Race Performance Prediction from the Physiological Profile in National Level Youth Cross-Country Cyclists
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Experimental Procedures
2.3.1. Pre-Experimental Standardisations
2.3.2. Field Physiological Assessments
2.3.3. Laboratory Physiological Assessments
2.3.4. Anthropometric Profile and Maximal Isometric Strength
2.3.5. Cross-Country Mountain Bike Competition
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Anthropometric Profile
4.2. Physiological Profile
4.3. Strength Profile
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bejder, J.; Bonne, T.C.; Nyberg, M.; Sjøberg, K.A.; Nordsborg, N.B. Physiological determinants of elite mountain bike cross-country Olympic performance. J. Sports Sci. 2019, 37, 1154–1161. [Google Scholar] [CrossRef] [PubMed]
- Impellizzeri, F.M.; Marcora, S.M. The physiology of mountain biking. Sports Med. 2007, 37, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Hays, A.; Devys, S.; Bertin, D.; Marquet, L.-A.; Brisswalter, J. Understanding the Physiological Requirements of the Mountain Bike Cross-Country Olympic Race Format. Front. Physiol. 2018, 9, 1062. [Google Scholar] [CrossRef] [PubMed]
- Baron, R. Aerobic and anaerobic power characteristics of off-road cyclists. Med. Sci. Sports Exerc. 2001, 33, 1387–1393. [Google Scholar] [CrossRef]
- Impellizzeri, F.; Sassi, A.; Rodriguez-Alonso, M.; Mognoni, P.; Marcora, S. Exercise intensity during off-road cycling competitions. Med. Sci. Sports Exerc. 2002, 34, 1808–1813. [Google Scholar] [CrossRef]
- Lee, H.; Martin, D.T.; Anson, J.M.; Grundy, D.; Hahn, A.G. Physiological characteristics of successful mountain bikers and professional road cyclists. J. Sports Sci. 2002, 20, 1001–1008. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Marcora, S.M.; Rampinini, E.; Mognoni, P.; Sassi, A. Correlations between physiological variables and performance in high level cross country off road cyclists. Br. J. Sports Med. 2005, 39, 747–751. [Google Scholar] [CrossRef] [Green Version]
- Impellizzeri, F.M.; Rampinini, E.; Sassi, A.; Mognoni, P.; Marcora, S. Physiological correlates to off-road cycling performance. J. Sports Sci. 2005, 23, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Impellizzeri, F.M.; Ebert, T.; Sassi, A.; Menaspa, P.; Rampinini, E.; Martin, D.T. Level ground and uphill cycling ability in elite female mountain bikers and road cyclists. Eur. J. Appl. Physiol. 2008, 102, 335–341. [Google Scholar] [CrossRef]
- Stapelfeldt, B.; Schwirtz, A.; Schumacher, Y.O.; Hillebrecht, M. Workload demands in mountain bike racing. Int. J. Sports Med. 2004, 25, 294–300. [Google Scholar] [CrossRef]
- Wilber, R.L.; Zawadzki, K.M.; Kearney, J.T.; Shannon, M.P.; Disalvo, D. Physiological profiles of elite off-road and road cyclists. Med. Sci. Sports Exerc. 1997, 29, 1090–1094. [Google Scholar] [CrossRef] [PubMed]
- Prins, L.; Terblanche, E.; Myburgh, K. Field and laboratory correlates of performance in competitive cross-country mountain bikers. J. Sports Sci. 2007, 25, 927–935. [Google Scholar] [CrossRef]
- Novak, A.; Bennett, K.; Fransen, J.; Dascombe, B. A multidimensional approach to performance prediction in Olympic distance cross-country mountain bikers. J. Sports Sci. 2017, 36. [Google Scholar] [CrossRef]
- Atkinson, G.; Davison, R.; Jeukendrup, A.; Passfield, L. Science and cycling: Current knowledge and future directions for research. J. Sports Sci. 2003, 21, 767–787. [Google Scholar] [CrossRef]
- Gregory, J.; Johns, D.P.; Walls, J.T. Relative vs. absolute physiological measures as predictors of mountain bike cross-country race performance. J. Strength Cond. Res. 2007, 21, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Granier, C.; Abbiss, C.; Aubry, A.; Vauchez, Y.; Dorel, S.; Hausswirth, C.; Meur, Y. Power Output and Pacing During International Cross-Country Mountain Bike Cycling. Int. J. Sports Physiol. Perform. 2018, 13, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.M.; Hawley, J.A.; Wong, S.H.S.; Jeukendrup, A.E. Carbohydrates for training and competition. J. Sports Sci. 2011, 29, S17–S27. [Google Scholar] [CrossRef]
- McDermott, B.P.; Anderson, S.A.; Armstrong, L.E.; Casa, D.J.; Cheuvront, S.N.; Cooper, L.; Kenney, W.L.; O’Connor, F.G.; Roberts, W.O. National Athletic Trainers’ Association Position Statement: Fluid Replacement for the Physically Active. J. Athl. Train. 2017, 52, 877–895. [Google Scholar] [CrossRef] [Green Version]
- Tanner, R.K.; Gore, C.J.; Sport, A.I.O. Physiological Tests for Elite Athletes, 2nd ed.; Human Kinetics: Champaign, IL, USA, 2012. [Google Scholar]
- Jones, A.M.; Vanhatalo, A. The ‘Critical Power’ Concept: Applications to Sports Performance with a Focus on Intermittent High-Intensity Exercise. Sports Med. 2017, 47, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Tanner, R.K.; Gore, C.J.; Sport, A.I.O. Physiological Tests for Elite Athletes; Human Kinetics: Champaign, IL, USA, 2013. [Google Scholar]
- Newell, J.; Higgins, D.; Madden, N.; Cruickshank, J.; Einbeck, J.; McMillan, K.; McDonald, R. Software for calculating blood lactate endurance markers. J. Sports Sci. 2007, 25, 1403–1409. [Google Scholar] [CrossRef]
- Cheng, B.; Kuipers, H.; Snyder, A.C.; Keizer, H.A.; Jeukendrup, A.; Hesselink, M. A new approach for the determination of ventilatory and lactate thresholds. Int. J. Sports Med. 1992, 13, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Kuipers, H.; Verstappen, F.T.; Keizer, H.A.; Geurten, P.; van Kranenburg, G. Variability of aerobic performance in the laboratory and its physiologic correlates. Int. J. Sports Med. 1985, 6, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Edvardsen, E.; Hem, E.; Anderssen, S.A. End Criteria for Reaching Maximal Oxygen Uptake Must Be Strict and Adjusted to Sex and Age: A Cross-Sectional Study. PLoS ONE 2014, 9, e85276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, A.; Marfell-Jones, M.; Olds, T.; De Ridder, J. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry: Underdale, SA, Australia, 2011; Volume 137. [Google Scholar]
- Kerr, D.A. An Anthropometric Method for Fractionation of Skin, Adipose, Bone, Muscle and Residual Tissue Masses in Males and Females Age 6 to 77 Years. Ph.D. Thesis, School of Kinesiology, Simon Fraser University, Burnaby, BC, Canada, 1988. [Google Scholar]
- Requena, B.; Gonzalez-Badillo, J.J.; de Villareal, E.S.; Ereline, J.; Garcia, I.; Gapeyeva, H.; Paasuke, M. Functional performance, maximal strength, and power characteristics in isometric and dynamic actions of lower extremities in soccer players. J. Strength Cond. Res. 2009, 23, 1391–1401. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Reyes, P.; Blanco, F.; Rodriguez Rosell, D.; Marques, M.; Badillo, J.J. Maximal Velocity as Discriminating Factor in Loaded Squat Jump Performance. Int. J. Sports Physiol. Perform. 2015, 11, 227–234. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 20 May 2021).
- Warner, S.E.; Shaw, J.M.; Dalsky, G.P. Bone mineral density of competitive male mountain and road cyclists. Bone 2002, 30, 281–286. [Google Scholar] [CrossRef]
- Wingo, J.E.; Casa, D.J.; Berger, E.M.; Dellis, W.O.; Knight, J.C.; McClung, J.M. Influence of a Pre-Exercise Glycerol Hydration Beverage on Performance and Physiologic Function During Mountain-Bike Races in the Heat. J. Athl. Train 2004, 39, 169–175. [Google Scholar] [PubMed]
- Holway, F.; Garavaglia, R. Kinanthropometry of Group I rugby players in Buenos Aires, Argentina. J. Sports Sci. 2009, 27, 1211–1220. [Google Scholar] [CrossRef]
- Martin, A.D.; Daniel, M.Z.; Drinkwater, D.T.; Clarys, J.P. Adipose tissue density, estimated adipose lipid fraction and whole body adiposity in male cadavers. Int. J. Obes. Relat. Metab. Disord. 1994, 18, 79–83. [Google Scholar] [CrossRef]
- Landers, G.; Blanksby, B.; Ackland, T.; Smith, D. Kinanthropometric differences between World Championship senior and junior elite triathletes. In Proceedings of the Proceedings from the Gatorade International Triathlon Science II Conference, Noosa, Australia, 7–8 November 1999; pp. 74–87. [Google Scholar]
- Fornasiero, A.; Savoldelli, A.; Modena, R.; Boccia, G.; Pellegrini, B.; Schena, F. Physiological and anthropometric characteristics of top-level youth cross-country cyclists. J. Sports Sci. 2018, 36, 901–906. [Google Scholar] [CrossRef] [Green Version]
Variable (Units) | Absolute Values | Relative Values (%) |
---|---|---|
Age (yr) | 16.3 ± 0.95 | - |
Height (cm) | 176.74 ± 4.23 | - |
Body Mass (kg) | 67.22 ± 7.49 | - |
Muscle Mass (kg) | 31.89 ± 5.56 | 47.25 ± 3.24 |
Adipose Mass (kg) | 15.26 ± 1.43 | 22.91 ± 2.6 |
Bone Mass (kg) | 9.11 ± 1.28 | 13.64 ± 1.95 |
Residual Mass (kg) | 7.3 ± 1.17 | 10.84 ± 0.71 |
Skin Mass (kg) | 3.75 ± 0.26 | 5.61 ± 0.35 |
Σ 6 Skinfolds (mm) | 47.71 ± 8.24 | - |
Variable (Units) | Absolute Values | Normalised Values (W/kg or N/kg) |
---|---|---|
POLT1 (W) | 187.0 ± 28.79 | 2.79 ± 0.41 |
POLT2 (W) | 232.75 ± 29.54 | 3.48 ± 0.41 |
POX2mmol/L (W) | 217.24 ± 36.93 | 3.24 ± 0.49 |
POX4mmol/L (W) | 258.34 ± 32.4 | 3.86 ± 0.43 |
PODmax (W) | 228.44 ± 21.96 | 3.41 ± 0.29 |
POVO2max (W) | 354.6 ± 37.81 | 5.29 ± 0.38 |
CP (W) | 262.9 ± 53.79 | 3.91 ± 0.65 |
P10min (W) | 286.9 ± 50.97 | 4.27 ± 0.58 |
P5min (W) | 319.2 ± 50.1 | 4.74 ± 0.51 |
P1min (W) | 499.3 ± 49.76 | 7.44 ± 0.26 |
P30s (W) | 704.1 ± 117.09 | 10.45 ± 0.94 |
Psprint (W) | 901.6 ± 178.18 | 13.52 ± 2.8 |
Squat Jump (cm) | 26.6 ± 3.72 | - |
Right Knee Extension (N) | 3827.1 ± 900.3 | 56.59 ± 8.39 |
Left Knee Extension (N) | 3274.6 ± 1849.9 | 60.34 ± 7.74 |
Knee Extension Asymmetry (N) | 493.8 ± 389.2 | 7.18 ± 4.96 |
Study | Category | n | Age (Yr) | Height (cm) | Mass (kg) | POVO2max (W) | POVO2max (W/kg) | POLT2 (W) | POLT2 (W/kg) | POLT1 (W) | POLT1 (W/kg) | PODmax (W) | PODmax (W/kg) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Impellizzeri et al. [7] | Elite | 12 | 25 ± 3 | 176 ± 7 | 66 ± 6 | 426 ± 40 | 6.4 ± 0.6 | - | - | - | - | - | - |
Lee et al. [6] | Elite | 7 | 24 ± 3 | 178 ± 7 | 65 ± 7 | 413 ± 36 | 6.3 ± 0.5 | - | - | - | - | 339 ± 31 (82.1%) | 5.2 ± 0.6 (82.5%) |
Impellizzeri et al. [8] | Elite | 13 | 20 ± 1 | 177 ± 8 | 65 ± 6 | 392 ± 35 | - | 340 ± 38 (86.7%) | - | 286 ± 32 (72.9%) | - | - | - |
Stapelfeldt et al. [10] | Elite | 9 | 21 ± 2 | 180 ± 6 | 69 ± 5 | 368 ± 25 | 5.3 ± 0.3 | 295 ± 25 (80.1%) | - | 215 ± 24 (58.4%) | - | - | - |
Warner et al. [31] | Elite | 16 | 26 ± 5 | 178 ± 5 | 71 ± 5 | - | - | - | - | - | - | - | - |
Impellizzeri et al. [5] | Elite | 5 | 21 ± 4 | 175 ± 3 | 65 ± 5 | 367 ± 36 | 5.7 ± 0.6 | 318 ± 14 (86.6%) | 4.9 ± 0.4 (86.0%) | 276 ± 17 (75.2%) | 4.3 ± 0.2 (75.4%) | - | - |
Baron [4] | Elite | 25 | 23 ± 4 | 179 ± 5 | 69 ± 7 | - | 5.5 ± 0.4 | - | - | - | - | - | - |
Wilber et al. [11] | Elite | 10 | 29 ± 4 | 176 ± 7 | 72 ± 8 | 420 ± 42 | 5.9 ± 0.3 | - | - | - | - | - | - |
Fornasiero et al. [36] | Junior | 12 | 16 ± 0 | 173 ± 7 | 60 ± 5 | 395 ± 41 | 6.7 ± 0.6 | - | - | - | - | - | - |
Present study | Junior | 10 | 16 ± 1 | 177 ± 4 | 67 ± 7 | 355 ± 38 | 5.3 ± 0.4 | 233 ± 30 (65.6%) | 3.5 ± 0.4 (66%) | 187 ± 29 (52.7%) | 2.8 ± 0.4 (52.8%) | 228 ± 22 (64.2%) | 3.4 ± 0.3 (64.2%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirizio, G.G.; Muñoz, R.; Muñoz, L.; Ahumada, F.; Del Coso, J. Race Performance Prediction from the Physiological Profile in National Level Youth Cross-Country Cyclists. Int. J. Environ. Res. Public Health 2021, 18, 5535. https://doi.org/10.3390/ijerph18115535
Mirizio GG, Muñoz R, Muñoz L, Ahumada F, Del Coso J. Race Performance Prediction from the Physiological Profile in National Level Youth Cross-Country Cyclists. International Journal of Environmental Research and Public Health. 2021; 18(11):5535. https://doi.org/10.3390/ijerph18115535
Chicago/Turabian StyleMirizio, Gerardo Gabriel, Rodrigo Muñoz, Leandro Muñoz, Facundo Ahumada, and Juan Del Coso. 2021. "Race Performance Prediction from the Physiological Profile in National Level Youth Cross-Country Cyclists" International Journal of Environmental Research and Public Health 18, no. 11: 5535. https://doi.org/10.3390/ijerph18115535
APA StyleMirizio, G. G., Muñoz, R., Muñoz, L., Ahumada, F., & Del Coso, J. (2021). Race Performance Prediction from the Physiological Profile in National Level Youth Cross-Country Cyclists. International Journal of Environmental Research and Public Health, 18(11), 5535. https://doi.org/10.3390/ijerph18115535