Exploring Fatalities and Injuries in Construction by Considering Thermal Comfort Using Uncertainty and Relative Importance Analysis
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Establishment of the Database
3.2. Classification of Accident Types and Weather Conditions
3.3. Calculation of Thermal Comfort
3.4. Analysis of Injury and Fatal Accidents Based on Thermal Comfort
3.5. Calculation on the Relative Importance of Thermal Comfort during Injury and Fatal Accidents
4. Result and Discussion
4.1. Analysis of Injury and Fatal Accidents Considering PET in South Korea
4.2. Analysis of Injury and Fatal Accidents Related to Outdoor Thermal Comfort
4.3. Analysis of Monthly Injury and Fatal Accidents in Terms of Accident Type
4.4. Analysis of the PET Comfort Distribution in Terms of the Accident Type
4.5. Uncertainty Analysis of Accidents and Thermal Comfort
4.6. Relative Importance Analysis Based on Thermal Comfort of Injury and Fatal Accidents
4.7. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, W.; Zhang, J.; Zhao, T.; Ren, J. Experimental study of an indoor temperature fuzzy control method for thermal comfort and energy saving using wristband device. Build. Environ. 2020, 107432. [Google Scholar] [CrossRef]
- Wong, T.K.M.; Man, S.S.; Chan, A.H.S. Critical factors for the use or non-use of personal protective equipment amongst construction workers. Saf. Sci. 2020, 126, 104663. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, W.; Xu, P.; Chen, N. Applicability of accident analysis methods to Chinese construction accidents. J. Saf. Res. 2019, 68, 187–196. [Google Scholar] [CrossRef]
- Rameezdeen, R.; Elmualim, A. The impact of heat waves on occurrence and severity of construction accidents. Int. J. Environ. Res. Public Health 2017, 14, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rowlinson, S.; YunyanJia, A.; Li, B.; ChuanjingJu, C. Management of climatic heat stress risk in construction: A review of practices, methodologies, and future research. Accid. Anal. Prev. 2014, 66, 187–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inaba, R.; Kurokawa, J.; Mirbod, S.M. Comparison of subjective symptoms and cold prevention measures in winter between traffic control workers and construction workers in Japan. Ind. Health 2009, 47, 283–291. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.R.; Kim, H.E.K.; Rissanen, S. Research on Winter Working Environment and Working Clothes at a Construction Site. Fashion Text. Res. J. 2009, 11, 174–179. [Google Scholar]
- Abdel-Ghany, A.M.; Al-Helal, I.M.; Shady, M.R. Human thermal comfort and heat stress in an outdoor urban arid environment: A case study. Adv. Meteorol. 2013. [Google Scholar] [CrossRef] [Green Version]
- Varghese, B.M.; Hansen, A.; Bi, P.; Pisaniello, D. Are workers at risk of occupational injuries due to heat exposure? A comprehensive literature review. Saf. Sci. 2018, 110, 380–392. [Google Scholar] [CrossRef]
- Acharya, P.; Boggess, B.; Zhang, K. Assessing heat stress and health among construction workers in a changing climate: A review. Int. J. Environ. Res. Public Health 2018, 15, 247. [Google Scholar] [CrossRef] [Green Version]
- Al-Bouwarthan, M.; Quinn, M.M.; Kriebel, D.D.H. Assessment of heat stress exposure among construction workers in the hot desert climate of Saudi Arabia. Ann. Work. Expo. Health 2019, 63, 505–520. [Google Scholar] [CrossRef]
- Rowlinson, S.; Jia, Y.A. Construction accident causality: An institutional analysis of heat illness incidents on site. Saf. Sci. 2015, 78, 179–189. [Google Scholar] [CrossRef]
- Moohialdin, A.S.M.; Lamari, F.; Miska, M.; Trigunarsyah, B. Construction worker productivity in hot and humid weather conditions. Eng. Constr. Archit. Manag. 2019, 27. [Google Scholar] [CrossRef]
- Anttonen, H.; Pekkarinen, A.; Niskanen, J. Safety at work in cold environments and prevention of cold stress. Ind. Health 2009, 47, 254–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vukadinovic, A.; Radosavljevic, J. Occupational safety and health of construction workers working in extreme temperature. In Proceedings of the 15th International Conference Risk and Safety Engineering, Kopaonik, Serbia, 16–18 January 2020. [Google Scholar]
- Yi, W.; Chan, A.P. Optimizing work–rest schedule for construction rebar workers in hot and humid environment. Build. Environ. 2013, 61, 104–113. [Google Scholar] [CrossRef]
- Inaba, R.; Mirbod, S.M. Subjective musculoskeletal symptoms in winter and summer among indoor working construction electricians. Ind. Health 2010, 48, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Srinavin, K.; Mohamed, S. Thermal environment and construction workers’ productivity: Some evidence from Thailand. Build. Environ. 2003, 38, 339–345. [Google Scholar] [CrossRef]
- Hajat, S.; Kovats, R.S.; Lachowycz, K. Heat-related and cold-related deaths in England and Wales: Who is at risk? Occup. Environ. Med. 2007, 4, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Alonso, J.; Callejón-Ferre, Á.J.; Carreño-Ortega, Á.; Sánchez-Hermosilla, J. Approach to the evaluation of the thermal work environment in the greenhouse-construction industry of SE Spain. Build. Environ. 2011, 46, 1725–1734. [Google Scholar] [CrossRef]
- Kozłowska-Szczȩsna, T.; Grzȩdziński, E. The influence of atmospheric environment upon the occurrence of accidents among construction workers. Energy Build. 1991, 16, 749–753. [Google Scholar] [CrossRef]
- Mahoney, C.R.; Castellani, J.; Kramer, F.M.; Young, A.; Lieberman, H.R. Tyrosine supplementation mitigates working memory decrements during cold exposure. Physiol. Behav. 2007, 92, 575–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szer, I.; Szer, J.; Cyniak, P.; Blazik-Borowa, E. Influence of temperature and surroundings humidity on scaffolding work comfort. Int. Conf. Prev. Accid. Work. 2017, 19–23. [Google Scholar] [CrossRef]
- Berglund, L.; Johansson, M.; Nygren, M.; Samuelson, B.; Stenberg, M.; Johansson, J. Occupational accidents in Swedish construction trades. Int. J. Occup. Saf. Ergon. 2019, 859, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arquillos, A.L.; Romero, J.C.R.; Gibb, A. Analysis of construction accidents in Spain, 2003–2008. J. Saf. Res. 2012, 43, 381–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khosravi, Y.; Asilian-Mahabadi, H.; Hajizadeh, E.; Hassanzadeh-Rangi, N.; Bastani, H.; Behzadan, A.H. Factors influencing unsafe behaviors and accidents on construction sites: A review. Int. J. Occup. Saf. Ergon. 2014, 20, 111–125. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.W.; Leu, S.S.; Lin, C.C.; Fan, C. Characteristic analysis of occupational accidents at small construction enterprises. Saf. Sci. 2010, 48, 698–707. [Google Scholar] [CrossRef]
- Haslam, R.A.; Hide, S.A.; Gibb, A.G.; Gyi, D.E.; Pavitt, T.; Atkinson, S.; Duff, A.R. Contributing factors in construction accidents. Appl. Ergon. 2005, 36, 401–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinze, J.; Pedersen, C.; Fredley, J. Identifying root causes of construction injuries. J. Constr. Eng. Manag. 1998, 124, 67–71. [Google Scholar] [CrossRef]
- Abukhashabah, E.; Summan, A.; Balkhyour, M. Occupational accidents and injuries in construction industry in Jeddah city. Saudi. J. Biol. Sci. 2020, 27, 1993–1998. [Google Scholar] [CrossRef]
- Liao, C.W. Pattern analysis of seasonal variation in occupational accidents in the construction industry. Procedia Eng. 2012, 29, 3240–3244. [Google Scholar] [CrossRef] [Green Version]
- Irumba, R. Spatial analysis of construction accidents in Kampala, Uganda. Saf. Sci. 2014, 64, 109–120. [Google Scholar] [CrossRef]
- Zahoor, H.; Albert, P.C.C.; Ran, G.; Wahyudi, P.U. The factors contributing to construction accidents in Pakistan: Their prioritization using the Delphi technique. Eng. Constr. Archit. Manag. 2017, 24, 463–485. [Google Scholar] [CrossRef]
- Cheng, C.W.; Lin, C.C.; Leu, S.S. Use of association rules to explore cause–effect relationships in occupational accidents in the Taiwan construction industry. Saf. Sci. 2010, 48, 436–444. [Google Scholar] [CrossRef]
- Ahmed, S. Causes of accident at construction sites in Bangladesh. Org. Technol. Manag. Constr. 2019, 11, 1933–1951. [Google Scholar] [CrossRef] [Green Version]
- Chi, C.F.; Chang, T.C.; Ting, H.I. Accident patterns and prevention measures for fatal occupational falls in the construction industry. Appl. Ergon. 2005, 36, 391–400. [Google Scholar] [CrossRef]
- Kartam, N.A.; Bouz, R.G. Fatalities and injuries in the Kuwaiti construction industry. Accid. Anal. Prev. 1998, 30, 805–814. [Google Scholar] [CrossRef]
- Arifuddin, R.; Latief, R.U.; Suraji, A. An investigation of fall accident in a high-rise building project. IOP Conf. Ser. Earth Environ. Sci. 2020, 419, 012144. [Google Scholar] [CrossRef]
- Huang, X.; Hinze, J. Analysis of construction worker fall accidents. J. Constr. Eng. Manag. 2003, 129, 262–271. [Google Scholar] [CrossRef]
- Wong, L.; Wang, Y.; Law, T.; Lo, C.T. Association of root causes in fatal fall-from-height construction accidents in Hong Kong. J. Constr. Eng. Manag. 2016, 142, 04016018. [Google Scholar] [CrossRef]
- Knox, E.H.; Smith, S.J.; Eganhouse, J.T. Construction Fall from Height Accident Reconstruction and Safety Analysis. In Proceedings of the XXVIIIth Annual Occupational Ergonomics and Safety Conference, Chicago, IL, USA, 9–10 June 2016; pp. 87–92. [Google Scholar]
- Dong, X.S.; Fujimoto, A.; Ringen, K.; Men, Y. Fatal falls among Hispanic construction workers. Accid. Anal. Prev. 2009, 41, 1047–1052. [Google Scholar] [CrossRef]
- Lipscomb, H.J.; Glazner, J.E.; Bondy, J.; Guarini, K.; Lezotte, D. Injuries from slips and trips in construction. Appl. Ergon. 2006, 37, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Bentley, T.A.; Hide, S.; Tappin, D.; Moore, D.; Legg, S.; Parker, L. Investigating risk factors for slips, trips and falls in New Zealand residential construction using incident-centred and incident-independent methods. Ergonomics 2006, 49, 62–77. [Google Scholar] [CrossRef] [PubMed]
- Cattledge, G.H.; Schneiderman, A.; Stanevich, R.; Hendricks, S.; Greenwood, J. Nonfatal occupational fall injuries in the West Virginia construction industry. Accid. Anal. Prev. 1996, 28, 655–663. [Google Scholar] [CrossRef]
- Yang, Y. Heat stress intervention research in construction: Gaps and recommendations. Ind. Health 2017, 55, 201–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, A.P.C.; Yam, M.C.; Chung, J.W.; Yi, W. Developing a heat stress model for construction workers. J. Facil. Manag. 2012, 10, 59–74. [Google Scholar] [CrossRef] [Green Version]
- Johansson, E.; Yahia, M.W.; Arroyo, I.; Bengs, C. Physiological responses of acclimatized construction workers during different work patterns in a hot and humid subtropical area of China. J. Build. Eng. 2020, 30, 101281. [Google Scholar] [CrossRef]
- Korea Occupational Safety and Health Agency (KOSHA). Analysis of Industrial Accident Causes in 2010. 2011. Available online: https://www.kosha.or.kr/kosha/data/business/commonIndustriesBook.do?medSeq=29857&codeSeq=1100000&medForm=101&menuId=-1100000101&mode=view (accessed on 1 September 2020).
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments: Basics of the RayMan model. Int. J. Biometeol. 2010, 54, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.W.; Leu, S.S.; Cheng, Y.M.; Wu, T.C.; Lin, C.C. Applying data mining techniques to explore factors contributing to occupational injuries in Taiwan’s construction industry. Accid. Anal. 2012, 48, 214–222. [Google Scholar] [CrossRef]
- Suraji, A.; Duff, A.R.; Peckitt, S.J. Development of causal model of construction accident causation. J. Constr. Eng. Manag. 2001, 127, 337–344. [Google Scholar] [CrossRef]
- Chi, C.F.; Chang, T.C.; Hung, K.H. Significant industry–source of injury–accident type for occupational fatalities in Taiwan. Int. J. Ind. Ergon. 2004, 34, 77–91. [Google Scholar] [CrossRef]
- Goh, Y.M.; Ubeynarayana, C.U. Construction accident narrative classification: An evaluation of text mining techniques. Accid. Anal. Prev. 2017, 108, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Winge, S.; Albrechtsen, E. Accident types and barrier failures in the construction industry. Saf. Sci. 2018, 105, 158–166. [Google Scholar] [CrossRef]
- Cho, I.H.; Kim, H.K.; Lee, M.H.; Kim, Y.J.; Lee, H.; Kim, B.H. The Effect of Monsoon Rainfall Patterns on Epilithic Diatom Communities in the Hantangang River, Korea. Water 2020, 12, 1471. [Google Scholar] [CrossRef]
- Orosa, J.A.; Oliveira, A.C. A new thermal comfort approach comparing adaptive and PMV models. Renew Energy 2011, 36, 951–956. [Google Scholar] [CrossRef]
- Kim, J.T.; Lim, J.H.; Cho, S.H.; Yun, G.Y. Development of the adaptive PMV model for improving prediction performances. Energy Build. 2015, 98, 100–105. [Google Scholar] [CrossRef]
- Fanger, P.O.; Toftum, J. Extension of the PMV model to non-air-conditioned buildings in warm climates. Energy Build. 2002, 34, 533–536. [Google Scholar] [CrossRef]
- Pourshaghaghy, A.; Omidvari, M. Examination of thermal comfort in a hospital using PMV–PPD model. Appl. Ergon. 2012, 43, 1089–1095. [Google Scholar] [CrossRef]
- Fang, Z.; Feng, X.; Lin, Z. Investigation of PMV model for evaluation of the outdoor thermal comfort. Procedia Eng. 2017, 205, 2457–2462. [Google Scholar] [CrossRef]
- Fabbri, K.; Di Nunzio, A.; Gaspari, J.; Antonini, E.; Boeri, A. Outdoor Comfort: The ENVI-BUG tool to evaluate PMV values Output Comfort point by point. Energy Procedia 2017, 111, 510–519. [Google Scholar] [CrossRef]
- Alfano, F.R.D.A.; Ianniello, E.; Palella, B.I. PMV–PPD and acceptability in naturally ventilated schools. Build. Environ. 2013, 67, 129–137. [Google Scholar] [CrossRef]
- Jang, M.S.; Koh, C.D. Moon IS. Review of thermal comfort design based on PMV/PPD in cabins of Korean maritime patrol vessels. Build. Environ. 2007, 42, 55–61. [Google Scholar] [CrossRef]
- Zare, S.; Hasheminejad, N.; Bateni, M.; Baneshi, M.R.; Shirvan, H.E.; Hemmatjo, R. The association between wet-bulb globe temperature and other thermal indices (DI, MDI, PMV, PPD, PHS, PSI and PSIhr): A field study. Int. J. Occup. Saf. Ergon. 2020, 26, 71–79. [Google Scholar] [CrossRef]
- Karakounos, I.; Dimoudi, A.; Zoras, S. The influence of bioclimatic urban redevelopment on outdoor thermal comfort. Energy Build. 2018, 158, 1266–1274. [Google Scholar] [CrossRef]
- Fabbri, K. Thermal comfort evaluation in kindergarten: PMV and PPD measurement through datalogger and questionnaire. Build. Environ. 2013, 68, 202–214. [Google Scholar] [CrossRef]
- Charles, K.E. Fanger’s Thermal Comfort and Draught Models; NRC IRC-RR-162; National Research Council of Canada, Institute for Research in Construction: Ottawa, ON, Canada, 2003.
- Lucchese, J.R.; Mikuri, L.P.; de Freitas, N.V.; Andreasi, W.A. Application of selected indices on outdoor thermal comfort assessment in Midwest Brazil. IJEE 2016, 7, 291. [Google Scholar]
- Chen, L.; Ng, E. Outdoor thermal comfort and outdoor activities: A review of research in the past decade. Cities 2012, 29, 118–125. [Google Scholar] [CrossRef]
- Lin, T.P.; Matzarakis, A.; Hwang, R.L. Shading effect on long-term outdoor thermal comfort. Build. Environ. 2010, 45, 213–221. [Google Scholar] [CrossRef]
- Kumar, P.; Sharma, A. Study on importance, procedure, and scope of outdoor thermal comfort—A review. Sustain. Cities Soc. 2020, 61, 102297. [Google Scholar] [CrossRef]
- Makaremi, N.; Salleh, E.; Jaafar, M.Z.; GhaffarianHoseini, A. Thermal comfort conditions of shaded outdoor spaces in hot and humid climate of Malaysia. Build. Environ. 2012, 48, 7–14. [Google Scholar] [CrossRef]
- Honjo, T. Thermal comfort in outdoor environment. Glob. Environ. Res. 2009, 13, 43–47. [Google Scholar]
- Salata, F.; Golasi, I.; de Lieto Vollaro, R.; de Lieto Vollaro, A. Outdoor thermal comfort in the Mediterranean area. A transversal study in Rome, Italy. Build. Environ. 2016, 96, 46–61. [Google Scholar] [CrossRef]
- Sharmin, T.; Steemers, K.; Humphreys, M. Outdoor thermal comfort and summer PET range: A field study in tropical city Dhaka. Energy Build. 2019, 198, 149–159. [Google Scholar] [CrossRef]
- Cheng, V.; Ng, E.; Chan, C.; Givoni, B. Outdoor thermal comfort study in a sub-tropical climate: A longitudinal study based in Hong Kong. Int. J. Biometeorol. 2012, 56, 43–56. [Google Scholar] [CrossRef]
- Golasi, I.; Salata, F.; de Lieto Vollaro, E.; Coppi, M. Complying with the demand of standardization in outdoor thermal comfort: A first approach to the Global Outdoor Comfort Index (GOCI). Build. Environ. 2018, 130, 104–119. [Google Scholar] [CrossRef]
- Shooshtarian, S.; Rajagopalan, P.; Sagoo, A. A comprehensive review of thermal adaptive strategies in outdoor spaces. Cities Soc. 2018, 41, 647–665. [Google Scholar] [CrossRef]
- Huang, Z.; Gou, Z.; Cheng, B. An investigation of outdoor thermal environments with different ground surfaces in the hot summer-cold winter climate region. J. Build. Eng. 2020, 27, 100994. [Google Scholar] [CrossRef]
- Ghaffarianhoseini, A.; Berardi, U.; Ghaffarianhoseini, A.; Al-Obaidi, K. Analyzing the thermal comfort conditions of outdoor spaces in a university campus in Kuala Lumpur. Malaysia. Sci. Total Environ. 2019, 666, 1327–1345. [Google Scholar] [CrossRef] [Green Version]
- Sen, J.; Nag, P.K. Human susceptibility to outdoor hot environment. Sci. Total Environ. 2019, 649, 866–875. [Google Scholar] [CrossRef]
- Broday, E.E.; Ruivo, C.R.; da Silva, M.G. The use of Monte Carlo method to assess the uncertainty of thermal comfort indices PMV and PPD: Benefits of using a measuring set with an operative temperature probe. J. Build. Eng. 2020, 101961. [Google Scholar] [CrossRef]
- Deb, C.; Ramachandraiah, A. The significance of physiological equivalent temperature (PET) in outdoor thermal comfort studies. Int. J. Eng. Sci. Technol. 2010, 2, 2825–2828. [Google Scholar]
- Cheung, P.K.; Jim, C.Y. Subjective outdoor thermal comfort and urban green space usage in humid-subtropical Hong Kong. Energy Build. 2018, 173, 150–162. [Google Scholar] [CrossRef]
- Park, S.; Tuller, S.E. Modelling human radiation exchange in outdoor urban environments. In Proceedings of the Seventh International Conference on Urban Climate, Yokohama, Japan, 29 June–3 July 2009; p. 29. [Google Scholar]
- Zare, S.; Hasheminejad, N.; Shirvan, H.E.; Hemmatjo, R.; Sarebanzadeh, K.; Ahmadi, S. Comparing Universal Thermal Climate Index (UTCI) with selected thermal indices/environmental parameters during 12 months of the year. Weather Clim. Extrem. 2018, 19, 49–57. [Google Scholar] [CrossRef]
- Tong, R.; Cheng, M.; Zhang, L.; Liu, M.; Yang, X.; Li, X.; Yin, W. The construction dust-induced occupational health risk using Monte-Carlo simulation. J. Clean. Prod. 2018, 184, 598–608. [Google Scholar] [CrossRef]
- Beisbart, C.; Norton, J.D. Why Monte Carlo simulations are inferences and not experiments. Int. Stud. Philos. 2012, 26, 403–422. [Google Scholar] [CrossRef] [Green Version]
- Aleboyeh, A.; Kasiri, M.B.; Olya, M.E.; Aleboyeh, H. Prediction of azo dye decolorization by UV/H2O2 using artificial neural networks. Dyes Pigm. 2008, 77, 288–294. [Google Scholar] [CrossRef]
- Liu, H.; Cocea, M. Semi-random partitioning of data into training and test sets in granular computing context. Granul. Comput. 2017, 2, 357–386. [Google Scholar] [CrossRef] [Green Version]
- Korea Ministry of Government Legislation (MOLEG). 2020. Available online: https://www.law.go.kr (accessed on 1 September 2020).
- Nadhim, E.A.; Hon, C.; Xia, B.; Stewart, I.; Fang, D. Falls from height in the construction industry: A critical review of the scientific literature. Int. J. Environ. Res. Public Health 2016, 13, 638. [Google Scholar] [CrossRef] [Green Version]
- Gillen, M.; Baltz, D.; Gassel, M.; Kirsch, L.; Vaccaro, D. Perceived safety climate, job demands, and coworker support among union and nonunion injured construction workers. J. Saf. Res. 2002, 33, 33–51. [Google Scholar] [CrossRef]
Research Related to the Causes of Construction Disasters | |||
---|---|---|---|
No. | Reference | Purpose | Difference |
1 | Berglund et al., 2019 [24] | The author analyzed fatalities and injuries according to daily, monthly, and workers’ ages in 2016 in Spain. | This study analyzes 18 accident types considering several weather conditions. These weather conditions affect construction workers’ thermal comfort. |
2 | Abukhashabah et al., 2020 [30] | The author investigated injuries and causes of incidents in the construction industry in Saudi Arabia, specifically Jeddah. A prevention method was presented to reduce injuries and incidents. | |
3 | Ahmed, 2019 [35] | The author sought to identify the causes of accidents at construction sites in Bangladesh and established the interests of workers, owners, consultants and contractors through questionnaire surveys. | |
Research related to an analysis of the weather impact on injury and fatal accidents in construction | |||
4 | Rameezdeen and Elmualim, 2017 [4] | The purpose of this study was to investigate heat waves and how they affect construction workers’ incidents from 2002 to 2013 in Australia. | This study investigates the link between thermal comfort and fatalities and accident incidents involving construction workers considering yearly weather conditions. Furthermore, using a neural network, relative importance is calculated and the effects on fatalities and injuries are determined. |
5 | Varghese et al., 2018 [9] | The author investigated heat-related illnesses such as heat stress and risk factors, associated diseases, and vulnerable groups in the construction industry. | |
6 | Acharya et al., 2018 [10] | The author presented evidence of a link between heat exposure and injuries. The result of this research provided policy proposals and directions for further research. | |
Research related to measuring the thermal comfort of construction workers | |||
7 | Yang, 2017 [46] | The author reviewed previous researches and categorized the methodologies related to thermal comfort assessments in the construction industry. | This study analyzes fatalities and injuries considering the PET. The probabilities of fatalities and injuries occurring outside the comfort range are also calculated. |
8 | Chan et al., 2012 [47] | The author developed a heat stress model based on the concept of the wet bulb globe temperature to measure the heat stress of workers. | |
9 | Yasmeen et al., 2020 [48] | The author analyzed the environmental and physiological factors affecting the ability and heat stress level in several building and work types in the construction industry. |
City | District | Year | Month | Day | Hour | Temperature (°C) | Tmrt (°C) | Velocity (m/s) | Relative Humidity (%) | PET (°C) | Accident Type |
---|---|---|---|---|---|---|---|---|---|---|---|
Seoul | Gangbuk-gu | 2009 | 1 | 2 | 9:00 | −6.2 | 5.3 | 1.9 | 64 | −9.5 | Fall |
Seoul | Jung-gu | 2009 | 1 | 2 | 9:00 | −6.2 | 5.3 | 1.9 | 64 | −9.5 | Traffic accident |
Seoul | Gangseo-gu | 2015 | 11 | 1 | 13:00 | 0.9 | 22.4 | 4.7 | 50 | −2.5 | Fall |
Seoul | Gangseo-gu | 2015 | 11 | 1 | 15:00 | 2.3 | 20.3 | 4.3 | 41 | −1.3 | Be hit |
Cheongju | Sangdang-gu | 2010 | 12 | 1 | 10:00 | −1 | 17.2 | 4.5 | 77 | −5 | Fall |
Incheon | Nam-gu | 2010 | 12 | 1 | 10:00 | −4.5 | 12.4 | 7.6 | 57 | −10.5 | Fall beneath |
Factor | Element | Range | |
Environmental Factor | Temperature | −18.4 °C~39.3 °C | |
Tmrt | −32.1 °C~62.7 °C | ||
Relative humidity | 0~100% | ||
Velocity | 0 m/s~19.6 m/s | ||
Personal Factor | Metabolic rate | 80 W | |
Clothing | 0.9 Clo | ||
PET range | Thermal perception | ||
Discomfort ranges (Cold ranges) | <4 °C | Very cold | |
4 °C~8 °C | Cold | ||
8 °C~13 °C | Cool | ||
13 °C~18 °C | Slightly cool | ||
Comfort range | 18 °C~23 °C | Neutral | |
Discomfort ranges (Hot ranges) | 23 °C~29 °C | Slightly warm | |
29 °C~35 °C | Warn | ||
35 °C~41 °C | Hot | ||
41 °C | Very hot |
January | February | March | April | May | June | July | August | September | October | November | December | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Temperature (°C) | −0.9 | 1.6 | 6.3 | 12.2 | 17.8 | 21.6 | 25.1 | 25.4 | 20.9 | 15 | 8.2 | 1.3 |
Velocity (m/s) | 2.3 | 2.4 | 2.5 | 2.5 | 2.2 | 2.0 | 2.0 | 1.9 | 1.7 | 1.9 | 2.1 | 2.3 |
Relative humidity (%) | 60.8 | 60.0 | 59.2 | 61.2 | 63.7 | 72.9 | 81.0 | 79.4 | 76.5 | 71.3 | 67.5 | 63.3 |
PET (°C) | −12.0 | −8.9 | −2.8 | 4.9 | 12.2 | 16.9 | 21.2 | 21.6 | 16.5 | 9.3 | 0.5 | −9.1 |
Month | Electric Shock | Slip | Fall | Traffic Accident | Be Hit | Collision | Get Jammed | Leak or Contact of Chemicals | Fire | |||||||||
Fatal Incident | Injury | Fatal Incident | Injury | Fatal Incident | Injury | Fatal Incident | Injury | Fatal Incident | Injury | Fatal Incident | Injury | Fatal Incident | Injury | Fatal Incident | Injury | Fatal Incident | Injury | |
1 | 6 | 70 | 12 | 2057 | 196 | 4250 | 24 | 134 | 24 | 1428 | 26 | 187 | 16 | 996 | 4 | 28 | 18 | 123 |
2 | 13 | 80 | 3 | 1847 | 177 | 3784 | 24 | 111 | 24 | 1310 | 29 | 178 | 10 | 967 | 4 | 26 | 1 | 60 |
3 | 10 | 111 | 8 | 2677 | 248 | 5674 | 26 | 152 | 22 | 2060 | 25 | 321 | 15 | 1507 | 4 | 31 | 5 | 113 |
4 | 8 | 113 | 12 | 2796 | 230 | 5990 | 26 | 152 | 36 | 2491 | 37 | 347 | 23 | 1731 | 1 | 35 | 5 | 46 |
5 | 12 | 146 | 10 | 3069 | 247 | 6464 | 32 | 161 | 27 | 2757 | 43 | 354 | 17 | 1845 | 6 | 45 | 1 | 60 |
6 | 19 | 161 | 13 | 3193 | 223 | 6499 | 30 | 160 | 31 | 2896 | 29 | 330 | 26 | 1831 | 4 | 43 | 5 | 70 |
7 | 36 | 203 | 11 | 2993 | 237 | 6218 | 37 | 203 | 30 | 2812 | 41 | 375 | 18 | 1570 | 3 | 63 | 1 | 54 |
8 | 57 | 203 | 9 | 3109 | 245 | 6751 | 41 | 180 | 34 | 2850 | 23 | 320 | 8 | 1685 | 3 | 61 | 7 | 60 |
9 | 19 | 139 | 6 | 2824 | 234 | 6126 | 32 | 146 | 32 | 2545 | 37 | 318 | 12 | 1549 | 7 | 41 | 11 | 46 |
10 | 14 | 145 | 14 | 3365 | 286 | 7355 | 35 | 164 | 36 | 2921 | 33 | 346 | 12 | 1926 | 0 | 45 | 4 | 43 |
11 | 10 | 119 | 12 | 3203 | 263 | 6641 | 48 | 182 | 31 | 2547 | 31 | 364 | 19 | 1826 | 3 | 39 | 8 | 46 |
12 | 11 | 111 | 9 | 2996 | 218 | 5266 | 37 | 223 | 23 | 1959 | 37 | 302 | 17 | 1488 | 9 | 34 | 4 | 92 |
Total | 215 | 1601 | 119 | 34,129 | 2804 | 71,078 | 392 | 1968 | 350 | 28,576 | 391 | 3742 | 193 | 18,921 | 48 | 491 | 70 | 813 |
Month | Bumped | Drowned | Explosion | Hypoxia | Violence | Contact of Abnormal Temperature | Cut | Animal Injury | Fall Beneath | |||||||||
Fatal Incident | Injury | Fatal Incident | Injury | Fatal Incident | Injury | Fatal Incident | Injury | Fatal Incident | Injury | Fatal Incident | Injury | Fatal Incident | Injury | Fatal Incident | Injury | Fatal Incident | Injury | |
1 | 10 | 1000 | 5 | 1 | 27 | 70 | 0 | 2 | 0 | 10 | 0 | 95 | 0 | 935 | 0 | 0 | 10 | 297 |
2 | 15 | 864 | 2 | 1 | 3 | 64 | 2 | 2 | 0 | 12 | 1 | 67 | 0 | 852 | 0 | 1 | 10 | 290 |
3 | 19 | 1406 | 6 | 0 | 8 | 93 | 3 | 4 | 0 | 11 | 0 | 75 | 1 | 1327 | 0 | 1 | 17 | 461 |
4 | 29 | 1753 | 5 | 0 | 3 | 60 | 2 | 3 | 3 | 12 | 0 | 60 | 1 | 1515 | 0 | 3 | 15 | 470 |
5 | 26 | 1920 | 7 | 1 | 3 | 65 | 4 | 3 | 0 | 9 | 1 | 62 | 2 | 1758 | 0 | 8 | 17 | 531 |
6 | 26 | 2030 | 8 | 4 | 5 | 94 | 1 | 2 | 1 | 11 | 1 | 81 | 1 | 1957 | 2 | 14 | 14 | 524 |
7 | 25 | 1839 | 16 | 2 | 14 | 82 | 8 | 2 | 1 | 12 | 5 | 113 | 1 | 1939 | 3 | 20 | 13 | 504 |
8 | 18 | 1985 | 7 | 8 | 11 | 83 | 6 | 8 | 0 | 7 | 5 | 99 | 2 | 2062 | 3 | 24 | 10 | 522 |
9 | 32 | 1667 | 8 | 1 | 2 | 59 | 6 | 1 | 0 | 13 | 1 | 61 | 1 | 1791 | 4 | 17 | 14 | 442 |
10 | 35 | 2176 | 11 | 3 | 6 | 76 | 3 | 2 | 0 | 12 | 1 | 81 | 2 | 1946 | 1 | 4 | 17 | 555 |
11 | 21 | 1793 | 3 | 2 | 0 | 95 | 4 | 0 | 2 | 12 | 1 | 71 | 2 | 1688 | 0 | 2 | 16 | 467 |
12 | 36 | 1416 | 19 | 2 | 9 | 94 | 4 | 4 | 0 | 6 | 2 | 110 | 0 | 1301 | 0 | 0 | 8 | 392 |
Total | 292 | 19,849 | 97 | 25 | 91 | 935 | 43 | 33 | 7 | 127 | 18 | 975 | 13 | 19,071 | 13 | 94 | 161 | 5435 |
January | February | March | April | May | June | July | August | September | October | November | December | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fatal accident | Mean | 37.80 | 31.80 | 41.70 | 43.60 | 45.50 | 43.90 | 50.00 | 48.90 | 45.80 | 51.00 | 47.40 | 44.30 |
Max | 83.00 | 50.00 | 59.00 | 61.00 | 59.00 | 60.00 | 64.00 | 57.00 | 61.00 | 64.00 | 54.00 | 51.00 | |
Min | 21.00 | 23.00 | 31.00 | 25.00 | 38.00 | 34.00 | 42.00 | 39.00 | 27.00 | 44.00 | 37.00 | 31.00 | |
Injury | Mean | 1168.30 | 1049.60 | 1602.40 | 1757.70 | 1925.80 | 1990.00 | 1900.00 | 2001.70 | 1778.60 | 2116.50 | 1909.70 | 1579.50 |
Max | 1414.00 | 1314.00 | 2076.00 | 1920.00 | 2185.00 | 2282.00 | 2169.00 | 2324.00 | 2130.00 | 2465.00 | 2099.00 | 2056.00 | |
Min | 833.00 | 852.00 | 1258.00 | 1512.00 | 1601.00 | 1614.00 | 1495.00 | 1605.00 | 1257.00 | 1820.00 | 1700.00 | 406.00 | |
Construction workers (Unit: 1000 workers) | Mean | 1775 | 1749 | 1804 | 1854 | 1882 | 1894 | 1873 | 1852 | 1870 | 1881 | 1900 | 1871 |
Max | 1988 | 1964 | 1980 | 2023 | 2041 | 2056 | 2056 | 2031 | 2076 | 2090 | 2124 | 2074 | |
Min | 1617 | 1575 | 1670 | 1735 | 1768 | 1776 | 1692 | 1681 | 1723 | 1686 | 1726 | 1701 | |
Working day | Mean | 20.70 | 18.70 | 21.40 | 21.60 | 20.40 | 20.50 | 22.30 | 21.20 | 19.50 | 20.60 | 21.30 | 21.60 |
Max | 22.00 | 21.00 | 22.00 | 22.00 | 22.00 | 22.00 | 23.00 | 22.00 | 22.00 | 21.00 | 22.00 | 23.00 | |
Min | 19.00 | 17.00 | 20.00 | 20.00 | 19.00 | 19.00 | 21.00 | 20.00 | 17.00 | 20.00 | 20.00 | 20.00 | |
Holiday * | Mean | 10.30 | 9.50 | 9.60 | 8.40 | 10.60 | 9.50 | 8.70 | 9.80 | 10.50 | 10.40 | 8.70 | 9.40 |
Max | 12.00 | 11.00 | 11.00 | 10.00 | 12.00 | 11.00 | 10.00 | 11.00 | 13.00 | 11.00 | 10.00 | 11.00 | |
Min | 9.00 | 8.00 | 9.00 | 8.00 | 9.00 | 8.00 | 8.00 | 9.00 | 8.00 | 10.00 | 8.00 | 8.00 |
PET (°C) | Electric Shock | Slip | Fall | Traffic Accident | Be Hit | Collision | Get Jammed | Leak or Contact Chemicals | Fire | |||||||||
Fatal Incident | Injury | Fatal Incident | Injury | Fatal Incident | Injury | Fatal Incident | Injury | Fatal Incident | Injury | Fatal Incident | Injury | Fatal Incident | Injury | Fatal Incident | Injury | Fatal Incident | Injury | |
−30 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
−25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
−20 | 0 | 0 | 0 | 22 | 1 | 20 | 1 | 7 | 0 | 10 | 0 | 1 | 0 | 4 | 0 | 0 | 0 | 0 |
−15 | 1 | 5 | 1 | 123 | 13 | 185 | 2 | 21 | 2 | 77 | 2 | 6 | 1 | 56 | 0 | 1 | 0 | 4 |
−10 | 1 | 12 | 3 | 583 | 33 | 920 | 9 | 54 | 10 | 332 | 3 | 48 | 5 | 257 | 2 | 9 | 1 | 30 |
−5 | 5 | 54 | 5 | 1575 | 115 | 2850 | 42 | 174 | 21 | 1048 | 28 | 165 | 10 | 706 | 5 | 24 | 2 | 77 |
0 | 10 | 89 | 6 | 2716 | 235 | 5408 | 35 | 194 | 19 | 1938 | 33 | 275 | 21 | 1455 | 7 | 33 | 17 | 99 |
5 | 11 | 132 | 16 | 3596 | 299 | 7350 | 36 | 206 | 24 | 2755 | 37 | 396 | 15 | 1993 | 6 | 38 | 6 | 98 |
10 | 16 | 168 | 11 | 3625 | 270 | 7659 | 33 | 186 | 37 | 2785 | 36 | 424 | 23 | 2104 | 3 | 41 | 7 | 108 |
15 | 13 | 166 | 11 | 3608 | 289 | 7691 | 48 | 215 | 37 | 3089 | 45 | 422 | 17 | 2098 | 5 | 43 | 7 | 56 |
18 | 6 | 145 | 6 | 2551 | 186 | 5594 | 21 | 168 | 18 | 2234 | 30 | 288 | 18 | 1475 | 2 | 48 | 2 | 45 |
19 | 1 | 43 | 4 | 932 | 86 | 2047 | 12 | 71 | 13 | 833 | 15 | 102 | 3 | 534 | 1 | 13 | 1 | 12 |
20 | 7 | 43 | 4 | 955 | 74 | 2056 | 8 | 57 | 12 | 903 | 5 | 113 | 1 | 608 | 2 | 14 | 1 | 21 |
21 | 4 | 45 | 5 | 892 | 68 | 1954 | 7 | 68 | 13 | 804 | 14 | 93 | 7 | 534 | 1 | 17 | 0 | 22 |
22 | 7 | 47 | 0 | 940 | 61 | 1988 | 8 | 51 | 10 | 761 | 6 | 93 | 5 | 511 | 1 | 10 | 0 | 0 |
23 | 13 | 44 | 5 | 1025 | 73 | 2023 | 13 | 53 | 13 | 876 | 7 | 109 | 5 | 594 | 1 | 17 | 1 | 9 |
25 | 12 | 108 | 4 | 1929 | 136 | 3993 | 13 | 77 | 25 | 1704 | 22 | 215 | 9 | 1086 | 0 | 18 | 0 | 34 |
30 | 24 | 192 | 15 | 3654 | 318 | 7645 | 29 | 137 | 32 | 3241 | 45 | 381 | 18 | 1971 | 3 | 61 | 10 | 70 |
35 | 35 | 169 | 15 | 2948 | 305 | 6262 | 35 | 130 | 35 | 2804 | 37 | 307 | 17 | 1591 | 5 | 56 | 5 | 54 |
40 | 40 | 104 | 8 | 1838 | 186 | 4102 | 29 | 80 | 21 | 1832 | 24 | 218 | 13 | 1035 | 2 | 30 | 10 | 46 |
45 | 9 | 30 | 0 | 565 | 53 | 1158 | 10 | 18 | 8 | 505 | 2 | 63 | 4 | 286 | 2 | 16 | 0 | 4 |
50 | 0 | 5 | 0 | 51 | 3 | 112 | 1 | 1 | 0 | 44 | 0 | 3 | 1 | 21 | 0 | 2 | 0 | 1 |
55 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
Mean (°C) | 23.01 | 17.93 | 16.20 | 15.58 | 16.45 | 16.09 | 13.97 | 12.34 | 16.40 | 16.98 | 15.32 | 15.68 | 15.34 | 15.86 | 12.26 | 17.55 | 14.16 | 11.52 |
Median (°C) | 25.30 | 18.8 | 18.40 | 16.50 | 17.50 | 17.00 | 13.55 | 13.40 | 18.40 | 18.10 | 15.90 | 16.30 | 15.90 | 16.60 | 11.00 | 18.70 | 12.90 | 9.20 |
25% (°C) | 13.30 | 8.50 | 4.60 | 4.90 | 5.17 | 5.70 | 1.48 | 1.00 | 6.43 | 6.90 | 4.35 | 5.40 | 3.00 | 5.80 | −0.38 | 7.20 | −1.45 | −0.50 |
75% (°C) | 34.80 | 27.80 | 27.75 | 25.70 | 27.60 | 26.00 | 26.43 | 22.10 | 25.73 | 26.9 | 26.55 | 25.40 | 26.70 | 25.40 | 24.03 | 28.3 | 29.40 | 23.70 |
PET (°C) | Bumped | Drowned | Explosion | Hypoxia | Violence | Contact of Abnormal Temperature | Cut | Animal Injury | Fall Beneath | |||||||||
Fatal Incident | Injury | Fatal Incident | Injury | Fatal Incident | Injury | Fatal Incident | Injury | Fatal Incident | Injury | Fatal Incident | Injury | Fatal Incident | Injury | Fatal Incident | Injury | Fatal Incident | Injury | |
−30 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
−25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
−20 | 1 | 2 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 3 |
−15 | 5 | 58 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 41 | 0 | 0 | 0 | 17 |
−10 | 4 | 257 | 1 | 1 | 2 | 35 | 1 | 1 | 0 | 2 | 0 | 26 | 0 | 233 | 0 | 1 | 3 | 75 |
−5 | 15 | 696 | 4 | 0 | 1 | 65 | 1 | 1 | 0 | 6 | 0 | 87 | 0 | 667 | 0 | 0 | 4 | 219 |
0 | 22 | 1279 | 7 | 0 | 33 | 90 | 1 | 3 | 0 | 5 | 3 | 84 | 0 | 1295 | 0 | 2 | 10 | 423 |
5 | 22 | 1896 | 17 | 1 | 2 | 116 | 2 | 1 | 0 | 15 | 2 | 120 | 1 | 1736 | 0 | 1 | 18 | 530 |
10 | 27 | 2072 | 14 | 5 | 4 | 90 | 6 | 5 | 3 | 22 | 0 | 87 | 2 | 1802 | 0 | 5 | 19 | 500 |
15 | 45 | 2216 | 5 | 2 | 11 | 98 | 1 | 2 | 1 | 15 | 0 | 85 | 1 | 1924 | 0 | 5 | 16 | 559 |
18 | 15 | 1646 | 6 | 1 | 4 | 63 | 3 | 2 | 1 | 8 | 1 | 66 | 1 | 1571 | 0 | 8 | 12 | 400 |
19 | 11 | 572 | 1 | 1 | 1 | 21 | 1 | 4 | 0 | 1 | 0 | 21 | 0 | 552 | 0 | 2 | 4 | 150 |
20 | 12 | 628 | 2 | 2 | 4 | 34 | 1 | 1 | 0 | 6 | 0 | 22 | 0 | 540 | 1 | 3 | 1 | 148 |
21 | 10 | 596 | 4 | 1 | 3 | 22 | 1 | 2 | 0 | 4 | 1 | 16 | 1 | 552 | 0 | 4 | 6 | 156 |
22 | 4 | 572 | 0 | 0 | 0 | 31 | 0 | 0 | 1 | 4 | 0 | 18 | 0 | 522 | 1 | 2 | 6 | 148 |
23 | 4 | 546 | 3 | 1 | 1 | 34 | 0 | 2 | 0 | 6 | 0 | 21 | 0 | 548 | 1 | 2 | 4 | 150 |
25 | 14 | 1155 | 4 | 1 | 2 | 43 | 7 | 2 | 1 | 4 | 0 | 40 | 1 | 1118 | 0 | 10 | 9 | 326 |
30 | 32 | 2253 | 10 | 3 | 4 | 72 | 5 | 4 | 0 | 16 | 0 | 94 | 2 | 2241 | 4 | 13 | 17 | 635 |
35 | 20 | 1867 | 15 | 4 | 6 | 61 | 6 | 1 | 0 | 9 | 4 | 79 | 3 | 1951 | 4 | 16 | 19 | 520 |
40 | 17 | 1158 | 4 | 2 | 11 | 36 | 1 | 0 | 0 | 2 | 2 | 75 | 1 | 1315 | 2 | 13 | 9 | 346 |
45 | 11 | 344 | 0 | 0 | 2 | 7 | 6 | 2 | 0 | 2 | 4 | 21 | 0 | 422 | 0 | 7 | 4 | 122 |
50 | 1 | 36 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 4 | 0 | 35 | 0 | 0 | 0 | 8 |
55 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Mean (°C) | 15.74 | 16.78 | 14.94 | 19.28 | 12.67 | 12.33 | 21.69 | 15.85 | 13.26 | 14.84 | 24.98 | 14.15 | 22.02 | 17.46 | 29.15 | 25.43 | 17.08 | 16.75 |
Median (°C) | 15.95 | 17.70 | 17.20 | 20.00 | 12.30 | 12.70 | 24.10 | 18.10 | 13.80 | 14.60 | 33.10 | 14.40 | 24.50 | 18.50 | 28.80 | 25.20 | 17.70 | 18.00 |
25% (°C) | 5.73 | 7.00 | 2.90 | 9.30 | −3.10 | 1.20 | 9.75 | 6.10 | 6.35 | 6.45 | 4.85 | 1.80 | 10.70 | 7.30 | 16.60 | 18.60 | 17.55 | 6.00 |
75% (°C) | 26.23 | 26.40 | 26.60 | 29.30 | 24.85 | 22.50 | 31.55 | 24.50 | 18.45 | 23.8 | 39.75 | 26.65 | 32.60 | 27.60 | 33.20 | 34.28 | 17.55 | 27.00 |
Fatal Incident | Electric Shock | Slip | Fall | Traffic Accident | Be Hit | Collision | Get Jammed | Leak or Contact Chemicals | Fire | Bumped | Drowned | Explosion | Hypoxia | Violence | Contact of Abnormal Temperature | Cut | Animal Injury | Fall Beneath |
Average (°C) | 23.01 | 16.20 | 16.45 | 13.97 | 16.40 | 15.32 | 15.34 | 12.26 | 14.16 | 15.74 | 14.94 | 12.67 | 21.69 | 13.26 | 24.98 | 22.02 | 29.15 | 17.08 |
STD | 13.60 | 13.92 | 13.71 | 15.05 | 13.85 | 13.52 | 14.49 | 15.49 | 15.35 | 14.16 | 13.18 | 15.60 | 13.99 | 7.18 | 17.96 | 11.67 | 5.57 | 13.26 |
Cold range (%) | 35.83 | 54.82 | 54.49 | 60.71 | 54.73 | 57.20 | 57.86 | 63.73 | 60.54 | 55.63 | 59.00 | 63.92 | 39.52 | 74.58 | 35.05 | 36.30 | 2.54 | 52.89 |
Hot range (%) | 49.82 | 31.40 | 31.52 | 27.06 | 31.10 | 28.84 | 29.85 | 25.18 | 27.12 | 31.30 | 27.30 | 24.97 | 46.11 | 8.73 | 53.75 | 46.66 | 86.23 | 32.48 |
Outside Comfort range (%) | 85.65 | 86.22 | 86.01 | 87.77 | 85.83 | 86.04 | 87.71 | 88.91 | 87.66 | 86.93 | 86.30 | 88.89 | 85.63 | 83.31 | 88.80% | 82.96 | 88.77 | 85.37 |
Injury | Electric Shock | Slip | Fall | Traffic Accident | Be Hit | Collision | Get Jammed | Leak or Contact Chemicals | Fire | Bumped | Drowned | Explosion | Hypoxia | Violence | Contact of Abnormal Temperature | Cut | Animal Injury | Fall Beneath |
Average (°C) | 23.01 | 16.20 | 16.45 | 13.97 | 16.40 | 15.32 | 15.34 | 12.26 | 14.16 | 15.74 | 14.94 | 12.67 | 21.69 | 13.26 | 24.98 | 22.02 | 29.15 | 17.08 |
STD | 13.60 | 13.92 | 13.71 | 15.05 | 13.85 | 13.52 | 14.49 | 15.49 | 15.35 | 14.16 | 13.18 | 15.60 | 13.99 | 7.18 | 17.96 | 11.67 | 5.57 | 13.26 |
Cold range (%) | 49.92 | 57.57 | 55.63 | 66.58 | 53.12 | 57.62 | 56.49 | 50.99 | 66.94 | 52.51 | 46.21 | 66.32 | 56.75 | 60.12 | 60.59 | 51.92 | 24.90 | 53.45 |
Hot range (%) | 35.16 | 29.03 | 29.97 | 21.69 | 32.60 | 28.21 | 29.11 | 34.79 | 22.01 | 32.36 | 38.24 | 22.14 | 28.57 | 24.82 | 27.79 | 33.50 | 58.79 | 32.22 |
Outside Comfort range (%) | 85.08 | 86.60 | 85.60 | 88.27 | 85.72 | 85.83 | 85.60 | 85.78 | 88.95 | 84.87 | 84.45 | 88.46 | 85.32 | 84.94 | 88.38 | 85.42 | 83.69 | 85.67 |
Variables | Importance |
---|---|
Ta | 0.2592 |
Tmrt | 0.2525 |
v | 0.2292 |
RH | 0.2591 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.; Jeong, J.; Jeong, J.; Lee, J. Exploring Fatalities and Injuries in Construction by Considering Thermal Comfort Using Uncertainty and Relative Importance Analysis. Int. J. Environ. Res. Public Health 2021, 18, 5573. https://doi.org/10.3390/ijerph18115573
Lee M, Jeong J, Jeong J, Lee J. Exploring Fatalities and Injuries in Construction by Considering Thermal Comfort Using Uncertainty and Relative Importance Analysis. International Journal of Environmental Research and Public Health. 2021; 18(11):5573. https://doi.org/10.3390/ijerph18115573
Chicago/Turabian StyleLee, Minsu, Jaemin Jeong, Jaewook Jeong, and Jaehyun Lee. 2021. "Exploring Fatalities and Injuries in Construction by Considering Thermal Comfort Using Uncertainty and Relative Importance Analysis" International Journal of Environmental Research and Public Health 18, no. 11: 5573. https://doi.org/10.3390/ijerph18115573
APA StyleLee, M., Jeong, J., Jeong, J., & Lee, J. (2021). Exploring Fatalities and Injuries in Construction by Considering Thermal Comfort Using Uncertainty and Relative Importance Analysis. International Journal of Environmental Research and Public Health, 18(11), 5573. https://doi.org/10.3390/ijerph18115573