Development of a Dust Respirator by Improving the Half Mask Frame Design
Abstract
:1. Introduction
2. Materials and Methods
3. Results
- −
- walking without turning their head or without speaking for 2 min;
- −
- turning their head from side to side (about 15 times) for 2 min (imitation of an overview of the tunnel walls);
- −
- raising and lowering their head up and down (about 15 times) for 2 min (imitation of the view of the floor and ceiling);
- −
- saying the alphabet or another text aloud for 2 min (imitation of a conversation with a colleague);
- −
- walking without turning their head or without speaking for 2 min.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nosal, D.; Konovalov, S.; Shevchenko, V. Determination of the injury probability among coal mine workers. Min. Min. Depos. 2021, 15. Accepted paper. [Google Scholar]
- Perederiy, G.S.; Ponomarenko, A.N.; Shemyakin, G.M.; Vetrov, S.P. Occupational risks of industrial dust influence on coalminers in faces of coal miners. Ukr. J. Occup. Health 2009, 2, 21–30. [Google Scholar] [CrossRef]
- Sadovenko, I.; Ulytsky, O.; Zahrytsenko, A.; Boiko, K. Risk assessment of radionuclide contamination spreading while flooding coal mined-out rocks. Min. Min. Depos. 2020, 14, 130–136. [Google Scholar] [CrossRef]
- Bazaluk, O.; Ennan, A.; Cheberiachko, S.; Deryugin, O.; Cheberiachko, Y.; Saik, P.; Lozynskyi, V.; Knysh, I. Research on Regularities of Cyclic Air Motion through a Respirator Filter. Appl. Sci. 2021, 11, 3157. [Google Scholar] [CrossRef]
- Ilyashov, M.; Diedich, I.; Nazimko, V. Prospective tendencies of coal mining risk management. Min. Min. Depos. 2019, 13, 111–117. [Google Scholar] [CrossRef]
- Kirsch, A.A.; Budyka, A.K.; Kirsch, V.A. Filtration of aerosols with fibrous materials FP. Russ. J. Gen. Chem. 2008, 52, 97–102. [Google Scholar]
- Kirillov, V.F.; Bunchev, A.A.; Chirkin, A.V. On means of individual respiratory protection of the workers (literature review). Russ. J. Occup. Health Ind. Ecol. 2013, 4, 25–31. [Google Scholar]
- Hoover, M.D.; Lackey, J.R.; Vargo, G.J. Independent Evaluation of The Lepestok Filtering Facepiece Respirator. Lovelace Respiratory Research Institute; Pacific Northwest National Laboratory (U.S. Department of Energy): Albuquerque, NM, USA, 2001. [CrossRef] [Green Version]
- Brosseau, L.M. Fit Testing Respirators for Public Health Medical Emergencies. J. Occup. Environ. Hyg. 2010, 7, 628–632. [Google Scholar] [CrossRef] [PubMed]
- Denisov, E.I. Masks love counting as well. On the impossibility of reducing hazard classes when using certified PPE for respiratory and hearing organs. Occup. Saf. Health 2014, 2, 49–54. [Google Scholar]
- Cheberiachko, S.; Cheberiachko, Y.; Sotskov, V.; Tytov, O. National Technical University Dnipro Polytechnic Analysis of the factors influencing the level of professional health and the biological age of miners during underground mining of coal seams. Min. Min. Depos. 2018, 12, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Cheberyachko, S.; Deryugin, O.; Tretyak, O.; Pustovoi, D. Revisiting the Improvement of Respiratory System Protection of Mining Workers. Asp. Min. Min. Sci. 2019, 3, 429–431. [Google Scholar] [CrossRef]
- Vishnevskaya, N.L.; Plakhova, L.V. Security issues in the application of respiratory protection devices. Sci. Vector Togliatti State Univ. 2012, 1, 20–22. [Google Scholar]
- Holinko, V.; Cheberiachko, S.; Yavorska, O.; Radchuk, D. Study of protective properties of half-masks respirators used by miners. Min. Min. Depos. 2016, 10, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Korobeynikova, A.V.; Astakhov, V.S.; Podpletneva, G.V. Use of easy respirators in radiation defense, problems and ways of their solution. Probl. Saf. Nucl. Power Plants Chernobyl. 2005, 3, 70–78. [Google Scholar]
- Standard EN 149:2001+A1:2009. (Main). “Respiratory Protective Devices—Filtering Half Masks to Protect against Particles—Requirements, Testing, Marking”. Available online: https://ce-marking.help/directive/personal-protective-equipment/standard/2569/en-1492001-a12009 (accessed on 7 March 2021).
- Holinko, V.I.; Naumov, N.N.; Cheberyachko, S.I.; Radchuk, D.I. Investigation on the protective efficiency of national disposable dust respirators in accordance with European standards. Metall. Min. Ind. 2011, 5, 118–121. [Google Scholar]
- Koshelev, V.E.; Tarasov, V.I. On Difficulty of Application of Respiratory Protection in a Simple Way. Perm. Style MG agency. 2007, p. 280. Available online: https://www.elibrary.ru/item.asp?id=19540609 (accessed on 13 April 2021).
- Coffey, C.C.; Campbell, D.L.; Zhuang, Z. Simulated workplace performance of N95 respirators. Aiha J. 1999, 60, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Ennan, A.A.; Bolshakov, D.A.; Gorban, L.N. Weight reduction of Snezhok respirators. J. Weld. 1999, 1, 32–33. [Google Scholar]
- Brown, R.C. An Integrated Approach to the Theory and Applications of Fibrous Filters; Pergamon Press: Oxford, UK, 1993; p. 292. [Google Scholar]
- Lin, T.H.; Chen, C.C.; Huang, S.H.; Kuo, C.W.; Lai, C.Y.; Lin, W.Y. Filter quality of electret masks in filtering 14.6-594 nm aerosol particles: Effects of five decontamination methods. PLoS ONE 2017, 12, e0186217. [Google Scholar] [CrossRef] [Green Version]
- Sargent, E.V.; Gallo, F. Use of Personal Protective Equipment for Respiratory Protection. Ilar J. 2003, 44, 52–56. [Google Scholar] [CrossRef]
- Lei, Z.; Yang, J.; Zhuang, Z. Headform and N95 Filtering Facepiece Respirator Interaction: Contact Pressure Simulation and Validation. J. Occup. Environ. Hyg. 2012, 9, 46–58. [Google Scholar] [CrossRef]
- Gumon, M. Respiratory protective devices. Choice and use; Institut National de Recherche et de Securite (INRS): Paris, France, 2017; p. 68. [Google Scholar]
- Makowski, K.; Okrasa, M. Application of 3D scanning and 3D printing for designing and fabricating customized half-mask facepieces: A pilot study. Work 2019, 63, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Menzelintseva, N.V.; Karapuzova, N.Y.; Marinina, O.N.; Stephanenko, I.V. Development of filtering non-woven material for respirators, research and optimization of its properties. Proceedings of higher education institutions. Text. Ind. Technol. 2018, 1, 105–109. [Google Scholar]
- Kornilov, O.A. Strength of Materials. Kyiv: «Logos», 2002, 562p. Available online: https://www.twirpx.com/file/1003331/ (accessed on 13 April 2021).
- Melnikova, R.; Ehrmann, A.; Finsterbusch, K. 3D printing of textile-based structures by Fused Deposition Modelling (FDM) with different polymer materials. Iop Conf. Ser. Mater. Sci. Eng. 2014, 62, 012018. [Google Scholar] [CrossRef] [Green Version]
- Cheberyachko, S.; Radchuk, D.; Yavorska, O. Determination of the Sampling Size for the Filtering Half Mask Laboratory Testing. Metrol. Instrum. 2015, 3, 24–29. [Google Scholar]
- Bbardwaj, N.; Kundu, S. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28, 325–347. [Google Scholar] [CrossRef]
- Griffin, O.G.; Longson, D.J. The Hazard Due Inward Leakage of Gas into a Full Face Mask. Ann. Occup. Hyg. 1970, 13, 147–151. [Google Scholar]
- Coffey, C.C.; Lawrence, R.B.; Campbell, D.L.; Zhuang, Z.; Calvert, C.A.; Jensen, P.A. Fitting Characteristics of Eighteen N95 Filtering-Facepiece Respirators. J. Occup. Environ. Hyg. 2004, 1, 262–270. [Google Scholar] [CrossRef]
- Roberge, R.J.; Coca, A.; Williams, W.J.; Powel, J.B.; Palmiero, A.J. Physiological impact of the N95 filtering facepiece respirator on healthcare workers. Respir. Care 2010, 55, 569–577. [Google Scholar]
- Haiko, H.; Saik, P.; Lozynskyi, V. The Philosophy of Mining: Historical Aspect and Future Prospect. Philos. Cosmol. 2019, 22, 76–90. [Google Scholar] [CrossRef]
- Harber, P.; Bansal, S.; Santiago, S.; Liu, D.; Yun, D.; Ng, D.; Liu, Y.; Wu, S. Multidomain subjective response to respirator use during simulated work. J. Occup. Environ. Med. 2009, 51, 38–45. [Google Scholar] [CrossRef]
Harmful Factor/Type of Activity | Non-Toxic Dust; Low Rate of Work | Non-Toxic Dust; High Air Humidity, High Pace of Work |
---|---|---|
Operation requirements | Class FFP2 | Class FFP3 |
Design requirements | Availability of an exhalation valve; lightweight filter frame | Availability of inspiratory–expiratory valve assemblies; obturator; filter box for filters |
Requirements to materials | Filter material for trapping dust and moisture in the space under mask | Filter material for trapping dust. Insulating (air-tight) materials for the half mask. Plastic for filter boxes. Silicone for inspiratory–expiratory valves. |
Benchmarks | Inward leakage coefficient. Penetration coefficient | Inward leakage coefficient. Penetration coefficient. A service time. Breathing resistance |
3D Printing Material | Melting Temperature, °C | Elasticity Modulus, mPa | Strength Modulus, mPa |
---|---|---|---|
ULTEM 1010 1 | 216 | 64 (axis XZ) and 42 (axis ZX) | 2770 (axis XZ) and 2200 (axis ZX) |
PC-ISO 2 | 133 | 57 | 2000 |
Nylon | 180 | 43 | 1586 |
ABS-M30i 3 | 96 | 31 | 2180 |
PPSF/PPSF 4 | 230 | 55 | 2100 |
MED610 5 | 45–50 | 50–65 | 75–110 |
PLA 6 | 49–52 | 37 | 1440 |
The Main Parameters of Filtering Layers | Layers | ||
---|---|---|---|
One | Two | Three | |
Mean fiber radius a, µm | 7–10 | 2–3 | 5–7 |
Fiber packaging density β, mg/m3 | 0.06 | 0.03 | 0.05 |
Filter layer thickness, mm | 4 | 3 | 3 |
Anthropometric Facial Dimensions, mm | Test Persons | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
Length | 111 | 112 | 119 | 120 | 120 | 128 | 127 | 135 | 135 | 136 |
Width | 126 | 135 | 125 | 134 | 143 | 124 | 143 | 124 | 136 | 144 |
Depth | 113 | 114 | 100 | 118 | 111 | 109 | 115 | 118 | 114 | 113 |
Experimental Group Participant Number | Experimental Value of the Inward Leakage Coefficient | ||||
---|---|---|---|---|---|
When Speaking | Walking | Head Rotation | Head Inclination | Mean Value | |
1 | 0.2 | 0.03 | 0.04 | 0.09 | 0.1 |
2 | 0.4 | 0.2 | 0.19 | 0.24 | 0.33 |
3 | 0.45 | 0.35 | 0.31 | 0.4 | 0.4 |
4 | 0.44 | 0.31 | 0.31 | 0.32 | 0.36 |
5 | 1.45 | 0.98 | 0.83 | 0.86 | 1.03 |
6 | 0.7 | 0.44 | 0.53 | 0.37 | 0.5 |
7 | 1.1 | 0.59 | 0.63 | 0.6 | 0.7 |
8 | 0.9 | 0.79 | 0.62 | 0.79 | 0.8 |
9 | 1.2 | 1.16 | 1.1 | 1.1 | 1.1 |
10 | 1.4 | 1.23 | 1.2 | 1.4 | 1.3 |
Average | 0.82 | 0.60 | 0.57 | 0.61 | 0.66 |
Max | 1.45 | 1.23 | 1.2 | 1.4 | 1.3 |
Min | 0.2 | 0.03 | 0.04 | 0.09 | 0.1 |
Identifiable Parameters | Value of Filter Respirator Parameters | |
---|---|---|
Standard 203 | Prototype Model | |
Inward leakage coefficient based on test-aerosol sodium chloride, % | 1.52 ± 0.08 | 0.62 ± 0.05 |
Penetration coefficient based on test-aerosol sodium chloride, % | 2.25 ± 0.06 | 1.15 ± 0.04 |
Protection coefficient, % | ≈44 | ≈87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bazaluk, O.; Cheberiachko, S.; Cheberiachko, Y.; Deryugin, O.; Lozynskyi, V.; Knysh, I.; Saik, P.; Naumov, M. Development of a Dust Respirator by Improving the Half Mask Frame Design. Int. J. Environ. Res. Public Health 2021, 18, 5482. https://doi.org/10.3390/ijerph18105482
Bazaluk O, Cheberiachko S, Cheberiachko Y, Deryugin O, Lozynskyi V, Knysh I, Saik P, Naumov M. Development of a Dust Respirator by Improving the Half Mask Frame Design. International Journal of Environmental Research and Public Health. 2021; 18(10):5482. https://doi.org/10.3390/ijerph18105482
Chicago/Turabian StyleBazaluk, Oleg, Serhii Cheberiachko, Yurii Cheberiachko, Oleh Deryugin, Vasyl Lozynskyi, Ivan Knysh, Pavlo Saik, and Mykola Naumov. 2021. "Development of a Dust Respirator by Improving the Half Mask Frame Design" International Journal of Environmental Research and Public Health 18, no. 10: 5482. https://doi.org/10.3390/ijerph18105482
APA StyleBazaluk, O., Cheberiachko, S., Cheberiachko, Y., Deryugin, O., Lozynskyi, V., Knysh, I., Saik, P., & Naumov, M. (2021). Development of a Dust Respirator by Improving the Half Mask Frame Design. International Journal of Environmental Research and Public Health, 18(10), 5482. https://doi.org/10.3390/ijerph18105482