Maternal and Neonatal Oral Microbiome Developmental Patterns and Correlated Factors: A Systematic Review—Does the Apple Fall Close to the Tree?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Search Strategy and Study Selection
2.3. Data Collection
2.4. Data Items
2.5. Quality Assessment
2.6. Risk of Bias in Individual Studies
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.2.1. Delivery Mode
3.2.2. Exposure to Antibiotics and Disinfectants
3.2.3. Feeding Type
3.3. Quality Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yatsunenko, T.; Rey, F.E.; Manary, M.J.; Trehan, I.; Dominguez-Bello, M.G.; Contreras, M.; Magris, M.; Hidalgo, G.; Baldassano, R.N.; Anokhin, A.P.; et al. Human gut microbiome viewed across age and geography. Nature 2006, 486, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Milani, C.; Duranti, S.; Bottacini, F.; Casey, E.; Turroni, F.; Mahony, J.; Belzer, C.; Delgado Palacio, S.; Arboleya Montes, S.; Mancabelli, L.; et al. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiol. Mol. Biol. Rev. 2017, 81, 1–67. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Sitarik, A.; Woodcroft, K.; Zoratti, E.; Johnson, C. Birth mode, breastfeeding, pet exposure, and antibiotic use: Associations with the gut microbiome and sensitization in children. Curr. Allergy Asthma Rep. 2016, 19, 139–148. [Google Scholar] [CrossRef]
- Kau, A.L.; Ahern, P.P.; Griffin, N.W.; Goodman, A.L.; Gordon, J.I. Human nutrition, the gut microbiome, and immune system: Envisioning the future. Nature 2001, 474, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Butel, M.J.; Waligora-Dupriet, A.J.; Wydau-Dematteis, S. The developing gut microbiota and its consequences for health. J. Dev. Orig. Health Dis. 2018, 9, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Yang, I.; Corwin, E.J.; Brennan, P.A.; Jordan, S.; Murphy, J.R.; Dunlop, A. The Infant Microbiome: Implications for Infant Health and Neurocognitive Development. Physiol. Behav. 2016, 65, 76–88. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, A.; Yoo, J.Y.; Valeria Ozorio Dutra, S.; Morgan, K.H.; Groer, M. The Association between Early-Life Gut Microbiota and Long-Term Health and Diseases. J. Clin. Med. 2021, 10, 459. [Google Scholar] [CrossRef] [PubMed]
- Euro-Peristat Project. Core indicators of the health and care of pregnant women and babies in Europe in 2015. Eur. Perinat. Health Rep. 2018, 7214, 180. [Google Scholar]
- Smaill, F.M.; Grivell, R.M. Antibiotic prophylaxis versus no prophylaxis for preventing infection after cesarean section. Cochrane Database Syst. Rev. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Lemaire, M.; Le Huërou-Luron, I.; Blat, S. Effects of infant formula composition on long-term metabolic health. J. Dev. Orig. Health Dis. 2018, 9, 573–589. [Google Scholar] [CrossRef]
- Gale, C.; Logan, K.M.; Santhakumaran, S.; Parkinson, J.R.C.; Hyde, M.J.; Modi, N. Effect of breastfeeding compared with formula feeding on infant body composition: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2012, 95, 656–669. [Google Scholar] [CrossRef] [Green Version]
- Ratsika, A.; Codagnone, M.C.; O’mahony, S.; Stanton, C.; Cryan, J.F. Priming for life: Early life nutrition and the microbiota-gut-brain axis. Nutrients 2021, 13, 423. [Google Scholar] [CrossRef] [PubMed]
- Gritz, E.C.; Bhandari, V. The Human Neonatal Gut Microbiome: A Brief Review. Front. Pediatr. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Cassir, N.; Simeoni, U.; La Scola, B. Gut microbiota and the pathogenesis of necrotizing enterocolitis in preterm neonates. Future Microbiol. 2016, 11, 273–292. [Google Scholar] [CrossRef]
- Holgerson, P.L.; Vestman, N.R.; Claesson, R.; Öhman, C.; Domellöf, M.; Tanner, A.C.R.; Hernell, O.; Johansson, I. Oral microbial profile discriminates breast-fed from formula-fed infants. J. Pediatr. Gastroenterol. Nutr. 2013, 56, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Dominguez-Bello, M.G.; Costello, E.K.; Contreras, M.; Magris, M.; Hidalgo, G.; Fierer, N.; Knight, R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. USA 2010, 107, 11971–11975. [Google Scholar] [CrossRef] [Green Version]
- Al-Shehri, S.S.; Knox, C.L.; Liley, H.G.; Cowley, D.M.; Wright, J.R.; Henman, M.G.; Hewavitharana, A.K.; Charles, B.G.; Shaw, P.N.; Sweeney, E.L.; et al. Breastmilk-saliva interactions boost innate immunity by regulating the oral microbiome in early infancy. PLoS ONE 2015, 10, e0135047. [Google Scholar] [CrossRef] [Green Version]
- Chu, D.M.; Ma, J.; Prince, A.L.; Antony, K.M.; Seferovic, M.D.; Aagaard, K.M. Maturation of the Infant Microbiome Community Structure and Function Across Multiple Body Sites and in Relation to Mode of Delivery. Choice Rev. Online 2009, 46, 4219. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zheng, J.; Shi, W.; Du, N.; Xu, X.; Zhang, Y.; Ji, P.; Zhang, F.; Jia, Z.; Wang, Y.; et al. Dysbiosis of maternal and neonatal microbiota associated with gestational diabetes mellitus. Gut 2018, 67, 1614–1625. [Google Scholar] [CrossRef]
- Li, H.; Chen, S.; Wu, L.; Wang, H.; Xiao, K.; Gao, Y.; Li, Y.; Li, H.; Xiao, B.; Zhu, Y. The effects of perineal disinfection on infant’s oral microflora after transvaginal examination during delivery. BMC Pregnancy Childbirth 2019, 19, 213. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, J.; Wu, L.; Luo, J.; Liang, X.; Xiao, B.; Zhu, Y. The impacts of delivery mode on infant’s oral microflora. Sci. Rep. 2018, 8, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Arango, L.F.; Barrett, H.L.; McIntyre, H.D.; Callaway, L.K.; Morrison, M.; Nitert, M.D. Antibiotic treatment at delivery shapes the initial oral microbiome in neonates. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timby, N.; Domellöf, M.; Lif Holgerson, P.; West, C.E.; Lönnerdal, B.; Hernell, O.; Johansson, I. Oral microbiota in infants fed a formula supplemented with bovine milk fat globule membranes -A randomized controlled trial. PLoS ONE 2017, 12, e0169831. [Google Scholar] [CrossRef] [PubMed]
- Keski-Nisula, L.; Kyynäräinen, H.R.; Kärkkäinen, U.; Karhukorpi, J.; Heinonen, S.; Pekkanen, J. Maternal intrapartum antibiotics and decreased vertical transmission of Lactobacillus to neonates during birth. Acta Paediatr. Int. J. Paediatr. 2013, 102, 480–485. [Google Scholar] [CrossRef]
- Thakur, R.; Singh, M.G.; Chaudhary, S.; Manuja, N. Effect of mode of delivery and feeding practices on acquisition of oral Streptococcus mutans in infants. Int. J. Paediatr. Dent. 2012, 22, 197–202. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef] [Green Version]
- Romano-Keeler, J.; Weitkamp, J.H. Maternal influences on foetal microbial colonization and immune development. Pediatr. Res. 2015, 77, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Gosalbes, M.J.; Llop, S.; Vallès, Y.; Moya, A.; Ballester, F.; Francino, M.P. Meconium microbiota types dominated by lactic acid or enteric bacteria are differentially associated with maternal eczema and respiratory problems in infants. Clin. Exp. Allergy 2013, 43, 198–211. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.J.; Lee, S.E.; Jung, H.; Kim, G.; Romero, R.; Yoon, B.H. Detection of ureaplasmas by the polymerase chain reaction in the amniotic fluid of patients with cervical insufficiency. J. Perinat. Med. 2010, 23, 261–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aagaard, K.; Ma, J.; Antony, K.M.; Ganu, R.; Petrosino, J.; Versalovic, J. The Placenta Harbors a Unique Microbiome. J. Power Sources 2017, 356, 510–518. [Google Scholar] [CrossRef] [Green Version]
- Steel, J.H.; Malatos, S.; Kennea, N.; Edwards, A.D.; Miles, L.; Duggan, P.; Reynolds, P.R.; Feldman, R.G.; Sullivan, M.H.F. Bacteria and inflammatory cells in foetal membranes do not always cause preterm labor. Pediatr. Res. 2005, 57, 404–411. [Google Scholar] [CrossRef] [Green Version]
- De Agüero, M.G.; Ganal-Vonarburg, S.C.; Fuhrer, T.; Rupp, S.; Uchimura, Y.; Li, H.; Steinert, A.; Heikenwalder, M.; Hapfelmeier, S.; Sauer, U.; et al. Macpherson. The maternal microbiota drives early postnatal innate immune development. Science 2016, 80, 1296–1302. [Google Scholar] [CrossRef] [PubMed]
- Algert, C.S.; McElduff, A.; Morris, J.M.; Roberts, C.L. Perinatal risk factors for early onset of Type 1 diabetes in a 2000–2005 birth cohort. Diabet. Med. 2009, 26, 1193–1197. [Google Scholar] [CrossRef] [Green Version]
- Livanos, A.E.; Greiner, T.U.; Vangay, P.; Pathmasiri, W.; Stewart, D.; McRitchie, S.; Li, H.; Chung, J.; Sohn, J.; Kim, S.; et al. Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice. Nat. Microbiol. 2016, 1. [Google Scholar] [CrossRef]
- Borre, Y.E.; O’Keeffe, G.W.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Microbiota and neurodevelopmental windows: Implications for brain disorders. Trends Mol. Med. 2014, 20, 509–518. [Google Scholar] [CrossRef]
- Solís, G.; de los Reyes-Gavilan, C.G.; Fernández, N.; Margolles, A.; Gueimonde, M. Establishment and development of lactic acid bacteria and bifidobacteria microbiota in breast-milk and the infant gut. Anaerobe 2010, 16, 307–310. [Google Scholar] [CrossRef] [Green Version]
- Danielsson Niemi, L.; Hernell, O.; Johansson, I. Human milk compounds inhibiting adhesion of mutans streptococci to host ligand-coated hydroxyapatite in vitro. Caries Res. 2009, 43, 171–178. [Google Scholar] [CrossRef]
- Darling, J.C.; Bamidis, P.D.; Burberry, J.; Rudolf, M.C.J. The First Thousand Days: Early, integrated and evidence-based approaches to improving child health: Coming to a population near you? Arch. Dis. Child. 2020, 105, 837–841. [Google Scholar] [CrossRef] [PubMed]
- Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 2019, 7, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamek, K.; Skonieczna-Żydecka, K.; Węgrzyn, D.; Łoniewska, B. Prenatal and early childhood development of gut microbiota. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 9667–9680. [Google Scholar] [CrossRef] [PubMed]
- Tofajjen Hossain, S.; Barik, S. Why Mothers Kiss Their Babies? —Does Immune System Play as a Protective Receptor of Chemical Determinants Involved in Mother-Infant Bonding? Int. Res. J. Multidiscip. Scope. 2020, 1, 38–40. [Google Scholar] [CrossRef]
Study | Analyzed Microbiome | Sample Size | Total Size | Antibiotics/ Disinfection | C-Section Delivery | Vaginal Delivery | Formula Feeding | Breast Feeding | Strengths |
---|---|---|---|---|---|---|---|---|---|
Li H (2019) | NEONATES: oral secretions | 30 infants | 30 | povidone iodine | 10 | 20 (10 disinfected by povidone iodine, 10 no disinfection) | - | - | The mode of delivery affects the infant’s Lactobacillus level obtained from the mother. Infants with vulvar disinfection presented lower Lactobacillus more similar to the C-section than the non-disinfection group, but also more opportunistic pathogens than the C-section group. |
Wang J (2018) | NEONATES: saliva, pharyngeal aspirates, meconium, and amniotic fluid PREGNANT WOMEN: saliva, feces and vaginal secretions | 140 neonates, 346 women | 486 | NR | 140 | - | - | - | The microbial shift in maternal microbiota of different body sites may be associated with GDM.Bacterial abundance between groups at the phylum level was analyzed, with the largest changes seen in the oral cavity (more Proteobacteria). Species richness of the pharyngeal and amniotic fluid samples was even comparable to the maternal oral and intestinal communities. The microbial composition and variation of mother and newborn could be driven by the health status of the pregnant woman. The effects of GDM on microbes in pregnancy might be vertically transmitted to the baby during pregnancy. |
Li H (2018) | NEONATES: saliva | 94 neonates, 94 women | 188 | NR | 18 | 74 (27 not included because multiple vulvar sterilization during 24 h long delivery) | - | - | The differences in oral microflora between groups can be attributed to vaginal contact and manifest that the microbial environment of babies depends on different modes of delivery. Lactobacillus, Prevotella, and Gardnerella were the most abundant genera in the vaginal group, while Petrimonas, Bacteroides, Desulfovibrio, Pseudomonas, Staphylococcus, Tepidmicrobium, VadinCA02, and Bifidobacterium were dominant bacteria in the C-section group. |
Chu DM (2017) | NEONATES: nares, skin, oral, meconium PREGNANT WOMEN: nares, skin, oral, stool, introitus, post. fornix | PW(n: 81) at 3rd semester + PW(n:81) recruited at delivery | 326 | NR | 52 (from 157 sampled) | 105 (from 157 sampled) | - | - | A significant amount of heterogeneity was seen in the neonatal oral and gut metagenomes at delivery, particularly in the neonatal oral cavity. The mode of delivery was associated with differences in the neonatal microbiota immediately after delivery only within the nares, skin, and oral cavity. |
Gomez-Arango LF (2017) | NEONATES: oral swabs PREGNANT WOMEN: placenta, oral swab (16 pairs also having maternal fecal) | 36 neonates, 36 overweight mothers | 72 | Tot = 21; cephazolin (n = 15) and benzylpenicillin(n = 6) | 16 | 20 | 35 | 1 | The infant’s mouth is colonized by bacteria that resemble those of the mother’s mouth; the first newborn oral bacteria may be maternal in origin, and the oral microenvironment distinctively stimulates colonization by specific bacteria. This study confirms that the effect of intrapartum antibiotics also affects the composition of the oral microbiota in newborns, regardless of the mode of delivery. |
Timby N (2017) | NEONATES:At 4, 12 months, buccal mucosa, tongue, alveolar ridges;At 12 m, also teeth;At both 4 and 12 m, saliva | 240 neonates | 240 | NR | 205 | 35 | 160 (80: experimental formula;80: standard formula) | 80 | At 12 months, the presence of S. mutans is more prevalent in formula-fed than in breast-fed infants. There is different composition of the oral microbiota in the breast-fed compared with the formula-fed infants. |
Al-Shehri SS (2015) | NEONATES: saliva WOMEN: colostrum, breastmilk | 60 neonates, 77 healthy adults | 137 | \ | 0 | 60 | - | 60 | The interaction of maternal milk with neonate saliva produces peroxide. The composition of oral microbiota of neonates affects their health, as the gut is colonized by microbiomes originating from the mouth. The neonatal salivary pattern develops into the adult pattern over a period between 6 weeks and 6 months. This early and unpredicted transition confirms a correlation between neonatal oral microbiome and weaning. |
Keski-Nisula L (2013) | NEONATES: oralWOMEN: vaginal fluid, oral | 45 neonates, 45 women | 90 | Antibiotics to the mother during the intrapartum period before birth after rupture of membranes: 17 | 4 | 41 | Maternal intrapartum antibiotics and prolonged expectant management after ROM were associated with decreased vertical transmission rate of vaginal Lactobacillus flora to the neonate. As early colonization of Lactobacillus flora may have a preventive role in the development of allergic diseases later, the significance of intrapartum prophylactic antibiotics needs to be highlighted in forthcoming studies, especially as regards immunological development of the offspring. | ||
Holgerson PL (2013) | NEONATES: mucosa of the cheeks, tongue, and alveolar ridges | 169 neonates (207 infants (3 m old) | 169 | NR | 41 | 166 | 23 | 146, + 38 partially breastfed, | The observed differences in the gastrointestinal tract microbiota composition due to feeding mode extend to the oral cavity, and viable Lactobacilli detected in saliva from breastfed, but not formula-fed, infants had an inhibitory effect on oral Streptococci. Lactobacilli isolated from oral, breast milk, and other non-oral sites inhibit growth of selected oral pathogens, especially cariogenic Streptococcus mutans and Candida albicans. |
Thakur R (2012) | NEONATES: oral saliva or plaque sample, dorsum of tongue (before the eruption of teeth) or from the alveolar ridge and teeth (after the eruption) | 60 neonates, 60 women | 120 | NR | 30 | 30 | Saliva is a reflection of overall oral flora and study specimen in the predentate. Breast feeding plays a preventive role in colonization of S. mutans. Human breast milk contains inhibiting factors (immunoglobulins, antibodies, etc.) specific for particular genotypes of S. mutans harbored in a child’s mouth. Prolonged bottle feeding with bovine milk and sucrose results in intermittent pooling of milk on the tooth surface. This appears to be associated with early establishment of S. mutans in the oral cavity. | ||
Dominguez-Bello MG (2010) | NEONATES: nasopharynx, oral mucosa, and skin PREGNANT WOMEN: skin, oral mucosa, vagina | 10 neonates, 9 women (46 body sites in newborns, 34 body sites in women) | 19 | 1 (7th month of pregnancy) | 5 | 4 | Infants born vaginally acquire bacterial communities resembling their own mother’s vaginal microbiome, dominated by Lactobacillus, Sneathia spp., and Prevotella, while those born by c-section develop bacterial communities similar to those found on the mother’s skin, characterized by Staphylococcus, Propionibacterium spp., and Corynebacterium. |
NEWCASTLE-OTTAWA QUALITY ASSESSMENT SCALE–COHORT STUDIES | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Author | Dominguez-Bello 2010 | Holgerson 2013 | Al-Shehri 2013 | Keski-Nisula 2013 | Derrick 2017 | Wang 2018 | Li 2019 | Li 2018 | Gomez-Arango 2017 | Timby 2017 | Thakur 2012 | |
Selection (Maximum 4 stars) | (1) Representativeness of the exposed cohort | * | * | * | * | * | * | * | * | * | * | * |
(2) Selection of the non-exposed cohort | * | * | * | * | * | * | * | * | * | * | ||
(3) Ascertainment of exposure | * | * | * | * | * | * | * | * | * | * | * | |
(4) Demonstration that outcome of interest was not present at start of study | * | * | * | * | ||||||||
Comparability (Maximum 2 stars) | (5) Comparability of cohorts on the basis of the design or analysis ** | * | ** | * | * | ** | * | * | * | ** | * | * |
Outcome (Maximum 3 stars) | (6) Assessment of outcome | * | * | * | * | * | * | * | * | * | * | * |
(7) Was follow-up long enough for outcomes to occur? | * | * | * | * | ||||||||
(8) Adequacy of follow-up of cohorts | * | * | * | |||||||||
Total score | 5 | 6 | 6 | 5 | 9 | 6 | 5 | 5 | 6 | 8 | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nardi, G.M.; Grassi, R.; Ndokaj, A.; Antonioni, M.; Jedlinski, M.; Rumi, G.; Grocholewicz, K.; Dus-Ilnicka, I.; Grassi, F.R.; Ottolenghi, L.; et al. Maternal and Neonatal Oral Microbiome Developmental Patterns and Correlated Factors: A Systematic Review—Does the Apple Fall Close to the Tree? Int. J. Environ. Res. Public Health 2021, 18, 5569. https://doi.org/10.3390/ijerph18115569
Nardi GM, Grassi R, Ndokaj A, Antonioni M, Jedlinski M, Rumi G, Grocholewicz K, Dus-Ilnicka I, Grassi FR, Ottolenghi L, et al. Maternal and Neonatal Oral Microbiome Developmental Patterns and Correlated Factors: A Systematic Review—Does the Apple Fall Close to the Tree? International Journal of Environmental Research and Public Health. 2021; 18(11):5569. https://doi.org/10.3390/ijerph18115569
Chicago/Turabian StyleNardi, Gianna Maria, Roberta Grassi, Artnora Ndokaj, Michela Antonioni, Maciej Jedlinski, Gabriele Rumi, Katarzyna Grocholewicz, Irena Dus-Ilnicka, Felice Roberto Grassi, Livia Ottolenghi, and et al. 2021. "Maternal and Neonatal Oral Microbiome Developmental Patterns and Correlated Factors: A Systematic Review—Does the Apple Fall Close to the Tree?" International Journal of Environmental Research and Public Health 18, no. 11: 5569. https://doi.org/10.3390/ijerph18115569
APA StyleNardi, G. M., Grassi, R., Ndokaj, A., Antonioni, M., Jedlinski, M., Rumi, G., Grocholewicz, K., Dus-Ilnicka, I., Grassi, F. R., Ottolenghi, L., & Mazur, M. (2021). Maternal and Neonatal Oral Microbiome Developmental Patterns and Correlated Factors: A Systematic Review—Does the Apple Fall Close to the Tree? International Journal of Environmental Research and Public Health, 18(11), 5569. https://doi.org/10.3390/ijerph18115569