Green Exercise: Can Nature Video Benefit Isometric Exercise?
Abstract
:1. Introduction
- (1)
- reduce perceived exertion and improve affective responses during wall squat exercise;
- (2)
- buffer heart rate and heart rate variability during wall squat exercise.
- (3)
- improve cardiac autonomic recovery after wall squat exercise.
2. Materials and Methods
2.1. Study Design
2.2. Participants
- (1)
- absence of cardiovascular diseases.
- (2)
- absence of osteoarthrosis leading to risk during exercise.
2.3. Nature Video
2.4. Wall Squat Exercise
2.5. Procedure of the Experiment
2.6. Testing Environment
2.7. Outcome Measurements
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldring, N.; Wiles, J.D.; Coleman, D. The effects of isometric wall squat exercise on heart rate and blood pressure in a normotensive population. J. Sports Sci. 2014, 32, 129–136. [Google Scholar] [CrossRef]
- Li, H.; Liu, H.; Yang, Z.; Bi, S.; Cao, Y.; Zhang, G. The Effects of Green and Urban Walking in Different Time Frames on Physio-Psychological Responses of Middle-Aged and Older People in Chengdu, China. Int. J. Environ. Res. Public Health 2020, 18, 90. [Google Scholar] [CrossRef]
- Ideno, Y.; Hayashi, K.; Abe, Y.; Ueda, K.; Iso, H.; Noda, M.; Lee, J.S.; Suzuki, S. Blood pressure-lowering effect of Shinrin-yoku (Forest bathing): A systematic review and meta-analysis. BMC Complement. Altern. Med. 2017, 17, 409. [Google Scholar] [CrossRef]
- Wang, H.; Dai, X.; Wu, J.; Wu, X.; Nie, X. Influence of urban green open space on residents’ physical activity in China. BMC Public Health 2019, 19, 1093. [Google Scholar] [CrossRef] [Green Version]
- Pratiwi, P.I.; Xiang, Q.; Furuya, K. Physiological and Psychological Effects of Walking in Urban Parks and Its Imagery in Different Seasons in Middle-Aged and Older Adults: Evidence from Matsudo City, Japan. Sustainability 2020, 12, 4003. [Google Scholar] [CrossRef]
- Pretty, J.; Peacock, J.; Sellens, M.; Griffin, M. The mental and physical health outcomes of green exercise. Int. J. Environ. Health Res. 2005, 15, 319–337. [Google Scholar] [CrossRef] [PubMed]
- Aburas, R.; Pati, D.; Casanova, R.; Adams, N.G. The Influence of Nature Stimulus in Enhancing the Birth Experience. HERD Environ. Res. Des. J. 2017, 10, 81–100. [Google Scholar] [CrossRef] [PubMed]
- Jo, H.; Song, C.; Miyazaki, Y. Physiological Benefits of Viewing Nature: A Systematic Review of Indoor Experiments. Int. J. Environ. Res. Public Health 2019, 16, 4739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michels, N.; De Witte, F.; Di Bisceglie, E.; Seynhaeve, M.; Vandebuerie, T. Green nature effect on stress response and stress eating in the lab: Color versus environmental content. Environ. Res. 2020, 193, 110589. [Google Scholar] [CrossRef]
- Wang, X.; Shi, Y.; Zhang, B.; Chiang, Y. The Influence of Forest Resting Environments on Stress Using Virtual Reality. Int. J. Environ. Res. Public Health 2019, 16, 3263. [Google Scholar] [CrossRef] [Green Version]
- Reddon, J.R.; Durante, S.B. Nature exposure sufficiency and insufficiency: The benefits of environmental preservation. Med. Hypotheses 2018, 110, 38–41. [Google Scholar] [CrossRef] [PubMed]
- van Houwelingen-Snippe, J.; van Rompay, T.J.L.; Ben Allouch, S. Feeling Connected after Experiencing Digital Nature: A Survey Study. Int. J. Environ. Res. Public Health 2020, 17, 3390. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Norat, T.; Leitzmann, M.; Tonstad, S.; Vatten, L.J. Physical activity and the risk of type 2 diabetes: A systematic review and dose-response meta-analysis. Eur. J. Epidemiol. 2015, 30, 529–542. [Google Scholar] [CrossRef]
- Bell, S.L.; Audrey, S.; Gunnell, D.; Cooper, A.; Campbell, R. The relationship between physical activity, mental wellbeing and symptoms of mental health disorder in adolescents: A cohort study. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 138. [Google Scholar] [CrossRef] [Green Version]
- Pretty, J.; Griffin, M.; Sellens, M.; Pretty, C. Green Exercise: Complementary Roles of Nature, Exercise and Diet in Physical and Emotional Well-Being and Implications for Public Health Policy; CES Occasional Paper 2003-1; University of Essex: Colchester, UK, 2003. [Google Scholar]
- Shanahan, D.F.; Franco, L.; Lin, B.B.; Gaston, K.J.; Fuller, R.A. The Benefits of Natural Environments for Physical Activity. Sports Med. 2016, 46, 989–995. [Google Scholar] [CrossRef] [Green Version]
- Mnich, C.; Weyland, S.; Jekauc, D.; Schipperijn, J. Psychosocial and Physiological Health Outcomes of Green Exercise in Children and Adolescents-A Systematic Review. Int. J. Environ. Res. Public Health 2019, 16, 4266. [Google Scholar] [CrossRef] [Green Version]
- Lahart, I.; Darcy, P.; Gidlow, C.; Calogiuri, G. The Effects of Green Exercise on Physical and Mental Wellbeing: A Systematic Review. Int. J. Environ. Res. Public Health 2019, 16, 1352. [Google Scholar] [CrossRef] [Green Version]
- Wooller, J.J.; Rogerson, M.; Barton, J.; Micklewright, D.; Gladwell, V. Can Simulated Green Exercise Improve Recovery From Acute Mental Stress? Front. Psychol. 2018, 9, 2167. [Google Scholar] [CrossRef]
- Akers, A.; Barton, J.; Cossey, R.; Gainsford, P.; Griffin, M.; Micklewright, D. Visual color perception in green exercise: Positive effects on mood and perceived exertion. Environ. Sci. Technol. 2012, 46, 8661–8666. [Google Scholar] [CrossRef]
- de Brito, J.N.; Pope, Z.C.; Mitchell, N.R.; Schneider, I.E.; Larson, J.M.; Horton, T.H.; Pereira, M.A. The effect of green walking on heart rate variability: A pilot crossover study. Environ. Res. 2020, 185, 109408. [Google Scholar] [CrossRef]
- Song, C.; Ikei, H.; Kagawa, T.; Miyazaki, Y. Effects of Walking in a Forest on Young Women. Int. J. Environ. Res. Public Health 2019, 16, 229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, B.J.; Shin, C.S.; Shin, W.S.; Chung, C.Y.; Lee, S.H.; Kim, D.J.; Kim, Y.H.; Park, C.E. Effects of Forest Therapy on Health Promotion among Middle-Aged Women: Focusing on Physiological Indicators. Int. J. Environ. Res. Public Health 2020, 17, 4348. [Google Scholar] [CrossRef] [PubMed]
- Carlson, D.J.; Dieberg, G.; Hess, N.C.; Millar, P.J.; Smart, N.A. Isometric exercise training for blood pressure management: A systematic review and meta-analysis. Mayo Clin. Proc. 2014, 89, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Symons, T.B.; Vandervoort, A.A.; Rice, C.L.; Overend, T.J.; Marsh, G.D. Effects of maximal isometric and isokinetic resistance training on strength and functional mobility in older adults. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2005, 60, 777–781. [Google Scholar] [CrossRef] [Green Version]
- Cho, M. The effects of modified wall squat exercises on average adults’ deep abdominal muscle thickness and lumbar stability. J. Phys. Ther. Sci. 2013, 25, 689–692. [Google Scholar] [CrossRef] [Green Version]
- Wiles, J.D.; Goldring, N.; Coleman, D. Home-based isometric exercise training induced reductions resting blood pressure. Eur. J. Appl. Physiol. 2017, 117, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Bailey, A.W.; Allen, G.; Herndon, J.; Demastus, C. Cognitive benefits of walking in natural versus built environments. World Leis. J. 2018, 60, 293–305. [Google Scholar] [CrossRef]
- Gidlow, C.J.; Jones, M.V.; Hurst, G.; Masterson, D.; Clark-Carter, D.; Tarvainen, M.P.; Smith, G.; Nieuwenhuijsen, M. Where to put your best foot forward: Psycho-physiological responses to walking in natural and urban environments. J. Environ. Psychol. 2016, 45, 22–29. [Google Scholar] [CrossRef]
- Fu, Q.; Levine, B.D. Exercise and the autonomic nervous system. Handb. Clin. Neurol. 2013, 117, 147–160. [Google Scholar] [CrossRef]
- Kingsley, J.D.; Figueroa, A. Acute and training effects of resistance exercise on heart rate variability. Clin. Physiol. Funct. Imaging 2016, 36, 179–187. [Google Scholar] [CrossRef]
- Javorka, M.; Zila, I.; Balhárek, T.; Javorka, K. Heart rate recovery after exercise: Relations to heart rate variability and complexity. Braz. J. Med. Biol. Res. 2002, 35, 991–1000. [Google Scholar] [CrossRef] [Green Version]
- O’Driscoll, J.M.; Boucher, C.; Vilda, M.; Taylor, K.A.; Wiles, J.D. Continuous cardiac autonomic and haemodynamic responses to isometric exercise in females. Eur. J. Appl. Physiol. 2021, 121, 319–329. [Google Scholar] [CrossRef]
- Taylor, K.A.; Wiles, J.D.; Coleman, D.D.; Sharma, R.; O’driscoll, J.M. Continuous Cardiac Autonomic and Hemodynamic Responses to Isometric Exercise. Med. Sci. Sports Exerc. 2017, 49, 1511–1519. [Google Scholar] [CrossRef] [Green Version]
- Peçanha, T.; Bartels, R.; Brito, L.C.; Paula-Ribeiro, M.; Oliveira, R.S.; Goldberger, J.J. Methods of assessment of the post-exercise cardiac autonomic recovery: A methodological review. Int. J. Cardiol. 2017, 227, 795–802. [Google Scholar] [CrossRef]
- Kobayashi, H.; Song, C.; Ikei, H.; Park, B.J.; Lee, J.; Kagawa, T.; Miyazaki, Y. Forest Walking Affects Autonomic Nervous Activity: A Population-Based Study. Front. Public Health 2018, 6, 278. [Google Scholar] [CrossRef]
- Hassan, A.; Tao, J.; Li, G.; Jiang, M.; Aii, L.; Zhihui, J.; Zongfang, L.; Qibing, C. Effects of Walking in Bamboo Forest and City Environments on Brainwave Activity in Young Adults. Evid. Based Complement. Altern. Med. eCAM 2018, 2018, 9653857. [Google Scholar] [CrossRef] [PubMed]
- Vaegter, H.B.; Lyng, K.D.; Yttereng, F.W.; Christensen, M.H.; Sørensen, M.B.; Graven-Nielsen, T. Exercise-Induced Hypoalgesia After Isometric Wall Squat Exercise: A Test-Retest Reliabilty Study. Pain Med. 2019, 20, 129–137. [Google Scholar] [CrossRef]
- Escamilla, R.F.; Zheng, N.; Macleod, T.D.; Edwards, W.B.; Imamura, R.; Hreljac, A.; Fleisig, G.S.; Wilk, K.E.; Moorman, C.T., III; Andrews, J.R. Patellofemoral joint force and stress during the wall squat and one-leg squat. Med. Sci. Sports Exerc. 2009, 41, 879–888. [Google Scholar] [CrossRef]
- Castaldo, R.; Montesinos, L.; Melillo, P.; James, C.; Pecchia, L. Ultra-short term HRV features as surrogates of short term HRV: A case study on mental stress detection in real life. BMC Med. Inform. Decis. Mak. 2019, 19, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arêas, G.P.T.; Caruso, F.C.R.; Simões, R.P.; Castello-Simões, V.; Jaenisch, R.B.; Sato, T.O.; Cabiddu, R.; Mendes, R.; Arena, R.; Borghi-Silva, A. Ultra-short-term heart rate variability during resistance exercise in the elderly. Braz. J. Med. Biol. Res. 2018, 51, e6962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weippert, M.; Behrens, K.; Rieger, A.; Stoll, R.; Kreuzfeld, S. Heart rate variability and blood pressure during dynamic and static exercise at similar heart rate levels. PLoS ONE 2013, 8, e83690. [Google Scholar] [CrossRef]
- Medeiros, A.R.; Del Rosso, S.; Leicht, A.S.; Hautala, A.J.; Boullosa, D.A. Methods of assessment of the post-exercise cardiac autonomic recovery: Additional important factors to be considered. Int. J. Cardiol. 2017, 239, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frazão, D.T.; de Farias Junior, L.F.; Dantas, T.C.; Krinski, K.; Elsangedy, H.M.; Prestes, J.; Hardcastle, S.J.; Costa, E.C. Feeling of Pleasure to High-Intensity Interval Exercise Is Dependent of the Number of Work Bouts and Physical Activity Status. PLoS ONE 2016, 11, e0152752. [Google Scholar] [CrossRef]
- Carlier, M.; Delevoye-Turrell, Y. Tolerance to exercise intensity modulates pleasure when exercising in music: The upsides of acoustic energy for High Tolerant individuals. PLoS ONE 2017, 12, e0170383. [Google Scholar] [CrossRef] [Green Version]
- Stork, M.J.; Kwan, M.Y.; Gibala, M.J.; Martin Ginis, K.A. Music enhances performance and perceived enjoyment of sprint interval exercise. Med. Sci. Sports Exerc. 2015, 47, 1052–1060. [Google Scholar] [CrossRef]
- Kline, G.A. Does a view of nature promote relief from acute pain? J. Holist. Nurs. 2009, 27, 159–166. [Google Scholar] [CrossRef]
- Barnes, M.R.; Donahue, M.L.; Keeler, B.L.; Shorb, C.M.; Mohtadi, T.Z.; Shelby, L.J. Characterizing Nature and Participant Experience in Studies of Nature Exposure for Positive Mental Health: An Integrative Review. Front. Psychol. 2018, 9, 2617. [Google Scholar] [CrossRef] [Green Version]
- Repke, M.A.; Berry, M.S.; Conway, L.G., III; Metcalf, A.; Hensen, R.M.; Phelan, C. How does nature exposure make people healthier?: Evidence for the role of impulsivity and expanded space perception. PLoS ONE 2018, 13, e0202246. [Google Scholar] [CrossRef]
- Antonelli, M.; Barbieri, G.; Donelli, D. Effects of forest bathing (shinrin-yoku) on levels of cortisol as a stress biomarker: A systematic review and meta-analysis. Int. J. Biometeorol. 2019, 63, 1117–1134. [Google Scholar] [CrossRef] [PubMed]
- Tulppo, M.P.; Mäkikallio, T.H.; Seppänen, T.; Laukkanen, R.T.; Huikuri, H.V. Vagal modulation of heart rate during exercise: Effects of age and physical fitness. Am. J. Physiol. 1998, 274, H424–H429. [Google Scholar] [CrossRef]
- Briki, W.; Majed, L. Adaptive Effects of Seeing Green Environment on Psychophysiological Parameters When Walking or Running. Front. Psychol. 2019, 10, 252. [Google Scholar] [CrossRef] [PubMed]
- Fadel, P.J.; Raven, P.B. Human investigations into the arterial and cardiopulmonary baroreflexes during exercise. Exp. Physiol. 2012, 97, 39–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camm, A.J.; Malik, M.; Bigger, J.T.; Breithardt, G.; Cerutti, S.; Cohen, R.J.; Coumel, P.; Fallen, E.L.; Kennedy, H.L.; Kleiger, R.E.; et al. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur. Heart J. 1996, 17, 354–381. [Google Scholar]
- Victor, R.G.; Seals, D.R.; Mark, A.L. Differential control of heart rate and sympathetic nerve activity during dynamic exercise. Insight from intraneural recordings in humans. J. Clin. Investig. 1987, 79, 508–516. [Google Scholar] [CrossRef]
- Gladwell, V.F.; Brown, D.K.; Barton, J.L.; Tarvainen, M.P.; Kuoppa, P.; Pretty, J.; Suddaby, J.M.; Sandercock, G.R. The effects of views of nature on autonomic control. Eur. J. Appl. Physiol. 2012, 112, 3379–3386. [Google Scholar] [CrossRef]
- Sonntag-Öström, E.; Nordin, M.; Lundell, Y.; Dolling, A.; Wiklund, U.; Karlsson, M.; Carlberg, B.; Järvholm, L.S. Restorative effects of visits to urban and forest environments in patients with exhaustion disorder. Urban For. Urban Green. 2014, 13, 344–354. [Google Scholar] [CrossRef]
- Bielinis, E.; Jaroszewska, A.; Łukowski, A.; Takayama, N. The Effects of a Forest Therapy Programme on Mental Hospital Patients with Affective and Psychotic Disorders. Int. J. Environ. Res. Public Health 2019, 17, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yau, K.K.; Loke, A.Y. Effects of forest bathing on pre-hypertensive and hypertensive adults: A review of the literature. Environ. Health Prev. Med. 2020, 25, 23. [Google Scholar] [CrossRef]
- Soga, M.; Evans, M.J.; Tsuchiya, K.; Fukano, Y. A room with a green view: The importance of nearby nature for mental health during the COVID-19 pandemic. Ecol. Appl. 2021, 31, e2248. [Google Scholar] [CrossRef]
- Cox, D.T.; Shanahan, D.F.; Hudson, H.L.; Fuller, R.A.; Anderson, K.; Hancock, S.; Gaston, K.J. Doses of Nearby Nature Simultaneously Associated with Multiple Health Benefits. Int. J. Environ. Res. Public Health 2017, 14, 14020172. [Google Scholar] [CrossRef] [Green Version]
- Musterd, S.; Galster, G.; Andersson, R. Temporal dimensions and measurement of neighbourhood effects. Environ. Plan. A 2015, 44, 605–627. [Google Scholar] [CrossRef] [Green Version]
- Brown, D.K.; Barton, J.L.; Pretty, J.; Gladwell, V.F. Walks4Work: Assessing the role of the natural environment in a workplace physical activity intervention. Scand. J. Work Environ. Health 2014, 40, 390–399. [Google Scholar] [CrossRef] [Green Version]
Gender | N | Age (year) | Height (cm) | Weight (kg) | BMI (kg/m2) |
---|---|---|---|---|---|
Male | 18 | 27.94 (6.13) | 177.33 (5.73) | 73.72 (9.28) | 23.36 (1.90) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Zhang, X.; Bi, S.; Liu, H.; Cao, Y.; Zhang, G. Green Exercise: Can Nature Video Benefit Isometric Exercise? Int. J. Environ. Res. Public Health 2021, 18, 5554. https://doi.org/10.3390/ijerph18115554
Li H, Zhang X, Bi S, Liu H, Cao Y, Zhang G. Green Exercise: Can Nature Video Benefit Isometric Exercise? International Journal of Environmental Research and Public Health. 2021; 18(11):5554. https://doi.org/10.3390/ijerph18115554
Chicago/Turabian StyleLi, Hansen, Xing Zhang, Shilin Bi, Haowei Liu, Yang Cao, and Guodong Zhang. 2021. "Green Exercise: Can Nature Video Benefit Isometric Exercise?" International Journal of Environmental Research and Public Health 18, no. 11: 5554. https://doi.org/10.3390/ijerph18115554
APA StyleLi, H., Zhang, X., Bi, S., Liu, H., Cao, Y., & Zhang, G. (2021). Green Exercise: Can Nature Video Benefit Isometric Exercise? International Journal of Environmental Research and Public Health, 18(11), 5554. https://doi.org/10.3390/ijerph18115554