Environmental and Health Hazards of Chromated Copper Arsenate-Treated Wood: A Review
Abstract
:1. Introduction
2. Systemic Effects of CCA-Research with Experimental Models
2.1. Arsenic Toxicity
2.1.1. Arsenic as Carcinogen
2.1.2. Arsenic as an Oxidative Stress Agent
2.2. Chromium Toxicity
2.3. Copper Toxicity
3. Bioavailability and Bioaccessibility of CCA Compounds
Organism | Exposure Medium | Exposure Route | Fraction of Source | Total Concentration | Total Background Concentration | Bioavailability Test | Bioavailability/Bioaccessibility | Ref. |
---|---|---|---|---|---|---|---|---|
Whole-cell bacterial bioreporters | ||||||||
Soil | As, Escherichia coli pJAMA arsR; Cu, Pseudomonas fluorescens DF57-Cu15 | Soil-water extractable metalloid | Soil: As, 1364; Cr, 540; Cu, 1662. (mg /kg) | n/a | Bioreporter’s specific gene expression *; and analyzed by ICP-MS | (Bioavailable) As, 6.1 ± 0.8; Cr, na; Cu, 8.2 ± 0.6 (mg/kg) ** | [58] | |
Earthworm (Eisenia andrei) | ||||||||
Humus soil layer | Earthworms ingestion | Soil from a 60 year-old Norway spruce (Picea abies L.) stand | Soil: As, 10.1 ± 5.5–2810 ± 921; Cr, 12.5 ±10.6–1480 ± 355; Cu 5.14 ± 5.3–642 ± 180 (mg/kg) | As, 6.12 ±1.2; Cr, 5.3 ± 1.7; Cu, 4.7 ± 1.1 (mg/kg) | Animal chemical digestion and analyzed by ICP-OES | (Bioavailable) As, 22–357.1; Cr, 0.9–40.8; Cu, 7.7–51.1 (mg/kg body eight) ** | [61] | |
Children | ||||||||
Surface soil (<250 μm fraction) | Incidental ingestion | CCA-treated playground structures 16 and 26 yrs-old installation | Soil: As, 101.3–213.5 (mg/kg) | As, 4.6–6.6 (mg/kg) | In vitro SBRC-gastric assay | (Bioaccessible) As, 24.5–29.4% of total As (109–236 mg/kg) in the <250 μm fraction | [62] | |
Plant (Spinacia oleracea) | ||||||||
Artificial soils: sandy soil with 3.8% coir peat, 13.5% perlite and 82.7% sand; clay soil with mixing sandy soil with 10% bentonite | Spinach leaf and root | Irrigation with untreated leachate; water from submerged timber blocks; and irrigation with tap water (no As, Cr and Cu) on soil mixed with shredded timber (powder < 15 mm) | Soil: As, 5–176; Cr, 5–252; Cu, 5–127 (mg/kg) | n/a | Plant chemical digestion and analyzed by ICP-MS | (Bioavailable) Sandy soil (Leaf) As, 0.2–1.5; Cr, 0.5–2.9; Cu, 0.8–4.4; (Root) As, 20–62; Cr, 0.6–1.3; Cu, 2.3–10 Clay soil (Leaf) As, 0.3–0.9; Cr, 0.3–1.8; Cu, 1–4.24; (Root) As, 9–148; Cr, 0.7–61; Cu, 3.8–59 (mg/kg plant wet weight) ** | [63] | |
Whole-cell bacterial bioreporters children | ||||||||
Soil | Cu-specific Pseudomonas fluorescens bioreporter | Soil-water extractable concentration: As, 0.17–18.3; Cr, 0.02–0.78; Cu, 0.11–5.99 (mg/kg) | Soil: As, 32.4–2839; Cr, 26.1–1819; Cu, 17.2–2205 (mg/kg) | n/a | Bioreporter’s specific gene expression * | (Bioavailable) As, na; Cr, na; Cu, 0.04–3.52 mg/kg | [64] | |
Whole-cell bacterial bioreporters children | ||||||||
Soil and wood treated staircases/railings | Hand-to-mouth incidental ingestion | Soil and surface wipe (50 cm2) (construction years from 1978–1998) | Soil: As, 1.2–66.6 mg/kg. Surface wipes (dislodgeable As): 5.4–86.1 μg/100 cm2 | Soil: As, 1.2–3.1 mg/kg. Surface wipes: As, <0.2 μg/100 cm2 | Soil: In vitro SBRC-gastric assay; Surface wipes: analyzed by ICP-MS | (Bioaccessible) Soil: As, 1.2–25.2 mg/kg (17–84%). Hand loadings: As, 15–23.8 μg/100 cm2 | [65] | |
Human | ||||||||
Soil | Incidental ingestion | Soil-water extractable metalloid | Soil: As, 170 ± 35 mg/kg | n/a | In vitro gastrointestinal bioaccessibility | (Bioaccessible) As, 30.5 ± 3.6% (17 ± 0.4–46 ± 1.1%) | [66] | |
Earthworm (Eisenia fetida) | ||||||||
Soil | Earthworms Ingestion | CCA-treated wood–water leachates | Soil: As, 13–169; Cr, 12–151; Cu, 10–216 (mg/kg). Wood leachate As, 325 ± 4; Cr, 291 ± 3.4; Cu, 248 ± 4.2 (mg/L) | Untreated wood leachate: As, 0.5 ± 0.7; Cr, 0.35 ± 0.5; Cu, 0.55 ± 0.8 (mg/L) | Earthworm growth and reproduction test; and analyzed by ICP-OES | (Bioaccessible) Ranged from negligible to As, 80; Cr, 89; Cu, 90 (mg/kg) | [67] | |
Children | ||||||||
Soil | Incidental ingestion | Soil immediately adjacent CCA-treated utility poles after 18 months of service | Soil: As, 37.4 ± 2.5–251 ± 12 mg/kg | n/a | In vitro astrointestinal method | (Bioaccessible) As, 25.0 ± 2.7–66.3 ± 2.3 % (mean value 40.7 ± 14.9%) | [68] | |
Human / mix of plant species | ||||||||
Soil | Phytotoxicity | Soil used from 1942 to 1968 for CCA wood impregnation | Soil: As, 5904 ± 194; Cr, 3829 + 161; Cu, 1509 ± 90 (mg/kg) | n/a | Physiologically based extraction test [69]; and analyzed by ICP-OES | (Bioaccessible) Soil: As, 219 ± 10; Cr, 26.1 **; Cu, 581 ± 30. Plant shoots: As, 78.6 ± 0.3; Cr, 7.4 ± 0.1; Cu, 48.5 ± 0.2 (mg/kg) | [60] | |
Soil microbial community structure | ||||||||
Soil | As, E. coli plasmid R733 recombinant with plasmid pTOO31 | Soil metal contamination from 1950 to 1998 | Soil: As,190–2500; Cr, 250–1900; Cu, 140–950 (mg/kg) | As, Cr and Cu were below 80 mg/kg | Bioreporter’s specific gene Expression *; and analyzed by ICP-MS | (Bioavailable) As, 0.25–10.3 mg/L (5.1–42.3% of total water-soluble As concentration) | [70] |
4. Removal of CCA
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, A.Y.-Y.; Olsen, T. Chromated Copper Arsenate–Treated Wood: A Potential Source of Arsenic Exposure and Toxicity in Dermatology. Int. J. Womens Dermatol. 2016, 2, 28–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coles, C.A.; Arisi, J.A.; Organ, M.; Veinott, G.I. Leaching of Chromium, Copper, and Arsenic from CCA-Treated Utility Poles. Appl. Environ. Soil Sci. 2014, 2014, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Gosselin, M.; Zagury, G.J. Metal(Loid)s Inhalation Bioaccessibility and Oxidative Potential of Particulate Matter from Chromated Copper Arsenate (CCA)-Contaminated Soils. Chemosphere 2020, 238, 124557. [Google Scholar] [CrossRef] [PubMed]
- Katz, S.A.; Salem, H. Chemistry and Toxicology of Building Timbers Pressure-Treated with Chromated Copper Arsenate: A Review. J. Appl. Toxicol. 2005, 25, 1–7. [Google Scholar] [CrossRef]
- Matos, R.C.; Vieira, C.; Morais, S.; de Lourdes Pereira, M.; Pedrosa, J. Nephrotoxicity Effects of the Wood Preservative Chromium Copper Arsenate on Mice: Histopathological and Quantitative Approaches. J. Trace Elem. Med. Biol. 2009, 23, 224–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matos, R.C.; Vieira, C.; Morais, S.; de Lourdes Pereira, M.; de Jesus, J.P. Nephrotoxicity of CCA-Treated Wood: A Comparative Study with As2O5 and CrO3 on Mice. Environ. Toxicol. Pharmacol. 2009, 27, 259–263. [Google Scholar] [CrossRef] [Green Version]
- Matos, R.C.; Vieira, C.; Morais, S.; Pereira, M.L.; Pedrosa, J. Toxicity of Chromated Copper Arsenate: A Study in Mice. Environ. Res. 2010, 110, 424–427. [Google Scholar] [CrossRef] [Green Version]
- Matos, R.C.; Oliveira, H.; Fonseca, H.M.A.C.; Morais, S.; Sharma, B.; Santos, C.; de Lourdes Pereira, M. Comparative Cr, As and CCA Induced Cytostaticity in Mice Kidney: A Contribution to Assess CCA Toxicity. Environ. Toxicol. Pharmacol. 2020, 73, 103297. [Google Scholar] [CrossRef]
- Ohgami, N.; Yamanoshita, O.; Thang, N.D.; Yajima, I.; Nakano, C.; Wenting, W.; Ohnuma, S.; Kato, M. Carcinogenic Risk of Chromium, Copper and Arsenic in CCA-Treated Wood. Environ. Pollut. 2015, 206, 456–460. [Google Scholar] [CrossRef]
- Takahashi, N.; Yoshida, T.; Kojima, S.; Yamaguchi, S.; Ohtsuka, R.; Takeda, M.; Kosaka, T.; Harada, T. Pathological and Clinical Pathological Changes Induced by Four-Week, Repeated-Dose, Oral Administration of the Wood Preservative Chromated Copper Arsenate in Wistar Rats. Toxicol. Pathol. 2018, 46, 312–323. [Google Scholar] [CrossRef] [Green Version]
- US Environmental Protection Agency (US EPA). Notice of receipt of requests to cancel certainchromated copper arsenate (CCA) wood preservative products and amend to terminate certain uses of CCA products (22 February 2002). In Federal Register; U.S. Environ-mental Protection Agency, Office of Pesticide Programs: Washington, DC, USA, 2002; Volume 6, pp. 8244–8246. Available online: https://www.govinfo.gov/content/pkg/FR-2002-02-22/pdf/02-4306.pdf (accessed on 10 January 2021).
- Lansbury Hall, N.; Beder, S. Treated Timber, Toxic Time-Bomb: The Need for a Precautionary Approach to the Use of Copper Chrome Arsenate (CCA) as a Timber Preservative. Fac. Arts Pap. 2005, 1–49. Available online: https://ro.uow.edu.au/artspapers/41/ (accessed on 10 January 2021).
- Cocker, J.; Morton, J.; Warren, N.; Wheeler, J.P.; Garrod, A.N. Biomonitoring for chromium and arsenic in timber treatment plant workers exposed to CCA wood Preservatives. Ann. Occup. Hyg. 2006, 50, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Shalat, S.L.; Solo-Gabriele, H.M.; Fleming, L.E.; Buckley, B.T.; Black, K.; Jimenez, M.; Shibata, T.; Durbin, M.; Graygo, J.; Stephan, W. A Pilot Study of Children’s Exposure to CCA-Treated Wood from Playground Equipment. Sci. Total Environ. 2006, 367, 80–88. [Google Scholar] [CrossRef]
- Barraj, L.M.; Tsuji, J.S.; Scrafford, C.G. The SHEDS-Wood Model: Incorporation of Observational Data to Estimate Exposure to Arsenic for Children Playing on CCA-Treated Wood Structures. Environ. Health Perspect. 2007, 115, 781–786. [Google Scholar] [CrossRef]
- Lew, K.; Acker, J.P.; Gabos, S.; Le, X.C. Biomonitoring of Arsenic in Urine and Saliva of Children Playing on Playgrounds Constructed from Chromated Copper Arsenate-Treated Wood. Environ. Sci. Technol. 2010, 44, 3986–3991. [Google Scholar] [CrossRef] [PubMed]
- Vromman, D.; Martínez, J.P.; Kumar, M.; Šlejkovec, Z.; Lutts, S. Comparative effects of arsenite (As(III)) and arsenate (As(V)) on whole plants and cell lines of the arsenic-resistant halophyte plant species Atriplex atacamensis. Environ. Sci. Pollut. Res. Int. 2018, 25, 34473–34486. [Google Scholar] [CrossRef]
- Ravenscroft, P.; Brammer, H.; Richards, K.S. Arsenic Pollution: A Global Synthesis; RGS-IBG book series; Wiley-Blackwell: Chichester, UK; Malden, MA, USA, 2009; ISBN 978-1-4051-8602-5. [Google Scholar]
- Gomez-Caminero, A.; Howe, P.D.; Hughes, M.; Kenyon, E.; Lewis, D.R.; Moore, M.; Aitio, A.; Becking, G.C.; Ng, J. Arsenic and Arsenic Compounds; World Health Organization: Geneva, Switzerland, 2001; Available online: https://apps.who.int/iris/handle/10665/42366 (accessed on 10 January 2021).
- Baker, B.A.; Cassano, V.A.; Murray, C. Arsenic Exposure, Assessment, Toxicity, Diagnosis, and Management: Guidance for Occupational and Environmental Physicians. J. Occup. Environ. Med 2018, 60, e634–e639. [Google Scholar] [CrossRef]
- Smith, A.H.; Hopenhayn-Rich, C.; Bates, M.N.; Goeden, H.M.; Hertz-Picciotto, I.; Duggan, H.M.; Wood, R.; Kosnett, M.J.; Smith, M.T. Cancer Risks from Arsenic in Drinking Water. Environ. Health Perspect. 1992, 97, 259–267. [Google Scholar] [CrossRef]
- Zhou, Q.; Xi, S. A Review on Arsenic Carcinogenesis: Epidemiology, Metabolism, Genotoxicity and Epigenetic Changes. Regul. Toxicol. Pharmacol. 2018, 99, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Mohammed Abdul, K.S.; Jayasinghe, S.S.; Chandana, E.P.S.; Jayasumana, C.; De Silva, P.M.C.S. Arsenic and Human Health Effects: A Review. Environ. Toxicol. Pharmacol. 2015, 40, 828–846. [Google Scholar] [CrossRef] [PubMed]
- Environmental Protection Agency, U.S. Chromated Arsenicals (CCA). Ingred. Used Pestic. Prod. Available online: https://www.epa.gov/ingredients-used-pesticide-products/chromated-arsenicals-cca (accessed on 13 May 2021).
- Morrow, P.E.; Beiter, H.; Amato, F.; Gibb, F.R. Pulmonary Retention of Lead: An Experimental Study in Man. Environ. Res. 1980, 21, 373–384. [Google Scholar] [CrossRef]
- Lee, T.C.; Tanaka, N.; Lamb, P.W.; Gilmer, T.M.; Barrett, J.C. Induction of Gene Amplification by Arsenic. Science 1988, 241, 79–81. [Google Scholar] [CrossRef] [PubMed]
- Puccetti, E.; Ruthardt, M. Acute Promyelocytic Leukemia: PML/RARα and the Leukemic Stem Cell. Leukemia 2004, 18, 1169–1175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waalkes, M.P.; Liu, J.; Ward, J.M.; Diwan, B.A. Mechanisms Underlying Arsenic Carcinogenesis: Hypersensitivity of Mice Exposed to Inorganic Arsenic during Gestation. Toxicology 2004, 198, 31–38. [Google Scholar] [CrossRef]
- Guillamet, E. In Vitro DNA Damage by Arsenic Compounds in a Human Lymphoblastoid Cell Line (TK6) Assessed by the Alkaline Comet Assay. Mutagenesis 2004, 19, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Valko, M.; Morris, H.; Cronin, M. Metals, Toxicity and Oxidative Stress. Curr. Med. Chem. 2005, 12, 1161–1208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.; Li, J.; Ding, M.; Wang, L.; Shi, X.; Castranova, V.; Vallyathan, V.; Ju, G.; Costa, M. Arsenic-Induced NFkappaB Transactivation through Erks- and JNKs-Dependent Pathways in Mouse Epidermal JB6 Cells. Mol. Cell. Biochem. 2001, 222, 29–34. [Google Scholar] [CrossRef]
- Bode, A.M.; Dong, Z. The Paradox of Arsenic: Molecular Mechanisms of Cell Transformation and Chemotherapeutic Effects. Crit. Rev. Oncol. Hematol. 2002, 42, 5–24. [Google Scholar] [CrossRef]
- Newton, A.C. Protein Kinase C: Seeing Two Domains. Curr. Biol. 1995, 5, 973–976. [Google Scholar] [CrossRef] [Green Version]
- Cavigelli, M.; Li, W.W.; Lin, A.; Su, B.; Yoshioka, K.; Karin, M. The Tumor Promoter Arsenite Stimulates AP-1 Activity by Inhibiting a JNK Phosphatase. EMBO J. 1996, 15, 6269–6279. [Google Scholar] [CrossRef]
- Huang, C.; Bode, A.M.; Chen, N.Y.; Ma, W.Y.; Li, J.; Nomura, M.; Dong, Z. Transactivation of AP-1 in AP-1-Luciferase Reporter Transgenic Mice by Arsenite and Arsenate. Anticancer Res. 2001, 21, 261–267. [Google Scholar]
- Sun, J.; Yu, M.; Lu, Y.; Thakur, C.; Chen, B.; Qiu, P.; Zhao, H.; Chen, F. Carcinogenic Metalloid Arsenic Induces Expression of Mdig Oncogene through JNK and STAT3 Activation. Cancer Lett. 2014, 346, 257–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, H.; Shi, X.; Liu, K.J. Oxidative Mechanism of Arsenic Toxicity and Carcinogenesis. Mol. Cell. Biochem. 2004, 255, 67–78. [Google Scholar] [CrossRef]
- Kessel, M.; Liu, S.X.; Xu, A.; Santella, R.; Hei, T.K. Arsenic Induces Oxidative DNA Damage in Mammalian Cells. Mol. Cell. Biochem. 2002, 234–235, 301–308. [Google Scholar] [CrossRef]
- Abbas, G.; Murtaza, B.; Bibi, I.; Shahid, M.; Niazi, N.; Khan, M.; Amjad, M.; Hussain, M.; Natasha. Arsenic Uptake, Toxicity, Detoxification, and Speciation in Plants: Physiological, Biochemical, and Molecular Aspects. Int. J. Environ. Res. Public. Health 2018, 15, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, E.M.; Stýblo, M.; Fry, R.C. Genetic and Epigenetic Mechanisms Underlying Arsenic-Associated Diabetes Mellitus: A Perspective of the Current Evidence. Epigenomics 2017, 9, 701–710. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.-C.; Howard, B.V.; Umans, J.G.; Gribble, M.O.; Best, L.G.; Francesconi, K.A.; Goessler, W.; Lee, E.; Guallar, E.; Navas-Acien, A. Arsenic Exposure, Arsenic Metabolism, and Incident Diabetes in the Strong Heart Study. Diabetes Care 2015, dc141641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salem, H.; Katz, S.A. Alternative Toxicological Methods; CRC Press: Boca Raton, FL, USA, 2003; ISBN 978-0-429-21420-2. [Google Scholar]
- Santra, A.; Chowdhury, A.; Ghatak, S.; Biswas, A.; Dhali, G.K. Arsenic Induces Apoptosis in Mouse Liver Is Mitochondria Dependent and Is Abrogated by N-Acetylcysteine. Toxicol. Appl. Pharmacol. 2007, 220, 146–155. [Google Scholar] [CrossRef]
- Katz, S.A.; Salem, H. The Toxicology of Chromium with Respect to Its Chemical Speciation: A Review. J. Appl. Toxicol. 1993, 13, 217–224. [Google Scholar] [CrossRef]
- Wang, Y.; Su, H.; Gu, Y.; Song, X.; Zhao, J. Carcinogenicity of Chromium and Chemoprevention: A Brief Update. OncoTargets Ther. 2017, 10, 4065–4079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission. Directorate General for Health and Consumers. In Opinion on Chromium VI in Toys; Publications Office: Luxembourg, 2015. [Google Scholar]
- Baranowska-Dutkiewicz, B. Absorption of Hexavalent Chromium by Skin in Man. Arch Toxicol. 1981, 47, 47–50. [Google Scholar]
- Cox, C. Chromated Copper Arsenate. J. Pestic. Reform 1991, 11, 2–6. [Google Scholar]
- Wang, Z.; Lin, H.-P.; Li, Y.; Tao, H.; Yang, P.; Xie, J.; Maddy, D.; Kondo, K.; Yang, C. Chronic Hexavalent Chromium Exposure Induces Cancer Stem Cell-Like Property and Tumorigenesis by Increasing c-Myc Expression. Toxicol. Sci. 2019, 172, 252–264. [Google Scholar] [CrossRef] [PubMed]
- Dartsch, P.C.; Hildenbrand, S.; Kimmel, R.; Schmahl, F.W. Investigations on the Nephrotoxicity and Hepatotoxicity of Trivalent and Hexavalent Chromium Compounds. Int. Arch. Occup. Environ. Health 1998, 71, S40–S45. [Google Scholar] [PubMed]
- Casalegno, C.; Schifanella, O.; Zennaro, E.; Marroncelli, S.; Briant, R. Collate Literature Data on Toxicity of Chromium (Cr) and Nickel (Ni) in Experimental Animals and Humans. EFSA Support. Publ. 2015, 12. [Google Scholar] [CrossRef]
- Członkowska, A.; Litwin, T.; Dusek, P.; Ferenci, P.; Lutsenko, S.; Medici, V.; Rybakowski, J.K.; Weiss, K.H.; Schilsky, M.L. Wilson disease. Nat. Rev. Dis. Primers 2018, 4, 21. [Google Scholar] [CrossRef]
- Lorincz, M.T. Wilson disease and related copper disorders. Handb. Clin. Neurol. 2018, 147, 279–292. [Google Scholar] [CrossRef] [PubMed]
- Kelley, M.E. Assessing Oral Bioavailability of Metals in Soil; Battelle Press: Columbus, OH, USA, 2002; ISBN 978-1-57477-123-7. [Google Scholar]
- Kwon, E.; Zhang, H.Q.; Wang, Z.W.; Jhangri, G.S.; Lu, X.F.; Fok, N.; Gabos, S.; Li, X.F.; Le, X.C. Arsenic on the hands of children after playing in playgrounds. Environ. Health Perspect. 2004, 112, 1375–1380. [Google Scholar] [CrossRef] [Green Version]
- Smith, E.; Scheckel, K.; Miller, B.W.; Weber, J.; Juhasz, A.L. Influence of in Vitro Assay PH and Extractant Composition on As Bioaccessibility in Contaminated Soils. Sci. Total Environ. 2014, 473–474, 171–177. [Google Scholar] [CrossRef]
- Gress, J.; da Silva, E.B.; de Oliveira, L.M.; Zhao, D.; Anderson, G.; Heard, D.; Stuchal, L.D.; Ma, L.Q. Potential Arsenic Exposures in 25 Species of Zoo Animals Living in CCA-Wood Enclosures. Sci. Total Environ. 2016, 551–552, 614–621. [Google Scholar] [CrossRef]
- Frick, H.; Tardif, S.; Kandeler, E.; Holm, P.E.; Brandt, K.K. Assessment of Biochar and Zero-Valent Iron for in-Situ Remediation of Chromated Copper Arsenate Contaminated Soil. Sci. Total Environ. 2019, 655, 414–422. [Google Scholar] [CrossRef] [Green Version]
- Choppala, G.; Bolan, N.; Kunhikrishnan, A.; Bush, R. Differential Effect of Biochar upon Reduction-Induced Mobility and Bioavailability of Arsenate and Chromate. Chemosphere 2016, 144, 374–381. [Google Scholar] [CrossRef]
- Kumpiene, J.; Ore, S.; Renella, G.; Mench, M.; Lagerkvist, A.; Maurice, C. Assessment of Zerovalent Iron for Stabilization of Chromium, Copper, and Arsenic in Soil. Environ. Pollut. 2006, 144, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Kilpi-Koski, J.; Penttinen, O.-P.; Väisänen, A.O.; van Gestel, C.A.M. An Uptake and Elimination Kinetics Approach to Assess the Bioavailability of Chromium, Copper, and Arsenic to Earthworms (Eisenia Andrei) in Contaminated Field Soils. Environ. Sci. Pollut. Res. 2019, 26, 15095–15104. [Google Scholar] [CrossRef] [Green Version]
- Deramos King, C.M.; Dozier, C.S.; Campbell, J.L.; Curry, E.D.; Godri Pollitt, K.J. Long-Term Leaching of Arsenic from Pressure-Treated Playground Structures in the Northeastern United States. Sci. Total Environ. 2019, 656, 834–842. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Du, J.; Dong, Z.; Rahman, M.M.; Gao, Y.; Yan, K.; Naidu, R. Bioavailability and Risk Estimation of Heavy Metal(Loid)s in Chromated Copper Arsenate Treated Timber after Remediation for Utilisation as Garden Materials. Chemosphere 2019, 216, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Tardif, S.; Cipullo, S.; Sø, H.U.; Wragg, J.; Holm, P.E.; Coulon, F.; Brandt, K.K.; Cave, M. Factors Governing the Solid Phase Distribution of Cr, Cu and As in Contaminated Soil after 40 Years of Ageing. Sci. Total Environ. 2019, 652, 744–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gress, J.K.; Lessl, J.T.; Dong, X.; Ma, L.Q. Assessment of Children’s Exposure to Arsenic from CCA-Wood Staircases at Apartment Complexes in Florida. Sci. Total Environ. 2014, 476–477, 440–446. [Google Scholar] [CrossRef]
- Girouard, E.; Zagury, G.J. Arsenic Bioaccessibility in CCA-Contaminated Soils: Influence of Soil Properties, Arsenic Fractionation, and Particle-Size Fraction. Sci. Total Environ. 2009, 407, 2576–2585. [Google Scholar] [CrossRef] [PubMed]
- Leduc, F.; Whalen, J.K.; Sunahara, G.I. Growth and Reproduction of the Earthworm Eisenia Fetida after Exposure to Leachate from Wood Preservatives. Ecotoxicol. Environ. Saf. 2008, 69, 219–226. [Google Scholar] [CrossRef]
- Pouschat, P.; Zagury, G.J. In Vitro Gastrointestinal Bioavailability of Arsenic in Soils Collected near CCA-Treated Utility Poles. Environ. Sci. Technol. 2006, 40, 4317–4323. [Google Scholar] [CrossRef] [PubMed]
- Geebelen, W.; Adriano, D.C.; van der Lelie, D.; Mench, M.; Carleer, R.; Clijsters, H.; Vangronsveld, J. Selected Bioavailability Assays to Test the Efficacy of Amendment-Induced Immobilisation of Lead in Soils. Plant Soil 2003, 249, 217–228. [Google Scholar] [CrossRef]
- Turpeinen, R.; Kairesalo, T.; Häggblom, M.M. Microbial Community Structure and Activity in Arsenic-, Chromium- and Copper-Contaminated Soils. FEMS Microbiol. Ecol. 2004, 47, 39–50. [Google Scholar] [CrossRef] [Green Version]
- Peters, H.A.; Croft, W.A.; Woolson, E.A.; Darcey, B.; Olson, M. Hematological, dermal and neuropsychological disease from burning and power sawing chromium-copperarsenic (CCA)-treated wood. Acta Pharmacol. Toxicol. 1986, 59 (Suppl. 7), 39–43. [Google Scholar] [CrossRef] [PubMed]
- U.S. Consumer Product Safety Commission. CCA-Pressure Treated Wood: Chromated Copper Arsenate: Guidance for Outdoor Wooden Structures. Available online: http://www.cpsc.gov/PageFiles/122137/270.pdf (accessed on 13 May 2021).
- Warner, J.E.; Solomon, K.R. Acidity as a factor in leaching of copper, chromium and arsenic from CCA-treated dimension lumber. Environ. Toxicol. Chem. 1990, 9, 1331–1337. [Google Scholar] [CrossRef]
- Clausen, C.A.; Smith, R.L. Removal of CCA from Treated Wood by Oxalic Acid Extraction, Steam Explosion, and Bacterial Fermentation. J. Ind. Microbiol. Biotechnol. 1998, 20, 251–257. [Google Scholar] [CrossRef]
- Clausen, C.A. CCA Removal from Treated Wood Using a Dual Remediation Process. Waste Manag. Res. 2000, 18, 485–488. [Google Scholar] [CrossRef]
- Kartal, S.N.; Munir, E.; Kakitani, T.; Imamura, Y. Bioremediation of CCA-Treated Wood by Brown-Rot Fungi Fomitopsis Palustris, Coniophora Puteana, and Laetiporus Sulphureus. J. Wood Sci. 2004, 50, 182–188. [Google Scholar] [CrossRef]
- Kim, G.H.; Choi, Y.S.; Kim, J.J. Improving the Efficiency of Metal Removal from CCA-Treated Wood Using Brown Rot Fungi. Environ. Technol. 2009, 30, 673–679. [Google Scholar] [CrossRef]
- Dos Santos, H.S.; Ferrarini, S.F.; Flores, F.Q.; Pires, M.J.R.; Azevedo, C.M.N.; Coudert, L.; Blais, J.F. Removal of Toxic Elements from Wastewater Generated in the Decontamination of CCA-Treated Eucalyptus Sp. and Pinus Canadense Wood. J. Mater. Cycles Waste Manag. 2018, 20, 1299–1309. [Google Scholar] [CrossRef]
- Velizarova, E.; Ribeiro, A.B.; Ottosen, L.M. A Comparative Study on Cu, Cr and As Removal from CCA-Treated Wood Waste by Dialytic and Electrodialytic Processes. J. Hazard. Mater. 2002, 94, 147–160. [Google Scholar] [CrossRef]
- Jones, A.S.; Marini, J.; Solo-Gabriele, H.M.; Robey, N.M.; Townsend, T.G. Arsenic, Copper, and Chromium from Treated Wood Products in the U.S. Disposal Sector. Waste Manag. 2019, 87, 731–740. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morais, S.; Fonseca, H.M.A.C.; Oliveira, S.M.R.; Oliveira, H.; Gupta, V.K.; Sharma, B.; de Lourdes Pereira, M. Environmental and Health Hazards of Chromated Copper Arsenate-Treated Wood: A Review. Int. J. Environ. Res. Public Health 2021, 18, 5518. https://doi.org/10.3390/ijerph18115518
Morais S, Fonseca HMAC, Oliveira SMR, Oliveira H, Gupta VK, Sharma B, de Lourdes Pereira M. Environmental and Health Hazards of Chromated Copper Arsenate-Treated Wood: A Review. International Journal of Environmental Research and Public Health. 2021; 18(11):5518. https://doi.org/10.3390/ijerph18115518
Chicago/Turabian StyleMorais, Simone, Henrique M. A. C. Fonseca, Sónia M. R. Oliveira, Helena Oliveira, Vivek Kumar Gupta, Bechan Sharma, and Maria de Lourdes Pereira. 2021. "Environmental and Health Hazards of Chromated Copper Arsenate-Treated Wood: A Review" International Journal of Environmental Research and Public Health 18, no. 11: 5518. https://doi.org/10.3390/ijerph18115518
APA StyleMorais, S., Fonseca, H. M. A. C., Oliveira, S. M. R., Oliveira, H., Gupta, V. K., Sharma, B., & de Lourdes Pereira, M. (2021). Environmental and Health Hazards of Chromated Copper Arsenate-Treated Wood: A Review. International Journal of Environmental Research and Public Health, 18(11), 5518. https://doi.org/10.3390/ijerph18115518