** | − | ||||||||
7. IAT | 0.018 | 0.060 ** | 0.075 ** | 0.054 ** | 0.194 ** | 0.178 ** | 0.041 * | −0.088 ** | 0.009 | −0.024 | −0.064 ** | −0.086 ** | −0.051 ** | −0.048 ** | −0.104 ** | − | |||||||
8. PU | −0.081 ** | −0.038 * | −0.048 ** | −0.053 ** | 0.006 | −0.017 | 0.033 | 0.034 * | 0.009 | 0.008 | −0.052 ** | −0.075 ** | −0.018 | −0.037 * | −0.021 | 0.025 | − | ||||||
9. SDWS | −0.103 ** | −0.012 | −0.031 | −0.037 * | −0.114 ** | −0.092 ** | 0.000 | 0.069 ** | −0.013 | 0.016 | −0.020 | −0.011 | 0.064 ** | 0.038 * | 0.029 | −0.028 | 0.016 | − | |||||
D. NMP | 0.155 ** | 0.018 | 0.039 * | 0.045 ** | 0.077 ** | 0.061 ** | −0.015 | −0.038 * | 0.011 | 0.040 * | 0.194 ** | 0.182 ** | 0.100 ** | 0.073 ** | 0.065 ** | 0.005 | −0.107 ** | −0.114 ** | − | ||||
E. SA | 0.097 ** | −0.028 | 0.021 | 0.002 | 0.081 ** | 0.084 ** | −0.003 | −0.025 | 0.005 | 0.031 | 0.211 ** | 0.185 ** | 0.059 ** | 0.031 | 0.027 | 0.009 | −0.106 ** | −0.084 ** | 0.642 ** | − | |||
F. Low PAP | −0.039 * | −0.064 ** | −0.087 ** | −0.088 ** | 0.056 ** | 0.065 ** | 0.014 | −0.033 | 0.006 | −0.011 | 0.002 | −0.042 * | −0.039 * | −0.015 | −0.051 ** | 0.014 | 0.042 * | 0.021 | 0.058 ** | 0.116 ** | − | ||
G. Average PAP | 0.073 ** | 0.024 | 0.039 * | 0.038 * | 0.003 | −0.028 | 0.007 | 0.001 | 0.001 | −0.009 | −0.015 | 0.014 | −0.010 | −0.015 | −0.008 | 0.052 ** | −0.0015 | −0.005 | −1.025 | −0.078 ** | −0.554 ** | − | |
H. High PAP | −0.050 ** | 0.030 | 0.032 | 0.034 * | −0.054 ** | −0.026 | −0.020 | 0.028 | −0.007 | 0.021 | 0.016 | 0.021 | 0.025 | 0.046 ** | 0.055 ** | −0.048 ** | −0.020 | −0.014 | −0.022 | −0.013 | −0.248 ** | −0.669 ** | − |
Variables | Low PAP (n = 574) | Average PAP (n = 2023) | High PAP (n = 777) | F (X2) | p | |||
---|---|---|---|---|---|---|---|---|
n (M) | % (SD) | n (M) | % (SD) | n (M) | % (SD) | |||
Personal Profiles: | ||||||||
Gender: | (18.05) | 0.000 | ||||||
Male | 264 | 46 | 784 | 38.8 | 359 | 46.2 | ||
Female | 310 | 54 | 1239 | 61.2 | 418 | 53.8 | ||
Age | (14.53) | (1.51) | (14.79) | (1.58) | (14.84) | (1.67) | 3.46 | 0.004 |
Grade level | (8.87) | (1.42) | (9.21) | (1.49) | (9.25) | (1.56) | 4.70 | 0.000 |
High school level: | (26.74) | 0.000 | ||||||
Junior | 401 | 69.9 | 1190 | 58.8 | 445 | 57.3 | ||
Senior | 173 | 30.1 | 833 | 41.2 | 332 | 42.7 | ||
Family Environment: | ||||||||
Mother’s education: | (26.34) | 0.023 | ||||||
PhD | 15 | 2.6 | 61 | 3.0 | 25 | 3.2 | ||
MA | 40 | 7.0 | 177 | 8.7 | 72 | 9.3 | ||
Bachelor’s | 125 | 21.8 | 519 | 25.7 | 224 | 28.8 | ||
Associate | 85 | 14.8 | 319 | 15.8 | 130 | 16.7 | ||
High School | 260 | 45.3 | 790 | 39.1 | 281 | 36.2 | ||
Middle School | 14 | 2.4 | 35 | 1.7 | 16 | 2.1 | ||
Elementary | 34 | 5.9 | 118 | 5.8 | 26 | 3.3 | ||
Never studied | 1 | 0.2 | 4 | 0.2 | 3 | 0.4 | ||
Father’s education: | (35.49) | 0.001 | ||||||
PhD | 13 | 2.3 | 64 | 3.2 | 22 | 2.8 | ||
MA | 49 | 8.5 | 165 | 8.2 | 80 | 10.3 | ||
Bachelor’s | 120 | 20.9 | 518 | 25.6 | 199 | 25.6 | ||
Associate | 81 | 14.1 | 327 | 16.2 | 130 | 16.7 | ||
High School | 236 | 41.1 | 767 | 37.9 | 272 | 35.0 | ||
Middle School | 9 | 1.6 | 55 | 2.7 | 17 | 2.2 | ||
Elementary | 61 | 10.6 | 119 | 5.9 | 49 | 6.3 | ||
Never studied | 5 | 0.9 | 8 | 0.4 | 8 | 1.0 | ||
Parents’ marital status: | (8.54) | 0.576 | ||||||
Legally Married | 403 | 70.2 | 1440 | 71.2 | 574 | 73.9 | ||
Separated | 52 | 9.1 | 188 | 9.3 | 62 | 8.0 | ||
Divorced | 7 | 1.2 | 18 | .9 | 13 | 1.7 | ||
Annulled | 8 | 1.4 | 22 | 1.1 | 6 | .8 | ||
Single Parent | 55 | 9.6 | 193 | 9.5 | 60 | 7.7 | ||
Widowed | 0 | 0 | 0 | 0 | 0 | 0 | ||
Other | 49 | 8.5 | 162 | 8.0 | 62 | 8.0 | ||
Family income type: | (5.09) | 0.078 | ||||||
Single income household | 277 | 48.3 | 903 | 44.6 | 327 | 42.1 | ||
Double income household | 297 | 51.7 | 1120 | 55.4 | 450 | 57.9 | ||
Family size: | (5.59) a | (2.20) a | (5.48) a | (2.19) a | (5.65) a | (4.03) a | (3.09) | 0.798 |
3 people or less | 62 | 10.8 | 229 | 11.3 | 82 | 10.6 | ||
4 to 6 people | 374 | 65.2 | 1329 | 65.7 | 520 | 66.9 | ||
7 to 9 people | 111 | 19.3 | 355 | 17.5 | 142 | 18.3 | ||
10 people or more | 27 | 4.7 | 110 | 5.4 | 33 | 4.2 | ||
Patterns of Smartphone Use: | ||||||||
Time gap from waking up until first smartphone use: | (7.95) | 0.242 | ||||||
Within 5 min | 251 | 43.7 | 810 | 40.0 | 306 | 39.4 | ||
Within 6–30 min | 197 | 34.3 | 768 | 38.0 | 283 | 36.4 | ||
Within 31–60 min | 47 | 8.2 | 206 | 10.2 | 83 | 10.7 | ||
After more than 60 min | 79 | 13.8 | 239 | 11.8 | 105 | 13.5 | ||
Time spent per day (on weekdays) | (8.92) | (5.94) | (8.58) | (5.19) | (9.60) | (22.50) | 1.55 | 0.009 |
Time spent per day (on weekends) | (9.70) | (7.08) | (9.94) | (5.63) | (9.99) | (5.26) | 0.91 | 0.631 |
Frequency of use (on weekdays) | (7.74) | (12.00) | (8.88) | (13.15) | (10.17) | (18.83) | 1.39 | 0.024 |
Frequency of use (on weekends) | (9.36) | (43.12) | (10.01) | (20.88) | (11.49) | (26.05) | 1.17 | 0.174 |
Years of smartphone experience | (4.59) | (2.87) | (4.89) | (2.66) | (5.19) | (2.63) | 3.82 | 0.000 |
Type of internet access: | (12.63) | 0.049 | ||||||
Wi-Fi | 325 | 56.6 | 1068 | 52.8 | 441 | 56.8 | ||
Prepaid Internet card | 147 | 25.6 | 558 | 27.6 | 224 | 28.8 | ||
Monthly subscription | 25 | 4.4 | 85 | 4.2 | 27 | 3.5 | ||
Other | 77 | 13.4 | 312 | 15.4 | 85 | 10.9 | ||
Purpose of use: | (1.02) | 0.426 | ||||||
SNS | 250 | 43.6 | 1054 | 52.1 | 396 | 51.0 | ||
Phone Calls | 29 | 5.1 | 59 | 2.9 | 33 | 4.2 | ||
Play Games | 78 | 13.6 | 219 | 10.8 | 85 | 10.9 | ||
SMS | 9 | 1.6 | 36 | 1.8 | 12 | 1.5 | ||
Chat online | 102 | 17.8 | 322 | 15.9 | 138 | 17.8 | ||
Check emails | 5 | 0.9 | 5 | 0.2 | 3 | 0.4 | ||
Watch videos/movies | 30 | 5.2 | 100 | 4.9 | 35 | 4.5 | ||
Listen to music | 30 | 5.2 | 103 | 5.1 | 33 | 4.2 | ||
Read news | 2 | 0.3 | 14 | 0.7 | 4 | 0.5 | ||
Take pictures | 4 | 0.7 | 9 | 0.4 | 2 | 0.3 | ||
Other | 35 | 6.1 | 102 | 5.0 | 36 | 4.6 | ||
Survival days without a smartphone | (21.22) | (85.26) | (17.68) | (68.14) | (16.18) | (59.31) | 1.44 | 0.009 |
Smartphone Addiction | (37.09) | (9.12) | (34.10) | (9.16) | (34.46) | (9.80) | 1.68 | 0.002 |
Nomophobia | (84.40) | (22.18) | (81.13) | (21.62) | (80.69) | (23.07) | 1.08 | 0.268 |
Variables | Low PAP | Average PAP | High PAP | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
B | SE | β | t | B | SE | β | t | B | SE | β | t | |
Personal Profiles: | ||||||||||||
Gender | −0.034 | 0.014 | −0.044 | −2.489 * | 0.075 | 0.018 | 0.075 | 4.208 * | −0.041 | 0.015 | −0.048 | −2.688 ** |
Age | 0.017 | 0.009 | 0.073 | 1.997 * | −0.013 | 0.011 | −0.043 | −1.166 | −0.004 | 0.010 | −0.015 | −0.409 |
Grade level | −0.024 | 0.011 | −0.097 | −2.176 * | 0.016 | 0.015 | 0.050 | 1.123 | 0.008 | 0.013 | 0.028 | 0.616 |
High school level | −0.035 | 0.025 | −0.046 | −1.424 | 0.022 | 0.032 | 0.022 | 0.667 | 0.014 | 0.028 | 0.016 | 0.483 |
Family Environment: | ||||||||||||
Mother’s education | 0.006 | 0.006 | 0.020 | 0.931 | 0.008 | 0.008 | 0.021 | 0.969 | −0.013 | 0.007 | −0.043 | −1.946 |
Father’s education | 0.012 | 0.006 | 0.044 | 1.994 * | −0.019 | 0.008 | −0.054 | −2.454 * | 0.007 | 0.007 | 0.024 | 1.089 |
Parents’ marital status | −0.001 | 0.003 | −0.007 | 0-.419 | 0.004 | 0.004 | 0.016 | 0.920 | −0.003 | 0.004 | −0.012 | −0.698 |
Family income type | −0.024 | 0.013 | −0.031 | −1.799 | 0.008 | 0.017 | 0.008 | 0.456 | 0.016 | 0.015 | 0.019 | 1.058 |
Family size | 0.000 | 0.004 | −0.001 | −0.035 | −0.010 | 0.005 | −0.054 | −2.114 * | 0.010 | 0.004 | 0.064 | 2.484 * |
Smartphone Usage Patterns: | ||||||||||||
Time until first smartphone use | −0.007 | 0.006 | −0.018 | −1.069 | −0.002 | 0.008 | −0.003 | −0.189 | 0.008 | 0.007 | 0.020 | 1.163 |
Time spent per day (on weekdays) | 0.013 | 0.008 | 0.037 | 1.589 | −0.001 | 0.001 | −0.029 | −1.564 | 0.001 | 0.001 | 0.033 | 1.760 |
Time spent per day (on weekends) | 0.001 | 0.002 | 0.014 | 0.548 | 0.001 | 0.002 | 0.011 | 0.416 | −0.002 | 0.002 | −0.025 | −0.966 |
Frequency of use (on weekdays) | −0.003 | 0.001 | −0.111 | −2.423 * | 0.002 | 0.002 | 0.061 | 1.304 | 0.001 | 0.001 | 0.029 | 0.624 |
Frequency of use (on weekends) | 0.001 | 0.000 | 0.046 | 1.826 | 0.000 | 0.000 | −0.013 | −0.533 | 0.000 | 0.000 | −0.025 | −0.992 |
Years of smartphone experience | −0.005 | 0.007 | −0.036 | −0.723 | −0.002 | 0.009 | −0.014 | −0.268 | 0.008 | 0.008 | 0.048 | 0.950 |
Type of internet access | −0.011 | 0.006 | −0.031 | −1.741 | 0.025 | 0.008 | 0.054 | 3.041 ** | −0.014 | 0.007 | −0.035 | −1.994 * |
Purpose of use | 0.006 | 0.002 | 0.048 | 2.815 ** | −0.003 | 0.003 | −0.017 | −0.975 | −0.003 | 0.003 | −0.023 | −1.352 |
Survival days without a smartphone | 0.000 | 0.000 | 0.063 | 2.834 ** | 0.000 | 0.006 | 0.001 | 0.032 | 0.000 | 0.000 | −0.055 | −2.452 * |
Smartphone Addiction | 0.005 | 0.001 | 0.126 | 5.591 *** | −0.005 | 0.001 | −0.101 | −4.473 *** | 0.000 | 0.001 | 0.006 | 0.259 |
Nomophobia | −0.048 | 0.000 | −0.004 | −0.184 | 0.001 | 0.001 | 0.024 | 1.065 | 0.000 | 0.000 | −0.025 | −1.074 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buctot, D.B.; Kim, N.; Kim, S.-H. Personal Profiles, Family Environment, Patterns of Smartphone Use, Nomophobia, and Smartphone Addiction across Low, Average, and High Perceived Academic Performance Levels among High School Students in the Philippines. Int. J. Environ. Res. Public Health 2021, 18, 5219. https://doi.org/10.3390/ijerph18105219
Buctot DB, Kim N, Kim S-H. Personal Profiles, Family Environment, Patterns of Smartphone Use, Nomophobia, and Smartphone Addiction across Low, Average, and High Perceived Academic Performance Levels among High School Students in the Philippines. International Journal of Environmental Research and Public Health. 2021; 18(10):5219. https://doi.org/10.3390/ijerph18105219
Chicago/Turabian StyleBuctot, Danilo B., Nami Kim, and Sun-Hee Kim. 2021. "Personal Profiles, Family Environment, Patterns of Smartphone Use, Nomophobia, and Smartphone Addiction across Low, Average, and High Perceived Academic Performance Levels among High School Students in the Philippines" International Journal of Environmental Research and Public Health 18, no. 10: 5219. https://doi.org/10.3390/ijerph18105219
APA StyleBuctot, D. B., Kim, N., & Kim, S. -H. (2021). Personal Profiles, Family Environment, Patterns of Smartphone Use, Nomophobia, and Smartphone Addiction across Low, Average, and High Perceived Academic Performance Levels among High School Students in the Philippines. International Journal of Environmental Research and Public Health, 18(10), 5219. https://doi.org/10.3390/ijerph18105219