Exploring the Impact of COVID-19 Response on Population Health in Saudi Arabia: Results from the “Sharik” Health Indicators Surveillance System during 2020
Abstract
:1. Introduction
2. Method
2.1. Design
2.2. Sampling and Sample Size
2.3. Participants and Recruitment
2.4. Questionnaire Design and Validation
2.5. Statistical Analysis
2.6. Ethical Considerations
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Douglas, M.; Katikireddi, S.V.; Taulbut, M.; McKee, M.; McCartney, G. Mitigating the wider health effects of covid-19 pandemic response. BMJ 2020, 369, m1557. [Google Scholar] [CrossRef] [PubMed]
- Kontis, V.; Bennett, J.E.; Rashid, T.; Parks, R.M.; Pearson-Stuttard, J.; Guillot, M.; Asaria, P.; Zhou, B.; Battaglini, M.; Corsetti, G.; et al. Author Correction: Magnitude, demographics and dynamics of the effect of the first wave of the COVID-19 pandemic on all-cause mortality in 21 industrialized countries. Nat. Med. 2021, 2020, 1. [Google Scholar] [CrossRef]
- Trias-Llimós, S.; Riffe, T.; Bilal, U. Monitoring life expectancy levels during the COVID-19 pandemic: Example of the unequal impact of the first wave on Spanish regions. PLoS ONE 2020, 15, e0241952. [Google Scholar] [CrossRef] [PubMed]
- BinDhim, N.; Althumiri, N.; Basyouni, M.; Alageel, A.; Alghnam, S.; Al-Qunaibet, A.; Almubarak, R.; Aldhukair, S.; Ad-Dab’bagh, Y. Saudi Arabia Mental Health Surveillance System (MHSS): Mental Health Trends amid COVID-19 and Comparison with Pre-COVID-19 Trends. Eur. J. Psychotraumatol. 2021, 12, 1875642. [Google Scholar] [CrossRef]
- Thacker, S.B.; Qualters, J.R.; Lee, L.M.; Control, C.f.D. Prevention. Public health surveillance in the United States: Evolution and challenges. MMWR Surveill. Summ 2012, 61 (Suppl. 3), 3–9. [Google Scholar]
- SHISS. 2020. Available online: https://sharikhealth.com/index.php/2020-02-19-06-59-53/2020-02-19-06-47-40 (accessed on 5 May 2021).
- BinDhim, N.F. Smart Health Project. 2012. Available online: https://shproject.net/ (accessed on 30 March 2020).
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Academic Press: Cambridge, MA, USA, 1988. [Google Scholar]
- Sharik Association for Health Research (SharikHealth). 2015. Available online: https://sharikhealth.com/ (accessed on 21 March 2020).
- World Health Organization. Chronic Diseases and Their Common Risk Factors. 2005. Available online: https://www.who.int/chp/chronic_disease_report/media/Factsheet1.pdf (accessed on 12 February 2021).
- Centers for Disease Control and Prevention. About Chronic Diseases. 2021. Available online: https://www.cdc.gov/chronicdisease/about/index.htm (accessed on 12 February 2021).
- Center for Disease Control and Prevention. about Adult BMI. Available online: https://www.cdc.gov/healthyweight/assessing/bmi/adult_bmi/index.html (accessed on 12 February 2021).
- World Health Organization. Physical Activity and Adults. Available online: https://www.who.int/dietphysicalactivity/factsheet_adults/en/ (accessed on 12 February 2021).
- General Authority of Statistics. General Authority of Statistics 2017 Census Report; General Authority of Statistics: Riyadh, Saudi Arabia, 2017.
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; Strobe Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting observational studies. Int. J. Surg. 2014, 12, 1495–1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stockwell, S.; Mike, T.; Mark, T.; Jae, S.; Yvonne, B.; Laurie, B.; Daragh, M.; Felipe, S.; Lee, S. Changes in physical activity and sedentary behaviours from before to during the COVID-19 pandemic lockdown: A systematic review. BMJ Open Sport Exerc. Med. 2021, 7, e000960. [Google Scholar] [CrossRef]
- Alhusseini, N.; Alqahtani, A. COVID-19 pandemic’s impact on eating habits in Saudi Arabia. J. Public Health Res. 2020, 9. [Google Scholar] [CrossRef]
- Mumena, W.A. Impact of COVID-19 Curfew on Eating Habits, Eating Frequency, and Weight According to Food Security Status in Saudi Arabia: A Retrospective Study. Prog. Nutr. 2020, 22. [Google Scholar] [CrossRef]
- Groves, R.M.; Fowler, F.J., Jr.; Couper, M.P.; Lepkowski, J.M.; Singer, E.; Tourangeau, R. Survey Methodology; John Wiley and Sons: Hoboken, NJ, USA, 2011; Volume 561. [Google Scholar]
- Marsh, C.; Scarbrough, E. Testing 9 hypotheses about quota sampling. J. Mark. Res. Soc. 1990, 32, 485–506. [Google Scholar]
- Althumiri, N.A.; Alammari, N.S.; Almubark, R.A.; AlNofal, F.A.; Alkhamis, D.J.; Alharbi, L.S.; AlGabbani, A.M.; BinDhim, N.F.; Alqahtani, A.S. The National Survey of Health, Diet, Physical Activity and Supplements among Adults in Saudi Arabia. Food Drug Regul. Sci. J. 2018, 1, 1. [Google Scholar] [CrossRef]
- Althumiri, N.A.; Basyouni, M.H.; AlMousa, N.; AlJuwaysim, M.F.; BinDhim, N.F.; Alqahtani, S.A. Prevalence of Self-Reported Food Allergies and Their Association with Other Health Conditions among Adults in Saudi Arabia. Int. J. Environ. Res. Public Heal. 2021, 18, 347. [Google Scholar] [CrossRef] [PubMed]
- BinDhim, N.F.; Althumiri, N.A.; Basyouni, M.H.; Alageel, A.A.; Alghnam, S.; Al-Qunaibet, A.M.; Almubark, R.A.; Aldhukair, S.; Ad-Dab’Bagh, Y. A Mental Health Surveillance System for the General Population During the COVID-19 Pandemic: Protocol for a Multiwave Cross-sectional Survey Study. JMIR Res. Protoc. 2020, 9, e23748. [Google Scholar] [CrossRef] [PubMed]
Quarter 1 2020 (Q1) n (%) | Quarter 2 2020 (Q2) n (%) | Quarter 3 2020 (Q3) n (%) | Quarter 4 2020 (Q4) n (%) | Total n (%) | |
---|---|---|---|---|---|
Sex | |||||
Male | 3272 (46.4) | 5543 (49.1) | 2583 (49.8) | 3305 (50.0) | 14,703 (48.8) |
Female | 3778 (53.6) | 5746 (50.9) | 2600 (50.2) | 3307 (50.0) | 15,431 (51.2) |
Age Groups (Years) | |||||
18–19 | 397 (5.6) | 481 (4.3) | 246 (4.7) | 327 (4.9) | 1451 (4.8) |
20–29 | 2337 (33.1) | 3862 (34.2) | 1737 (33.5) | 2230 (33.7) | 10,166 (33.7) |
30–39 | 1824 (25.9) | 2516 (22.3) | 1031 (19.9) | 1211 (18.3) | 6582 (21.8) |
40–49 | 1439 (20.4) | 2380 (21.1) | 1139 (22.0) | 1372 (20.8) | 6330 (21.0) |
50–59 | 732 (10.4) | 1373 (12.2) | 661 (12.8) | 909 (13.7) | 3675 (12.2) |
60+ | 321 (4.6) | 677 (6.0) | 369 (7.1) | 563 (8.5) | 1930 (6.4) |
Regions | |||||
Asir | 877 (12.4) | 1028 (9.1) | 382 (7.4) | 542 (8.2) | 2829 (9.4) |
Baha | 972 (13.8) | 846 (7.5) | 400 (7.7) | 540 (8.2) | 2758 (9.2) |
Eastern region | 930 (13.2) | 870 (7.7) | 401 (7.7) | 542 (8.2) | 2743 (9.1) |
Hail | 669 (9.5) | 843 (7.5) | 400 (7.7) | 540 (8.2) | 2452 (8.1) |
Jazan | 791 (11.2) | 895 (7.9) | 404 (7.8) | 540 (8.2) | 2630 (8.7) |
Al Jouf | 495 (7.0) | 850 (7.5) | 400 (7.7) | 540 (8.2) | 2285 (7.6) |
Madinah | 347 (4.9) | 971 (8.6) | 400 (7.7) | 540 (8.2) | 2258 (7.5) |
Makkah | 249 (3.5) | 858 (7.6) | 401 (7.7) | 541 (8.2) | 2049 (6.8) |
Najran | 25 (0.4) | 808 (7.2) | 400 (7.7) | 122 (1.8) | 1355 (4.5) |
Northern border | 35 (0.5) | 804 (7.1) | 400 (7.7) | 539 (8.2) | 1778 (5.9) |
Qassim | 300 (4.3) | 820 (7.3) | 401 (7.7) | 540 (8.2) | 2061 (6.8) |
Riyadh | 920 (13.0) | 891 (7.9) | 404 (7.8) | 544 (8.2) | 2759 (9.2) |
Tabuk | 440 (6.2) | 805 (7.1) | 390 (7.5) | 542 (8.2) | 2177 (7.2) |
Grand Total | 7050 | 11,289 | 5183 | 6612 | 30,134 |
Q1 n (%) | Q2 n (%) | Q3 n (%) | Q4 n (%) | Total n (%) | |
---|---|---|---|---|---|
Fruit and Vegetable Intake | |||||
AFVI | 1266 (15.7) | 728 (6.4) | 302 (5.9) | 290 (4.2) | 2586 (8.2) |
LFVI | 6813 (84.3) | 10,635 (93.6) | 4849 (94.1) | 6591 (95.8) | 28,888 (91.8) |
Physical Activity | |||||
ALPA | 3310 (41.0) | 3007 (26.5) | 1267 (24.6) | 1696 (24.6) | 9280 (29.5) |
LLPAd | 4768 (59.0) | 8356 (73.5) | 3884 (75.4) | 5185 (75.4) | 22,193 (70.5) |
Cigarette Smoking | |||||
Never | 6658 (82.4) | 9209 (81.1) | 4241 (82.3) | 5514 (80.1) | 25,622 (81.4) |
Yes, daily | 1011 (12.5) | 1413 (12.4) | 545 (10.6) | 883 (12.8) | 3852 (12.2) |
Yes, occasionally | 409 (5.1) | 740 (6.5) | 365 (7.1) | 484 (7.0) | 1998 (6.3) |
Waterpipe Smoking | |||||
Never | 6864 (85.0) | 9587 (84.4) | 4401 (85.4) | 5736 (83.4) | 26,588 (84.5) |
Yes, daily | 495 (6.1) | 481 (4.2) | 230 (4.5) | 483 (7.0) | 1689 (5.4) |
Yes, occasionally | 720 (8.9) | 1294 (11.4) | 521 (10.1) | 662 (9.6) | 3197 (10.2) |
E-Cigarette Smoking | |||||
Never | 7547 (93.4) | 10,361 (91.2) | 4698 (91.2) | 6176 (89.8) | 28,782 (91.4) |
Yes, daily | 234 (2.9) | 374 (3.3) | 176 (3.4) | 328 (4.8) | 1112 (3.5) |
Yes, occasionally | 298 (3.7) | 627 (5.5) | 278 (5.4) | 377 (5.5) | 1580 (5.0) |
Hypertension | |||||
Yes | 977 (12.1) | 1615 (14.2) | 819 (15.9) | 1160 (16.9) | 4571 (14.5) |
No | 7101 (87.9) | 9748 (85.8) | 4333 (84.1) | 5721 (83.1) | 26,903 (85.5) |
Hypercholesterolemia | |||||
Yes | 884 (10.9) | 1768 (15.6) | 809 (15.7) | 1046 (15.2) | 4507 (14.3) |
No | 7194 (89.1) | 9595 (84.4) | 4343 (84.3) | 5835 (84.8) | 26,967 (85.7) |
Obesity | |||||
Yes | 2180 (27.0) | 2893 (25.5) | 1168 (22.7) | 1658 (24.1) | 7899 (25.1) |
No | 5898 (73.0) | 8470 (74.5) | 3984 (77.3) | 5223 (75.9) | 23,575 (74.9) |
Diabetes | |||||
Yes | 930 (11.5) | 1543 (13.6) | 692 (13.4) | 1081 (15.7) | 4246 (13.5) |
No | 7149 (88.5) | 9820 (86.4) | 4460 (86.6) | 5800 (84.3) | 27,229 (86.5) |
Heart Disease | |||||
Yes | 299 (3.7) | 614 (5.4) | 263 (5.1) | 409 (5.9) | 1585 (5.0) |
No | 7779 (96.3) | 10749 (94.6) | 4888 (94.9) | 6472 (94.1) | 29,888 (95.0) |
Stroke | |||||
Yes | 129 (1.6) | 225 (2.0) | 108 (2.1) | 141 (2.0) | 603 (1.9) |
No | 7949 (98.4) | 11138 (98.0) | 5044 (97.9) | 6740 (98.0) | 30,871 (98.1) |
Cancer | |||||
Yes | 114 (1.4) | 225 (2.0) | 110 (2.1) | 137 (2.0) | 586 (1.9) |
No | 7965 (98.6) | 11,138 (98.0) | 5041 (97.9) | 6744 (98.0) | 30888 (98.1) |
Chronic Respiratory Disease | |||||
Yes | 699 (8.7) | 1172 (10.3) | 427 (8.3) | 586 (8.5) | 2884 (9.2) |
No | 7380 (91.3) | 10,191 (89.7) | 4724 (91.7) | 6295 (91.5) | 28590 (90.8) |
Genetic Diseases | |||||
Yes | 696 (8.6) | 845 (7.4) | 392 (7.6) | 512 (7.4) | 2445 (7.8) |
No | 7383 (91.4) | 10,518 (92.6) | 4760 (92.4) | 6369 (92.6) | 29,030 (92.2) |
Variable | Crude OR (95% CI) (p-Value) | Adjusted OR (95% CI) (p-Value) |
---|---|---|
Fruit and Vegetable Intake | ||
Q1 | Reference | Reference |
Q2 * | 0.368 (0.335–0.405) (<0.001) | 0.388 (0.351–0.429) (<0.001) |
Q3 * | 0.335 (0.294–0.382) (<0.001) | 0.346 (0.294–0.382) (<0.001) |
Q4 * | 0.237 (0.208–0.270) (<0.001) | 0.239 (0.209–0.274) (<0.001) |
Physical Activity | ||
Q1 | Reference | Reference |
Q2 * | 0.518 (0.488–0.551) (<0.001) | 0.529 (0.497–0.563) (<0.001) |
Q3 * | 0.470 (0.435–0.508) (<0.001) | 0.480 (0.443–0.519) (<0.001) |
Q4 * | 0.471 (0.439–0.506) (<0.001) | 0.483 (0.450–0.519) (<0.001) |
Cigarette Smoking | ||
Q1 | Reference | Reference |
Q2 | 1.096 (1.018–1.181) (0.015) | 0.996 (0.919–1.079) (0.915) |
Q3 * | 1.006 (0.918–1.102) (0.902) | 0.894 (0.810–0.987) (0.026) |
Q4 | 1.163 (1.071–1.263) (<0.001) | 1.051 (0.961–1.149) (0.275) |
Waterpipe Smoking | ||
Q1 | Reference | Reference |
Q2 | 1.047 (0.967–1.133) (0.259) | 0.921 (0.848–1.001) (0.053) |
Q3 * | 0.964 (0.874–1.064) (0.471) | 0.840 (0.758–0.930) (0.001) |
Q4 | 1.128 (1.033–1.232) (0.007) | 0.993 (0.906–1.089) (0.884) |
E-Cigarette Smoking | ||
Q1 | Reference | Reference |
Q2 * | 1.372 (1.230–1.530) (<0.001) | 1.279 (1.142–1.432) (<0.001) |
Q3 * | 1.371 (1.203–1.562) (<0.001) | 1.276 (1.116–1.460) (<0.001) |
Q4 * | 1.620 (1.440–1.822) (<0.001) | 1.531 (1.356–1.729) (<0.001) |
Hypertension | ||
Q1 | Reference | Reference |
Q2 | 1.203 (1.105–1.310) (<0.001) | 1.047 (0.953–1.149) (0.340) |
Q3 * | 1.373 (1.242–1.518) (<0.001) | 1.161(1.040–1.297) (0.008) |
Q4 * | 1.473 (1.344–1.615) (<0.001) | 1.190 (1.075–1.318) (0.001) |
Hypercholesterolemia | ||
Q1 | Reference | Reference |
Q2 * | 1.499 (1.375–1.634) (<0.001) | 1.408 (1.281–1.547) (<0.001) |
Q3 * | 1.515 (1.368–1.679) (<0.001) | 1.363 (1.219–1.525) (<0.001) |
Q4 * | 1.459 (1.325–1.605) (<0.001) | 1.225 (1.102–1.361) (<0.001) |
Obesity | ||
Q1 | Reference | Reference |
Q2 * | 0.924 (0.866–0.986) (0.016) | 0.921 (0.860–0.985) (0.016) |
Q3 * | 0.793 (0.731–0.860) (<0.001) | 0.774 (0.711–0.843) (<0.001) |
Q4 * | 0.859 (0.797–0.924) (<0.001) | 0.823 (0.762–0.888) (<0.001) |
Diabetes | ||
Q1 | Reference | Reference |
Q2 | 1.209 (1.108–1.318) (<0.001) | 1.035 (0.940–1.138) (0.485) |
Q3 | 1.192 (1.073–1.325) (0.001) | 0.966 (0.860–1.084) (0.553) |
Q4 * | 1.433 (1.305–1.575) (<0.001) | 1.138 (1.025–1.263) (0.015) |
Heart Disease | ||
Q1 | Reference | Reference |
Q2 * | 1.486 (1.290–1.711) (<0.001) | 1.257 (1.084–1.457) (0.002) |
Q3 | 1.399 (1.181–1.657) (<0.001) | 1.123 (0.941–1.340) (0.199) |
Q4 * | 1.645 (1.412–1.916) (<0.001) | 1.279 (1.089–1.501) (0.003) |
Stroke | ||
Q1 | Reference | Reference |
Q2 | 1.239 (.996–1.542) (0.054) | 1.003 (0.799–1.259) (0.980) |
Q3 | 1.313 (1.015–1.700) (0.038) | 1.012 (0.775–1.323) (0.927) |
Q4 | 1.285 (1.010–1.635) (0.041) | 0.952 (0.740–1.223) (0.698) |
Cancer | ||
Q1 | Reference | Reference |
Q2 * | 1.413 (1.126–1.774) (0.003) | 1.331 (1.054–1.680) (0.016) |
Q3 * | 1.524 (1.170–1.985) (0.002) | 1.407 (1.074–1.843) (0.013) |
Q4 | 1.422 (1.107–1.826) (0.006) | 1.286 (0.995–1.661) (0.055) |
Chronic Respiratory Disease | (<0.001) | |
Q1 | Reference | Reference |
Q2 * | 1.214 (1.100–1.339) (<0.001) | 1.201 (1.086–1.328) (<0.001) |
Q3 | 0.954 (0.841–1.082) (0.466) | 0.942 (0.829–1.070) (0.356) |
Q4 | 0.982 (0.876–1.102) (0.761) | 0.964 (0.858–1.083) (0.538) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
BinDhim, N.F.; Althumiri, N.A.; Basyouni, M.H.; AlMousa, N.; AlJuwaysim, M.F.; Alhakbani, A.; Alrashed, N.; Almahmoud, E.; AlAloula, R.; Alqahtani, S.A. Exploring the Impact of COVID-19 Response on Population Health in Saudi Arabia: Results from the “Sharik” Health Indicators Surveillance System during 2020. Int. J. Environ. Res. Public Health 2021, 18, 5291. https://doi.org/10.3390/ijerph18105291
BinDhim NF, Althumiri NA, Basyouni MH, AlMousa N, AlJuwaysim MF, Alhakbani A, Alrashed N, Almahmoud E, AlAloula R, Alqahtani SA. Exploring the Impact of COVID-19 Response on Population Health in Saudi Arabia: Results from the “Sharik” Health Indicators Surveillance System during 2020. International Journal of Environmental Research and Public Health. 2021; 18(10):5291. https://doi.org/10.3390/ijerph18105291
Chicago/Turabian StyleBinDhim, Nasser F., Nora A. Althumiri, Mada H. Basyouni, Norah AlMousa, Mohammed F. AlJuwaysim, Alanoud Alhakbani, Najat Alrashed, Elaf Almahmoud, Rawan AlAloula, and Saleh A. Alqahtani. 2021. "Exploring the Impact of COVID-19 Response on Population Health in Saudi Arabia: Results from the “Sharik” Health Indicators Surveillance System during 2020" International Journal of Environmental Research and Public Health 18, no. 10: 5291. https://doi.org/10.3390/ijerph18105291
APA StyleBinDhim, N. F., Althumiri, N. A., Basyouni, M. H., AlMousa, N., AlJuwaysim, M. F., Alhakbani, A., Alrashed, N., Almahmoud, E., AlAloula, R., & Alqahtani, S. A. (2021). Exploring the Impact of COVID-19 Response on Population Health in Saudi Arabia: Results from the “Sharik” Health Indicators Surveillance System during 2020. International Journal of Environmental Research and Public Health, 18(10), 5291. https://doi.org/10.3390/ijerph18105291