The Biomechanical Characterization of the Turning Phase during a 180° Change of Direction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedures
2.4. Data Processing
2.5. Statistical Analysis
3. Results
3.1. Characterization of the Mod505 Performance and Turning Phase
3.2. Analysis of Different Executions
3.3. Analysis of COD Performance
3.4. Analysis of Playing Level
3.5. Stepwise Multiple Regression Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sheppard, J.M.; Young, W.B. Agility literature review: Classifications, training and testing. J. Sports Sci. 2006, 24, 919–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, D.J.; Gabbett, T.J.; Nassis, G.P. Agility in team sports: Testing, training and factors affecting performance. Sports Med. 2016, 46, 421–442. [Google Scholar] [CrossRef]
- Young, W.B.; Dawson, B.; Henry, G.J. Agility and change-of-direction speed are independent skills: Implications for training for agility in invasion sports. Int. J. Sports Sci. Coach 2015, 10, 159–169. [Google Scholar] [CrossRef]
- Chaabene, H. Change of direction tasks: Does the eccentric muscle contraction really matter. Sci. Pages Sports Med. 2017, 1, 1–2. [Google Scholar]
- Komi, P.V.; Bosco, C. Utilization of stored elastic energy in leg extensor muscles by men and women. Med. Sci. Sports 1978, 10, 261–265. [Google Scholar]
- Bloomfield, J.; Polman, R.; O’Donoghue, P. Physical demands of different positions in FA Premier League soccer. J. Sports Sci. Med. 2007, 6, 63–70. [Google Scholar]
- Sweeting, A.J.; Aughey, R.J.; Cormack, S.J.; Morgan, S. Discovering frequently recurring movement sequences in team-sport athlete spatiotemporal data. J. Sports Sci. 2017, 35, 2439–2445. [Google Scholar] [CrossRef] [Green Version]
- Duffield, R.; Drinkwater, E.J. Time–motion analysis of test and one-day international cricket centuries. J. Sports Sci. 2008, 26, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Condello, G.; Minganti, C.; Lupo, C.; Benvenuti, C.; Pacini, D.; Tessitore, A. Evaluation of change-of-direction movements in young rugby players. Int. J. Sports Physiol. Perform. 2013, 8, 52–56. [Google Scholar] [CrossRef] [Green Version]
- Condello, G.; Kernozek, T.W.; Tessitore, A.; Foster, C. Biomechanical analysis of a change-of-direction task in college soccer players. Int. J. Sports Physiol. Perform. 2016, 11, 96–101. [Google Scholar] [CrossRef]
- Dos’ Santos, T.; McBurnie, A.; Thomas, C.; Comfort, P.; Jones, P.A. Biomechanical comparison of cutting techniques: A review and practical applications. Strength Cond. J. 2019, 41, 40–54. [Google Scholar] [CrossRef]
- Dos’ Santos, T.; Thomas, C.; Comfort, P.; Jones, P.A. The effect of angle and velocity on change of direction biomechanics: An angle-velocity trade-off. Sports Med. 2018, 48, 2235–2253. [Google Scholar] [CrossRef] [Green Version]
- Nimphius, S.; Callaghan, S.J.; Bezodis, N.E.; Lockie, R.G. Change of direction and agility tests: Challenging our current measures of performance. Strength Cond. J. 2018, 40, 26–38. [Google Scholar] [CrossRef] [Green Version]
- Dos’ Santos, T.; Thomas, C.; Comfort, P.; Jones, P.A. Role of the penultimate foot contact during change of direction: Implications on performance and risk of injury. Strength Cond. J. 2019, 41, 87–104. [Google Scholar] [CrossRef]
- Dos’ Santos, T.; Thomas, C.; Jones, P.A.; Comfort, P. Mechanical determinants of faster change of direction speed performance in male athletes. J. Strength Cond. Res. 2017, 31, 696–705. [Google Scholar] [CrossRef] [Green Version]
- Spiteri, T.; Newton, R.U.; Binetti, M.; Hart, N.H.; Sheppard, J.M.; Nimphius, S. Mechanical determinants of faster change of direction and agility performance in female basketball athletes. J. Strength Cond. Res. 2015, 29, 2205–2214. [Google Scholar] [CrossRef] [PubMed]
- Dos’ Santos, T.; McBurnie, A.; Thomas, C.; Comfort, P.; Jones, P.A. Biomechanical determinants of the modified and traditional 505 change of direction speed test. J. Strength Cond. Res. 2020, 34, 1285–1296. [Google Scholar] [CrossRef]
- Dos’ Santos, T.; Thomas, C.; Jones, P.A. How early should you brake during a 180° turn? A kinetic comparison of the antepenultimate, penultimate, and final foot contacts during a 505 change of direction speed test. J. Sports Sci. 2021, 39, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.; Dos’ Santos, T.; Comfort, P.; Jones, P.A. Effect of asymmetry on biomechanical characteristics during 180° change of direction. J. Strength Cond. Res. 2020, 34, 1297–1306. [Google Scholar] [CrossRef]
- Dos’ Santos, T.; Thomas, C.; Comfort, P.; Jones, P.A. Comparison of change of direction speed performance and asymmetries between team-sport athletes: Application of change of direction deficit. Sports 2018, 6, 174. [Google Scholar]
- Thomas, C.; Dos’ Santos, T.; Cuthbert, M.; Fields, C.; Jones, P.A. The effect of limb preference on braking strategy and knee joint mechanics during pivoting in female soccer players. Sci. Med. Football 2020, 4, 30–36. [Google Scholar] [CrossRef]
- Dos’ Santos, T.; Bishop, C.; Thomas, C.; Comfort, P.; Jones, P.A. The effect of limb dominance on change of direction biomechanics: A systematic review of its importance for injury risk. Phys. Ther. Sport 2019, 37, 179–189. [Google Scholar] [CrossRef]
- Henry, G.; Dawson, B.; Lay, B.; Young, W. Validity of a reactive agility test for Australian football. Int. J. Sports Physiol. Perform. 2011, 6, 534–545. [Google Scholar] [CrossRef] [Green Version]
- Sheppard, J.; Young, W.B.; Doyle, T.; Sheppard, T.; Newton, R.U. An evaluation of a new test of reactive agility and its relationship to sprint speed and change of direction speed. J. Sci. Med. Sport 2006, 9, 342–349. [Google Scholar] [CrossRef] [Green Version]
- Young, W.; Farrow, D.; Pyne, D.; McGregor, W.; Handke, T. Validity and reliability of agility tests in junior Australian football players. J. Strength Cond. Res. 2011, 25, 3399–3403. [Google Scholar] [CrossRef] [PubMed]
- Gabbett, T.J.; Kelly, J.N.; Sheppard, J.M. Speed, change of direction speed, and reactive agility of rugby league players. J. Strength Cond. Res. 2008, 22, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Serpell, B.G.; Ford, M.; Young, W.B. The development of a new test of agility for rugby league. J. Strength Cond. Res. 2010, 24, 3270–3277. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [Green Version]
- Nyland, J.; Ullery, L.; Caborn, D.N. Medial patellar taping changes the peak plantar force location and timing of female basketball players. Gait Posture 2002, 15, 146–152. [Google Scholar] [CrossRef]
- Jones, P.A.; Thomas, C.; Dos’ Santos, T.; McMahon, J.J.; Graham-Smith, P. The role of eccentric strength in 180 turns in female soccer players. Sports 2017, 5, 42. [Google Scholar] [CrossRef] [Green Version]
- Condello, G.; Khemtong, C.; Lee, Y.H.; Chen, C.H.; Mandorino, M.; Santoro, E.; Liu, C.; Tessitore, A. Validity and reliability of a photoelectric cells system for the evaluation of change of direction and lateral jumping abilities in collegiate basketball athletes. J. Funct. Morphol. Kinesiol. 2020, 5, 55. [Google Scholar] [CrossRef] [PubMed]
- Hanley, B.; Tucker, C.B. Reliability of the OptoJump Next system for measuring temporal values in elite racewalking. J. Strength Cond. Res. 2019, 33, 3438–3443. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, W.G. A scale of Magnitudes for Effect Statistics: A New View of Statistics. 2002. Available online: http://sportsci.org/resource/stats/effectmag.html (accessed on 21 February 2021).
- Bishop, C.; Turner, A.; Read, P. Effects of inter-limb asymmetries on physical and sports performance: A systematic review. J. Sports Sci. 2018, 36, 1135–1144. [Google Scholar] [CrossRef]
- Fort-Vanmeerhaeghe, A.; Gual, G.; Romero-Rodriguez, D.; Unnitha, V. Lower limb neuromuscular asymmetry in volleyball and basketball players. J. Hum. Kinet. 2016, 50, 135–143. [Google Scholar] [CrossRef]
- LaStayo, P.C.; Woolf, J.M.; Lewek, M.D.; Snyder-Mackler, L.; Reich, T.; Lindstedt, S.L. Eccentric muscle contractions: Their contribution to injury, prevention, rehabilitation, and sport. J. Orthop. Sports Phys. Ther. 2003, 33, 557–571. [Google Scholar] [CrossRef] [Green Version]
- Lieberman, D.E.; Venkadesan, M.; Werbel, W.A.; Daoud, A.I.; D’Andrea, S.; Davis, I.S.; Mang’Eni, R.O.; Pitsiladis, Y. Foot strike patterns and collision forces in habitually barefoot versus shod runners. Nature 2010, 463, 531–535. [Google Scholar] [CrossRef] [PubMed]
- Spiteri, T.; Nimphius, S.; Hart, N.H.; Specos, C.; Sheppard, J.M.; Newton, R.U. Contribution of strength characteristics to change of direction and agility performance in female basketball athletes. J. Strength Cond. Res. 2014, 28, 2415–2423. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The importance of muscular strength in athletic performance. Sports Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Wagle, J.P.; Douglas, J.; Taber, C.B.; Harden, M.; Haff, G.G.; Stone, M.H. Implementing eccentric resistance training—Part 1: A brief review of existing methods. J. Funct. Morphol. Kinesiol. 2019, 4, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suchomel, T.J.; Wagle, J.P.; Douglas, J.; Taber, C.B.; Harden, M.; Haff, G.G.; Stone, M.H. Implementing eccentric resistance training—Part 2: Practical recommendations. J. Funct. Morphol. Kinesiol. 2019, 4, 55. [Google Scholar] [CrossRef] [Green Version]
- Chaabene, H.; Prieske, O.; Negra, Y.; Granacher, U. Change of direction speed: Toward a strength training approach with accentuated eccentric muscle actions. Sports Med. 2018, 48, 1773–1779. [Google Scholar] [CrossRef] [PubMed]
Variables | Braking/Propulsive Trials | Only-Propulsive Trials | p (ES) | |
---|---|---|---|---|
Penultimate Foot Contact | Total CT (s) | 0.385 ± 0.103 | 0.391 ± 0.13 | 0.677 (0.07) |
Braking VGRF (N/kg) | 27.0 ± 7.3 | 28.0 ± 7.4 | 0.018 (0.41) | |
Braking HGRF (N/kg) | 15.1 ± 4.1 | 15.5 ± 4.1 | 0.137 (0.25) | |
Braking VImp (N·s/kg) | 2.3 ± 0.5 | 2.3 ± 0.4 | 0.654 (0.08) | |
Braking HImp (N·s/kg) | 1.4 ± 0.3 | 1.4 ± 0.3 | 0.935 (0.01) | |
Braking resultant GRF (N/kg) | 30.5 ± 8 | 31.6 ± 8.1 | 0.012 (0.44) | |
Step length (cm) | 113.7 ± 33.9 | 116.7 ± 34.2 | 0.145 (0.24) | |
Final Foot Contact | Braking CT (s) | 0.223 ± 0.036 | 0.230 ± 0.047 | 0.297 (0.18) |
Propulsive CT (s) | 0.300 ± 0.055 | 0.301 ± 0.069 | 0.937 (0.01) | |
Total CT (s) | 0.524 ± 0.07 | 0.534 ± 0.083 | 0.303 (0.17) | |
Braking VGRF (N/kg) | 21.5 ± 4.9 | 21.9 ± 4.3 | 0.510 (0.11) | |
Propulsive VGRF (N/kg) | 14.3 ± 1.1 | 14.4 ± 1.3 | 0.260 (0.19) | |
Braking HGRF (N/kg) | 16.3 ± 3 | 16.7 ± 2.5 | 0.148 (0.24) | |
Propulsive HGRF (N/kg) | 11.1 ± 1.6 | 10.9 ± 1.4 | 0.177 (0.23) | |
Braking VImp (N·s/kg) | 2.7 ± 0.4 | 2.8 ± 0.5 | 0.023 (0.40) | |
Propulsive VImp (N·s/kg) | 3.0 ± 0.5 | 3.1 ± 0.6 | 0.490 (0.12) | |
Total VImp (N·s/kg) | 5.7 ± 0.6 | 5.9 ± 0.7 | 0.021 (0.40) | |
Braking HImp (N·s/kg) | 2.2 ± 0.4 | 2.3 ± 0.4 | 0.013 (0.41) | |
Propulsive HImp (N·s/kg) | 2.3 ± 0.3 | 2.2 ± 0.4 | 0.316 (0.17) | |
Total HImp (N·s/kg) | 4.4 ± 0.5 | 4.5 ± 0.5 | 0.184 (0.22) | |
Braking resultant GRF (N/kg) | 27.0 ± 5.4 | 27.3 ± 4.8 | 0.632 (0.08) | |
Propulsive resultant GRF (N/kg) | 18.1 ± 1.7 | 18.7 ± 4 | 0.312 (0.17) | |
Step length (cm) | 91.0 ± 13.5 | 92.3 ± 11.9 | 0.425 (0.13) | |
First Accelerating Foot Contact | Braking CT (s) | 0.089 ± 0.032 | N/A | N/A |
Propulsive CT (s) | 0.224 ± 0.048 | N/A | N/A | |
Total CT (s) | 0.313 ± 0.065 | 0.301 ± 0.06 | 0.219 (0.21) | |
Braking HGRF (N/kg) | 8.9 ± 2.8 | N/A | N/A | |
Propulsive VGRF (N/kg) | 16.1 ± 1.9 | 16.7 ± 1.9 | 0.007 (0.48) | |
Braking HGRF (N/kg) | 4.6 ± 1.6 | N/A | N/A | |
Propulsive HGRF (N/kg) | 9.0 ± 1.4 | 9.3 ± 1.3 | 0.016 (0.42) | |
Braking VImp (N·s/kg) | 0.5 ± 0.2 | N/A | N/A | |
Propulsive VImp (N·s/kg) | 2.2 ± 0.4 | N/A | N/A | |
Total VImp (N·s/kg) | 2.7 ± 0.3 | 2.6 ± 0.3 | 0.005 (0.50) | |
Braking HImp (N·s/kg) | 0.2 ± 0.1 | N/A | N/A | |
Propulsive HImp (N·s/kg) | 1.2 ± 0.2 | N/A | N/A | |
Total HImp (N·s/kg) | 1.4 ± 0.1 | 1.4 ± 0.2 | 0.162 (0.02) | |
Braking resultant GRF (N/kg) | 9.6 ± 3.2 | N/A | N/A | |
Propulsive resultant GRF (N/kg) | 18.4 ± 2.2 | 19.0 ± 2 | 0.020 (0.41) | |
Step length (cm) | 81.8 ± 9.6 | 77.9 ± 10.8 | 0.024 (0.38) |
Variables | Braking/Propulsive Trials | Only-Propulsive Trials | |||||
---|---|---|---|---|---|---|---|
Faster | Slower | p (ES) | Faster | Slower | p (ES) | ||
Penultimate Foot Contact | Total CT (s) | 0.392 ± 0.068 | 0.355 ± 0.084 | 0.119 (0.48) | 0.403 ± 0.084 | 0.352 ± 0.091 | 0.116 (0.58) |
Braking VGRF (N/kg) | 29.2 ± 8.8 | 24.1 ± 7.1 | 0.046 (0.62) | 29.4 ± 7.6 | 25.7 ± 6.3 | 0.163 (0.52) | |
Braking HGRF (N/kg) | 16.2 ± 4 | 12.4 ± 4.2 | 0.005 (0.91) | 16.7 ± 3.6 | 12.9 ± 3.6 | 0.005 (1.06) | |
Braking VImp (N·s/kg) | 2.3 ± 0.3 | 2.1 ± 0.5 | 0.066 (0.57) | 2.2 ± 0.4 | 2.4 ± 0.5 | 0.201 (−0.47) | |
Braking HImp (N·s/kg) | 1.5 ± 0.2 | 1.2 ± 0.3 | <0.001 (1.3) | 1.4 ± 0.2 | 1.3 ± 0.2 | 0.145 (0.53) | |
Braking resultant GRF (N/kg) | 32.4 ± 8.9 | 26.7 ± 7.7 | 0.03 (0.68) | 33.1 ± 8 | 28.5 ± 6.8 | 0.099 (0.62) | |
Final Foot Contact | Braking CT (s) | 0.227 ± 0.04 | 0.223 ± 0.036 | 0.724 (0.11) | 0.231 ± 0.056 | 0.233 ± 0.047 | 0.915 (−0.04) |
Propulsive CT (s) | 0.277 ± 0.044 | 0.330 ± 0.055 | 0.001 (−1.1) | 0.275 ± 0.049 | 0.317 ± 0.069 | 0.055 (−0.72) | |
Total CT (s) | 0.504 ± 0.059 | 0.552 ± 0.074 | 0.02 (−0.73) | 0.506 ± 0.069 | 0.556 ± 0.094 | 0.091 (−0.63) | |
Braking VGRF (N/kg) | 20.8 ± 3.9 | 20.5 ± 3.3 | 0.789 (0.08) | 21.3 ± 3.5 | 21.4 ± 5.2 | 0.927 (−0.03) | |
Propulsive VGRF (N/kg) | 14.4 ± 1 | 13.9 ± 0.9 | 0.088 (0.53) | 14.7 ± 1.2 | 15.2 ± 0.9 | 0.204 (−0.47) | |
Braking HGRF (N/kg) | 17.1 ± 2.7 | 15.0 ± 2.5 | 0.012 (0.82) | 17.4 ± 2.5 | 14.5 ± 1.9 | 0.001 (1.29) | |
Propulsive HGRF (N/kg) | 11.9 ± 1.6 | 10.0 ± 0.9 | <0.001 (1.45) | 11.7 ± 1.5 | 10.6 ± 0.9 | 0.031 (0.79) | |
Braking VImp (N·s/kg) | 2.7 ± 0.4 | 2.6 ± 0.4 | 0.316 (0.31) | 2.9 ± 0.6 | 2.7 ± 0.6 | 0.567 (0.21) | |
Propulsive VImp (N·s/kg) | 2.8 ± 0.4 | 3.3 ± 0.5 | <0.001 (−1.17) | 2.9 ± 0.4 | 3.4 ± 0.7 | 0.025 (−0.86) | |
Total VImp (N·s/kg) | 5.5 ± 0.5 | 5.9 ± 0.7 | 0.043 (−0.63) | 5.8 ± 0.5 | 6.1 ± 0.9 | 0.19 (−0.48) | |
Braking HImp (N·s/kg) | 2.3 ± 0.4 | 1.9 ± 0.4 | 0.001 (1.08) | 2.4 ± 0.4 | 1.9 ± 0.4 | 0.004 (1.11) | |
Propulsive HImp (N·s/kg) | 2.2 ± 0.3 | 2.3 ± 0.3 | 0.231 (−0.38) | 2.3 ± 0.3 | 2.3 ± 0.4 | 0.918 (−0.04) | |
Total HImp (N·s/kg) | 4.5 ± 0.4 | 4.3 ± 0.5 | 0.054 (0.61) | 4.7 ± 0.3 | 4.2 ± 0.6 | 0.006 (1.03) | |
Braking resultant GRF (N/kg) | 26.7 ± 4.6 | 25.2 ± 3.8 | 0.248 (0.35) | 27.4 ± 4.3 | 25.7 ± 5.1 | 0.333 (0.36) | |
Propulsive resultant GRF (N/kg) | 18.6 ± 1.7 | 17.1 ± 1.2 | 0.002 (1) | 18.7 ± 1.8 | 18.6 ± 1.1 | 0.869 (0.06) | |
First Accelerating Foot contact | Braking CT (s) | 0.089 ± 0.035 | 0.088 ± 0.027 | 0.913 (0.03) | N/A | N/A | N/A |
Propulsive CT (s) | 0.203 ± 0.03 | 0.230 ± 0.038 | 0.012 (−0.8) | N/A | N/A | N/A | |
Total CT (s) | 0.293 ± 0.052 | 0.316 ± 0.047 | 0.133 (−0.46) | 0.299 ± 0.058 | 0.270 ± 0.048 | 0.143 (0.54) | |
Braking VGRF (N/kg) | 8.8 ± 2.9 | 9.3 ± 2.9 | 0.579 (−0.17) | N/A | N/A | N/A | |
Propulsive VGRF (N/kg) | 16.0 ± 2 | 15.2 ± 1.6 | 0.162 (0.43) | 17.0 ± 2.1 | 17.0 ± 1.5 | 0.996 (0) | |
Braking HGRF (N/kg) | 4.8 ± 1.5 | 4.4 ± 1.8 | 0.418 (0.25) | N/A | N/A | N/A | |
Propulsive HGRF (N/kg) | 9.6 ± 1.1 | 7.6 ± 1 | <0.001 (1.82) | 10.0 ± 1 | 8.7 ± 1.2 | 0.003 (1.12) | |
Braking VImp (N·s/kg) | 0.4 ± 0.2 | 0.5 ± 0.2 | 0.133 (−0.46) | N/A | N/A | N/A | |
Propulsive VImp (N·s/kg) | 2.1 ± 0.3 | 2.3 ± 0.4 | 0.022 (−0.72) | 2.5 ± 0.3 | 2.5 ± 0.2 | 0.705 (−0.14) | |
Total VImp (N·s/kg) | 2.5 ± 0.3 | 2.8 ± 0.4 | 0.003 (−0.96) | N/A | N/A | N/A | |
Braking HImp (N·s/kg) | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.53 (−0.2) | N/A | N/A | N/A | |
Propulsive HImp (N·s/kg) | 1.2 ± 0.1 | 1.1 ± 0.2 | 0.014 (0.79) | 1.4 ± 0.2 | 1.3 ± 0.1 | 0.004 (1.09) | |
Total HImp (N·s/kg) | 1.5 ± 0.1 | 1.3 ± 0.3 | 0.045 (0.64) | N/A | N/A | N/A | |
Braking resultant GRF (N/kg) | 9.9 ± 3 | 9.5 ± 3.7 | 0.637 (0.14) | N/A | N/A | N/A | |
Propulsive resultant GRF (N/kg) | 18.6 ± 2.4 | 16.9 ± 1.7 | 0.013 (0.78) | 19.6 ± 2.2 | 18.9 ± 1.7 | 0.362 (0.33) |
Variables | Braking/Propulsive Trials | Only-Propulsive Trials | |||||
---|---|---|---|---|---|---|---|
High Playing Level | Low Playing Level | p (ES) | High Playing Level | Low Playing Level | p (ES) | ||
Penultimate Foot Contact | Total CT (s) | 0.381 ± 0.081 | 0.383 ± 0.1 | 0.902 (−0.03) | 0.378 ± 0.098 | 0.405 ± 0.141 | 0.454 (−0.22) |
Braking VGRF (N/kg) | 31.2 ± 7.3 | 23.5 ± 7.1 | <0.001 (1.08) | 31.4 ± 5.5 | 24.2 ± 7.1 | <0.001 (1.14) | |
Braking HGRF (N/kg) | 16.6 ± 3.3 | 13.2 ± 4.3 | 0.001 (0.86) | 16.9 ± 3 | 13.5 ± 4.4 | 0.002 (0.91) | |
Braking VImp (N·s/kg) | 2.5 ± 0.3 | 2.2 ± 0.5 | 0.007 (0.68) | 2.4 ± 0.4 | 2.2 ± 0.5 | 0.144 (0.43) | |
Braking HImp (N·s/kg) | 1.5 ± 0.2 | 1.3 ± 0.3 | 0.001 (0.85) | 1.4 ± 0.2 | 1.3 ± 0.3 | 0.076 (0.51) | |
Braking resultant GRF (N/kg) | 34.4 ± 7.4 | 26.4 ± 7.8 | <0.001 (1.05) | 34.9 ± 5.9 | 27.6 ± 8.1 | 0.001 (1.05) | |
Final Foot Contact | Braking CT (s) | 0.233 ± 0.031 | 0.216 ± 0.043 | 0.081 (0.43) | 0.239 ± 0.05 | 0.215 ± 0.035 | 0.062 (0.56) |
Propulsive CT (s) | 0.298 ± 0.037 | 0.313 ± 0.059 | 0.225 (−0.30) | 0.295 ± 0.058 | 0.308 ± 0.076 | 0.531 (−0.18) | |
Total CT (s) | 0.531 ± 0.047 | 0.528 ± 0.071 | 0.858 (0.04) | 0.535 ± 0.072 | 0.527 ± 0.093 | 0.745 (0.10) | |
Braking VGRF (N/kg) | 22.3 ± 5.2 | 20.2 ± 3 | 0.037 (0.52) | 23.4 ± 5.3 | 20.3 ± 2.7 | 0.017 (0.72) | |
Propulsive VGRF (N/kg) | 14.7 ± 1 | 13.8 ± 1.2 | 0.001 (0.81) | 14.9 ± 1.2 | 14.3 ± 1.3 | 0.088 (0.51) | |
Braking HGRF (N/kg) | 16.5 ± 2.5 | 15.8 ± 2.7 | 0.246 (0.29) | 17.0 ± 2.5 | 16.0 ± 2.5 | 0.190 (0.38) | |
Propulsive HGRF (N/kg) | 11.5 ± 1.3 | 10.4 ± 1.4 | 0.001 (0.87) | 11.2 ± 1.3 | 10.7 ± 1.3 | 0.151 (0.41) | |
Braking VImp (N·s/kg) | 2.8 ± 0.3 | 2.6 ± 0.5 | 0.013 (0.62) | 3.0 ± 0.5 | 2.6 ± 0.4 | 0.008 (0.81) | |
Propulsive VImp (N·s/kg) | 3 ± 0.4 | 3.1 ± 0.6 | 0.386 (−0.213) | 3.1 ± 0.6 | 3.2 ± 0.7 | 0.546 (−0.18) | |
Total VImp (N·s/kg) | 5.8 ± 0.5 | 5.7 ± 0.6 | 0.258 (0.28) | 6.0 ± 0.6 | 5.8 ± 0.8 | 0.212 (0.37) | |
Braking HImp (N·s/kg) | 2.3 ± 0.3 | 2.0 ± 0.4 | 0.001 (0.83) | 2.4 ± 0.4 | 2.0 ± 0.4 | 0.004 (0.86) | |
Propulsive HImp (N·s/kg) | 2.3 ± 0.3 | 2.2 ± 0.3 | 0.579 (0.14) | 2.3 ± 0.4 | 2.2 ± 0.4 | 0.661 (0.12) | |
Total HImp (N·s/kg) | 4.6 ± 0.4 | 4.3 ± 0.5 | 0.002 (0.81) | 4.7 ± 0.4 | 4.3 ± 0.5 | 0.002 (0.93) | |
Braking resultant GRF (N/kg) | 27.7 ± 5.4 | 25.5 ± 3.7 | 0.05 (0.49) | 28.8 ± 5.5 | 25.5 ± 3.3 | 0.016 (0.73) | |
Propulsive resultant GRF (N/kg) | 18.7 ± 1.3 | 17.1 ± 1.7 | <0.001 (1.01) | 19.6 ± 4.5 | 17.8 ± 1.7 | 0.076 (0.53) | |
First Accelerating Foot Contact | Braking CT (s) | 0.090 ± 0.037 | 0.087 ± 0.029 | 0.745 (0.08) | N/A | N/A | N/A |
Propulsive CT (s) | 0.202 ± 0.03 | 0.237 ± 0.053 | 0.003 (−0.77) | N/A | N/A | N/A | |
Total CT (s) | 0.290 ± 0.055 | 0.324 ± 0.06 | 0.021 (−0.58) | 0.297 ± 0.066 | 0.302 ± 0.053 | 0.780 (−0.08) | |
Braking VGRF (N/kg) | 9.6 ± 2.4 | 8.4 ± 3 | 0.07 (0.45) | N/A | N/A | N/A | |
Propulsive VGRF (N/kg) | 16.3 ± 2 | 15.3 ± 1.6 | 0.025 (0.56) | 16.6 ± 2.1 | 16.6 ± 1.4 | 0.952 (−0.02) | |
Braking HGRF (N/kg) | 5.2 ± 1.3 | 4.2 ± 1.6 | 0.009 (0.67) | N/A | N/A | N/A | |
Propulsive HGRF (N/kg) | 9.6 ± 1.2 | 8.1 ± 1.3 | <0.001 (1.19) | 9.6 ± 1.2 | 8.7 ± 1.1 | 0.008 (0.78) | |
Braking VImp (N·s/kg) | 0.5 ± 0.2 | 0.4 ± 0.2 | 0.537 (0.15) | N/A | N/A | N/A | |
Propulsive VImp (N·s/kg) | 2.2 ± 0.3 | 2.3 ± 0.4 | 0.056 (−0.47) | 2.5 ± 0.3 | 2.6 ± 0.3 | 0.513 (−0.19) | |
Total VImp (N·s/kg) | 2.6 ± 0.3 | 2.8 ± 0.4 | 0.07 (0.45) | N/A | N/A | N/A | |
Braking HImp (N·s/kg) | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.282 (0.27) | N/A | N/A | N/A | |
Propulsive HImp (N·s/kg) | 1.2 ± 0.1 | 1.2 ± 0.2 | 0.099 (0.42) | 1.4 ± 0.2 | 1.3 ± 0.1 | 0.04 (0.6) | |
Total HImp (N·s/kg) | 1.5 ± 0.1 | 1.4 ± 0.2 | 0.015 (0.62) | N/A | N/A | N/A | |
Braking resultant GRF (N/kg) | 10.8 ± 2.5 | 8.8 ± 3.3 | 0.007 (0.67) | N/A | N/A | N/A | |
Propulsive resultant GRF (N/kg) | 18.8 ± 2.2 | 17.2 ± 1.9 | 0.001 (0.83) | 19 ± 2.2 | 18.8 ± 1.6 | 0.623 (0.14) |
Model | R | R2 | Adjusted R2 | SEE | F | p | |
---|---|---|---|---|---|---|---|
Braking/Propulsive Trials | 1 | 0.708 | 0.501 | 0.493 | 0.100 | 65.3 | <0.001 |
2 | 0.763 | 0.582 | 0.569 | 0.092 | 44.5 | <0.001 | |
3 | 0.843 | 0.711 | 0.697 | 0.077 | 51.6 | <0.001 | |
4 | 0.856 | 0.733 | 0.716 | 0.075 | 42.6 | <0.001 | |
5 | 0.866 | 0.750 | 0.730 | 0.073 | 36.7 | <0.001 | |
Only-Propulsive Trials | 1 | 0.536 | 0.287 | 0.271 | 0.123 | 17.3 | <0.001 |
2 | 0.726 | 0.527 | 0.504 | 0.101 | 23.4 | <0.001 | |
3 | 0.813 | 0.661 | 0.636 | 0.087 | 26.6 | <0.001 | |
4 | 0.834 | 0.695 | 0.665 | 0.083 | 22.8 | <0.001 | |
5 | 0.857 | 0.734 | 0.700 | 0.079 | 21.5 | <0.001 | |
6 | 0.873 | 0.762 | 0.725 | 0.075 | 20.3 | <0.001 |
Unstandardized Coefficients | Standardized Coefficients | 95% CI for B | Correlations | Collinearity Statistics | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Model | B | Std. Error | Beta | t (p) | Lower Bound | Upper Bound | Partial * | Part # | Tolerance | VIF | |
Braking/Propulsive Trials | (Constant) | 3.087 | 0.174 | 17.721 (<0.001) | 2.738 | 3.435 | |||||
FFC propulsive HGRF | −0.076 | 0.009 | −0.771 | −8.520 (<0.001) | −0.093 | −0.058 | −0.737 | −0.545 | 0.500 | 2.001 | |
AFC propulsive HGRF | −0.049 | 0.008 | −0.500 | −6.147 (<0.001) | −0.065 | −0.033 | −0.618 | −0.393 | 0.619 | 1.616 | |
FFC propulsive VGRF | 0.061 | 0.011 | 0.522 | 5.409 (<0.001) | 0.038 | 0.083 | 0.569 | 0.346 | 0.440 | 2.274 | |
AFC total VImp | 0.081 | 0.029 | 0.199 | 2.771 (0.007) | 0.023 | 0.139 | 0.334 | 0.177 | 0.796 | 1.257 | |
AFC step length | −0.002 | 0.001 | −0.144 | −2.051 (0.045) | −0.004 | <−0.0001 | −0.254 | −0.131 | 0.831 | 1.203 | |
Only-Propulsive Trials | (Constant) | 3.522 | 0.208 | 16.904 (<0.001) | 3.100 | 3.944 | |||||
Approach velocity | −0.095 | 0.026 | −0.321 | −3.684 (0.001) | −0.147 | −0.043 | −0.051 | −0.291 | 0.821 | 1.217 | |
FFC braking HGRF | −0.030 | 0.007 | −0.551 | −4.569 (<0.001) | −0.044 | −0.017 | −0.595 | −0.361 | 0420 | 2.326 | |
FFC braking VGRF | 0.009 | 0.004 | 0.274 | 2.180 (0.035) | 0.001 | 0.016 | 0.333 | 0.172 | 0.397 | 2.516 | |
AFC propulsive HGRF | −0.048 | 0.014 | −0.403 | −3.543 (0.001) | −0.075 | −0.021 | −0.498 | −0.280 | 0.484 | 2.064 | |
FFC total CT | 0.402 | 0.178 | 0.217 | 2.253 (0.03) | 0.041 | 0.762 | 0.343 | 0.178 | 0.675 | 1.482 | |
AFC propulsive VGRF | 0.018 | 0.008 | 0.226 | 2.122 (0.04) | 0.001 | 0.035 | 0.325 | 0.168 | 0.553 | 1.807 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santoro, E.; Tessitore, A.; Liu, C.; Chen, C.-H.; Khemtong, C.; Mandorino, M.; Lee, Y.-H.; Condello, G. The Biomechanical Characterization of the Turning Phase during a 180° Change of Direction. Int. J. Environ. Res. Public Health 2021, 18, 5519. https://doi.org/10.3390/ijerph18115519
Santoro E, Tessitore A, Liu C, Chen C-H, Khemtong C, Mandorino M, Lee Y-H, Condello G. The Biomechanical Characterization of the Turning Phase during a 180° Change of Direction. International Journal of Environmental Research and Public Health. 2021; 18(11):5519. https://doi.org/10.3390/ijerph18115519
Chicago/Turabian StyleSantoro, Enrico, Antonio Tessitore, Chiang Liu, Chi-Hsien Chen, Chutimon Khemtong, Mauro Mandorino, Yi-Hua Lee, and Giancarlo Condello. 2021. "The Biomechanical Characterization of the Turning Phase during a 180° Change of Direction" International Journal of Environmental Research and Public Health 18, no. 11: 5519. https://doi.org/10.3390/ijerph18115519
APA StyleSantoro, E., Tessitore, A., Liu, C., Chen, C. -H., Khemtong, C., Mandorino, M., Lee, Y. -H., & Condello, G. (2021). The Biomechanical Characterization of the Turning Phase during a 180° Change of Direction. International Journal of Environmental Research and Public Health, 18(11), 5519. https://doi.org/10.3390/ijerph18115519