Real-Time Environment Monitoring Using a Lightweight Image Super-Resolution Network
Abstract
:1. Introduction
- The efficient feature generating block is proposed, which can generate more feature maps in an efficient way, so the network can achieve high performance while keeping low computation complexity.
- The Super Resolution Efficient Feature Generating Network is proposed, which introduces the staged information refinement unit to further boost the network performance.
2. Related Works
2.1. CNN-Based SISR Methods
2.2. Efficient Convolutional Neural Network
3. Methods
3.1. Framework
3.2. Local Residual Module
3.2.1. Staged Information Refinement Unit
3.2.2. Efficient Feature Generating Block
4. Experiments
4.1. Datasets and Metrics
4.2. Implementation Details
4.3. Efficiency Analysis
4.4. Study of LRM
4.5. Effects of SIRU and EFGB
4.6. Quantitative and Qualitative Evaluation
4.7. Evaluation of Object Recognition
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiong, J.; Hswen, Y.; Naslund, J.A. Digital Surveillance for Monitoring Environmental Health Threats: A Case Study Capturing Public Opinion from Twitter about the 2019 Chennai Water Crisis. Int. J. Environ. Res. Public Health 2020, 17, 5077. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Yu, Q.; Chen, L.; Jeon, G.; Albertini, M.K.; Yang, X. Aerial image super-resolution based on deep recursive dense network for disaster area surveillance. Pers. Ubiquitous Comput. 2021. [Google Scholar] [CrossRef]
- Lai, Z.; Chen, L.; Jeon, G.; Liu, Z.; Zhong, R.; Yang, X. Real-time and effective pan-sharpening for remote sensing using multi-scale fusion network. J. Real-Time Image Process. 2021. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef]
- Wu, J.; Anisetti, M.; Wu, W.; Damiani, E.; Jeon, G. Bayer demosaicking with polynomial interpolation. IEEE Trans. Image Process. 2016, 25, 5369–5382. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wu, J.; Wu, Z.; Anisetti, M.; Jeon, G. Bayesian method application for color demosaicking. Opt. Eng. 2018, 57, 053102. [Google Scholar] [CrossRef]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a deep convolutional network for image super-resolution. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2014; pp. 184–199. [Google Scholar]
- Kim, J.; Kwon Lee, J.; Mu Lee, K. Accurate image super-resolution using very deep convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654. [Google Scholar]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Mu Lee, K. Enhanced deep residual networks for single image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 136–144. [Google Scholar]
- Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image super-resolution using very deep residual channel attention networks. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 286–301. [Google Scholar]
- Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual dense network for image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2472–2481. [Google Scholar]
- Kim, J.; Kwon Lee, J.; Mu Lee, K. Deeply-recursive convolutional network for image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1637–1645. [Google Scholar]
- Tai, Y.; Yang, J.; Liu, X. Image super-resolution via deep recursive residual network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 3147–3155. [Google Scholar]
- Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. GhostNet: More Features from Cheap Operations. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Agustsson, E.; Timofte, R. NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.; Kai, L.; Li, F. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Dong, C.; Loy, C.C.; Tang, X. Accelerating the super-resolution convolutional neural network. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2016; pp. 391–407. [Google Scholar]
- Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883. [Google Scholar]
- Tong, T.; Li, G.; Liu, X.; Gao, Q. Image super-resolution using dense skip connections. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 4799–4807. [Google Scholar]
- Hui, Z.; Wang, X.; Gao, X. Fast and accurate single image super-resolution via information distillation network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 723–731. [Google Scholar]
- Ahn, N.; Kang, B.; Sohn, K.A. Fast, accurate, and lightweight super-resolution with cascading residual network. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 252–268. [Google Scholar]
- Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6848–6856. [Google Scholar]
- Zhao, H.; Gallo, O.; Frosio, I.; Kautz, J. Loss functions for image restoration with neural networks. IEEE Trans. Comput. Imaging 2016, 3, 47–57. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Bevilacqua, M.; Roumy, A.; Guillemot, C.; Morel, M.L.A. Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding. In Proceedings of the British Machine Vision Conference (BMVC), Surrey, UK, 3–7 September 2012. [Google Scholar]
- Zeyde, R.; Elad, M.; Protter, M. On single image scale-up using sparse-representations. In International Conference on Curves and Surfaces; Springer: Berlin/Heidelberg, Germany, 2010; pp. 711–730. [Google Scholar]
- Martin, D.; Fowlkes, C.; Tal, D.; Malik, J. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Proceedings of the Eighth IEEE International Conference on Computer Vision. ICCV 2001, Vancouver, BC, Canada, 7–14 July 2001; Volume 2, pp. 416–423. [Google Scholar]
- Huang, J.B.; Singh, A.; Ahuja, N. Single image super-resolution from transformed self-exemplars. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 5197–5206. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Lai, W.S.; Huang, J.B.; Ahuja, N.; Yang, M.H. Deep laplacian pyramid networks for fast and accurate super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 624–632. [Google Scholar]
- Tai, Y.; Yang, J.; Liu, X.; Xu, C. Memnet: A persistent memory network for image restoration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 4539–4547. [Google Scholar]
- Luo, X.; Xie, Y.; Zhang, Y.; Qu, Y.; Li, C.; Fu, Y. LatticeNet: Towards Lightweight Image Super-Resolution with Lattice Block. In Computer Vision—ECCV 2020; Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 272–289. [Google Scholar]
Symbols | Description |
---|---|
The extracted primary features | |
LR images | |
Function of FEM | |
Convolution layer | |
Function of k-th LRM | |
Output of k-th LRM | |
Concatenation operation in channel-wise | |
convolution layer | |
Fused features | |
Function of reconstruction block | |
Bicubic interpolation | |
Function of proposed EFGN | |
SR image | |
HR image | |
Input of k-th LRM | |
s-th EFGB of first SIRU in the k-th LRM | |
convolution layer in k-th LRM | |
Refined features of s-th EFGB of first SIRU in the k-th LRM |
EFGN_S | EFGN_B | EFGN_L | |
---|---|---|---|
Parameters | 464 K | 960 K | 1603 K |
PSNR | 32.00 | 32.13 | 32.18 |
Model | SIRU | EFGB | Parameters | PSNR |
---|---|---|---|---|
EFGN_NS | w/o | w/ | 1303 K | 32.08 |
EFGN_NE | w/ | w/o | 887 K | 31.98 |
EFGN | w/ | w/ | 960 K | 32.13 |
Method | Scale | Params | MAC | Set5 PSNR/SSIM | Set14 PSNR/SSIM | B100 PSNR/SSIM | Urban100 PSNR/SSIM |
---|---|---|---|---|---|---|---|
Bicubic | 2 | - | - | 33.65/0.9299 | 30.34/0.8688 | 29.56/0.8431 | 26.88/0.8403 |
SRCNN [8] | 2 | 57 K | 52.7 G | 36.66/0.9542 | 32.45/0.9067 | 31.36/0.8879 | 29.50/0.8946 |
FSRCNN [18] | 2 | 12 K | 6.0 G | 37.00/0.9558 | 32.63/0.9088 | 31.53/0.8920 | 29.88/0.9020 |
VDSR [9] | 2 | 665 K | 612.6 G | 37.53/0.9587 | 33.03/0.9124 | 31.90/0.8960 | 30.76/0.9140 |
DRCN [13] | 2 | 1774 K | 17,974.3 G | 37.63/0.9588 | 33.04/0.9118 | 31.85/0.8942 | 30.75/0.9133 |
LapSRN [35] | 2 | 813 K | 29.9 G | 37.52/0.9591 | 32.99/0.9124 | 31.80/0.8952 | 30.41/0.9103 |
DRRN [14] | 2 | 297 K | 6796.9 G | 37.74/0.9591 | 33.23/0.9136 | 32.05/0.8973 | 31.23/0.9188 |
MemNet [36] | 2 | 677 K | 2662.4 G | 37.78/0.9597 | 33.28/0.9142 | 32.08/0.8978 | 31.31/0.9195 |
IDN 1 [21] | 2 | 579 K | 124.6 G | 37.85/0.9598 | 33.58/0.9178 | 32.11/0.8989 | 31.95/0.9266 |
CARN [22] | 2 | 1592 K | 222.8 G | 37.76/0.9590 | 33.52/0.9166 | 32.09/0.8978 | 31.92/0.9256 |
EFGN(Ours) | 2 | 939 K | 216 G | 38.01/0.9604 | 33.59/0.9172 | 32.17/0.8995 | 32.03/0.9275 |
Bicubic | 3 | - | - | 30.39/0.8682 | 27.55/0.7742 | 27.21/0.7385 | 24.46/0.7349 |
SRCNN [8] | 3 | 57 K | 52.7 G | 32.75/0.9090 | 29.30/0.8215 | 28.41/0.7863 | 26.24/0.7989 |
FSRCNN [18] | 3 | 12 K | 5.0 G | 33.18/0.9140 | 29.37/0.8240 | 28.53/0.7910 | 26.43/0.8080 |
VDSR [9] | 3 | 665 K | 612.6 G | 33.66/0.9213 | 29.77/0.8314 | 28.82/ 0.7976 | 27.14/0.8279 |
DRCN [13] | 3 | 1774 K | 17,974.3 G | 33.82/0.9226 | 29.76/0.8311 | 28.80/0.7963 | 27.15/0.8276 |
DRRN [14] | 3 | 297 K | 6796.9 G | 34.03/0.9244 | 29.96/0.8349 | 28.95/0.8004 | 27.53/0.8378 |
MemNet [36] | 3 | 677 K | 2662.4 G | 34.09/0.9248 | 30.00/0.8350 | 28.96/0.8001 | 27.56/0.8376 |
IDN 1 [21] | 3 | 588 K | 56.3 G | 34.24/0.9260 | 30.27/0.8408 | 29.03/0.8038 | 27.99/0.8489 |
CARN [22] | 3 | 1592 K | 118.8 G | 34.29/0.9255 | 30.29/0.8407 | 29.06/0.8034 | 27.38/0.8404 |
EFGN(Ours) | 3 | 948 K | 96.7 G | 34.36/0.9268 | 30.28/0.8411 | 29.08/0.8048 | 28.10/0.8514 |
Bicubic | 4 | - | - | 28.42/0.8104 | 26.00/0.7027 | 25.96/0.6675 | 23.14/0.6577 |
SRCNN [8] | 4 | 57 K | 52.7 G | 30.48/0.8628 | 27.50/0.7513 | 26.90/0.7101 | 24.52/0.7221 |
FSRCNN [18] | 4 | 12 K | 4.6 G | 30.71/0.8657 | 27.59/0.7535 | 26.98/0.7150 | 24.62/0.7280 |
VDSR [9] | 4 | 665 K | 612.6 G | 31.35/0.8838 | 28.01/0.7674 | 27.29/0.7251 | 25.18/0.7524 |
DRCN [13] | 4 | 1774 K | 17,974.3 G | 31.53/0.8854 | 28.02/0.7670 | 27.23/0.7233 | 25.14/0.7510 |
LapSRN [35] | 4 | 813 K | 149.4 G | 31.54/0.8852 | 28.09/0.7700 | 27.32/0.7275 | 25.21/0.7562 |
DRRN [14] | 4 | 297 K | 6796.9 G | 31.68/0.8888 | 28.21/0.7720 | 27.38/0.7284 | 25.44/0.7638 |
MemNet [36] | 4 | 677 K | 2662.4 G | 31.74/0.8893 | 28.26/0.7723 | 27.40/0.7281 | 25.50/0.7630 |
IDN 1 [21] | 4 | 600 K | 32.3 G | 31.99/0.8928 | 28.52/0.7794 | 27.52/0.7339 | 25.92/0.7801 |
CARN [22] | 4 | 1592 K | 90.9 G | 32.13/0.8937 | 28.60/0.7806 | 27.58/0.7349 | 26.07/0.7837 |
EFGN(Ours) | 4 | 960 K | 55.2 G | 32.13/0.8945 | 28.57/0.7810 | 27.57/0.7357 | 26.03/0.7846 |
Metric | Bicubic | RCAN [11] | EFGN | Baseline |
---|---|---|---|---|
Top-1 error | 0.366 | 0.344 | 0.304 | 0.238 |
Top-5 error | 0.143 | 0.136 | 0.098 | 0.066 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Q.; Liu, F.; Xiao, L.; Liu, Z.; Yang, X. Real-Time Environment Monitoring Using a Lightweight Image Super-Resolution Network. Int. J. Environ. Res. Public Health 2021, 18, 5890. https://doi.org/10.3390/ijerph18115890
Yu Q, Liu F, Xiao L, Liu Z, Yang X. Real-Time Environment Monitoring Using a Lightweight Image Super-Resolution Network. International Journal of Environmental Research and Public Health. 2021; 18(11):5890. https://doi.org/10.3390/ijerph18115890
Chicago/Turabian StyleYu, Qiang, Feiqiang Liu, Long Xiao, Zitao Liu, and Xiaomin Yang. 2021. "Real-Time Environment Monitoring Using a Lightweight Image Super-Resolution Network" International Journal of Environmental Research and Public Health 18, no. 11: 5890. https://doi.org/10.3390/ijerph18115890
APA StyleYu, Q., Liu, F., Xiao, L., Liu, Z., & Yang, X. (2021). Real-Time Environment Monitoring Using a Lightweight Image Super-Resolution Network. International Journal of Environmental Research and Public Health, 18(11), 5890. https://doi.org/10.3390/ijerph18115890