Exploration of Potential Genetic Biomarkers for Heart Failure: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Data Extraction
2.4. Quality Assessment
3. Results
3.1. Search Results
3.2. Quality of Included Studies
3.3. Characteristics of Included Studies
3.4. Reported Genetic Modifications in HF
3.4.1. Transcriptome
3.4.2. LncRNA
3.4.3. SNPs
3.4.4. miRNA
3.4.5. DNA Methylation
3.4.6. circRNA
4. Discussion
5. Limitations
6. Future Perspectives on Biomarker Research
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Dokainish, H.; Teo, K.; Zhu, J.; Roy, A.; AlHabib, K.F.; ElSayed, A.; Palileo-Villaneuva, L.; Lopez-Jaramillo, P.; Karaye, K.; Yusoff, K.; et al. Heart Failure in Africa, Asia, the Middle East and South America: The INTER-CHF study. Int. J. Cardiol. 2016, 204, 133–141. [Google Scholar] [CrossRef]
- Ramani, G.V.; Uber, P.A.; Mehra, M.R. Chronic Heart Failure: Contemporary Diagnosis and Management. Mayo Clin. Proc. 2010, 85, 180–195. [Google Scholar] [CrossRef] [Green Version]
- de Freitas, E.V.; Batlouni, M.; Gamarsky, R. Heart failure in the elderly. J. Geriatr. Cardiol. 2012, 9, 101–107. [Google Scholar] [PubMed]
- Mant, J.; Doust, J.; Roalfe, A.; Barton, P.; Cowie, M.R.; Glasziou, P.; Mant, D.; McManus, R.J.; Holder, R.; Deeks, J.; et al. Systematic review and individual patient data meta-analysis of diagnosis of heart failure, with modelling of implications of different diagnostic strategies in primary care. Health Technol. Assess. 2009, 13, 1–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Goode, K.M.; Cuddihy, P.E.; Cleland, J.G.; on behalf of the TEN-HMS. Investigators Predicting hospitalization due to worsening heart failure using daily weight measurement: Analysis of the Trans-European Network-Home-Care Management System (TEN-HMS) study. Eur. J. Heart Fail 2009, 11, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.M.; Wang, L.; Chau, E.; Chan, R.H.; Kong, S.L.; Tang, M.O. Intrathoracic impedance monitoring in patients with heart failure: Correlation with fluid status and feasibility of early warning preceding hospitalization. Circulation 2005, 112, 841–848. [Google Scholar] [CrossRef] [Green Version]
- Paul, S.; Harshaw-Ellis, K. Evolving Use of Biomarkers in the Management of Heart Failure. Cardiol. Rev. 2019, 27, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Squire, I.B. Biomarkers and prognostication in heart failure with reduced and preserved ejection fraction: Similar but different? Eur. J. Heart Fail 2017, 19, 1648–1650. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.W.H.; Law, B.M.H.; So, W.K.W.; Chow, K.M.; Waye, M.M.Y. Novel Strategies on Personalized Medicine for Breast Cancer Treatment: An Update. Int. J. Mol. Sci. 2017, 18, 2423. [Google Scholar] [CrossRef] [Green Version]
- Mayeux, R. Biomarkers: Potential uses and limitations. NeuroRx 2004, 1, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Kontou, P.; Pavlopoulou, A.; Braliou, G.; Bogiatzi, S.; Dimou, N.; Bangalore, S.; Bagos, P. Identification of gene expression profiles in myocardial infarctioin: A systemic review and meta-analysis. BMC Med. Genom. 2018, 11, 109. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Sharp, S.J.; Poulaliou, M.; Thompson, S.G.; White, I.R.; Wood, A.M. A Review of Published Analyses of Case-Cohort Studies and Recommendations for Future Reporting. PLoS ONE 2014, 9, e101176. [Google Scholar] [CrossRef]
- Chen, F.; Yang, J.; Li, Y.; Wang, H. Circulating microRNAs as novel biomarkers for heart failure. Hell. J. Cardiol. 2018, 59, 209–214. [Google Scholar] [CrossRef]
- Chen, C.; Shen, H.; Huang, Q.; Li, Q. The Circular RNA CDR1as Regulates the Proliferation and Apoptosis of Human Car-diomyocytes Through the miR-135a/HMOX1 and miR-135b/HMOX1 Axes. Genet. Test Mol. Biomark. 2020, 24, 537–548. [Google Scholar] [CrossRef]
- Ding, H.; Wang, Y.; Hu, L.; Xue, S.; Wang, Y.; Zhang, L.; Zhang, Y.; Qi, H.; Yu, H.; Aung, L.H.H.; et al. Combined detection of miR-21-5p, miR-30a-3p, miR-30a-5p, miR-155-5p, miR-216a and miR-217 for screening of early heart failure diseases. Biosci. Rep. 2020, 40, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Zhang, L.; Hu, L.; Yu, H.; Xu, F.; Yang, B.; Zhang, R.; Zhang, Y.; An, Y. Circular RNA-Expression Profiling Reveals a Po-tential Role of Hsa_circ_0097435 in Heart Failure via Sponging Multiple MicroRNAs. Front. Genet. 2020, 11, 212. [Google Scholar] [CrossRef]
- He, G.-H.; Cai, W.-K.; Meng, J.-R.; Ma, X.; Zhang, F.; Lyu, J.; Xu, G.-L. Relation of Polymorphism of the Histidine Decarboxylase Gene to Chronic Heart Failure in Han Chinese. Am. J. Cardiol. 2015, 115, 1555–1562. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Chen, Y. Vitamin D levels and vitamin D receptor variants are associated with chronic heart failure in Chinese patients. J. Clin. Lab. Anal. 2019, 33, e22847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, H.; Li, Y.; He, G.; Wang, Y.; Zhai, Y.; Xie, J.; Zhang, W.; Dong, Y.; Lu, J. The Adenosine Deaminase Gene Polymorphism Is As-sociated with Chronic Heart Failure Risk in Chinese. Int. J. Mol. Sci. 2014, 15, 15259–15271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, G.; Cai, W.; Zhang, J.; Ma, C.; Yan, F.; Lu, J.; Xu, G. Associations of Polymorphisms in HRH2, HRH3, DAO, and HNMT Genes with Risk of Chronic Heart Failure. Biomed. Res. Intl. 2016, 2016, 1208476. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Ji, J.; Wang, T.; Wang, M.-B.; Chen, X.-L. Upregulation of Circulating miR-195-3p in Heart Failure. Cardiology 2017, 138, 107–114. [Google Scholar] [CrossRef]
- Hua, X.; Wang, Y.-Y.; Jia, P.; Xiong, Q.; Hu, Y.; Chang, Y.; Lai, S.; Xu, Y.; Zhao, Z.; Song, J. Multi-level transcriptome sequencing identifies COL1A1 as a candidate marker in human heart failure progression. BMC Med. 2020, 18, 1–16. [Google Scholar] [CrossRef]
- Li, H.; Fan, J.; Yin, Z.; Wang, F.; Chen, C.; Wang, D.W. Identification of cardiac-related circulating microRNA profile in human chronic heart failure. Oncotarget 2015, 7, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Feng, Z.-H.; Sun, H.; Zhao, Z.-H.; Yang, S.-B.; Yang, P. The blood genome-wide DNA methylation analysis reveals novel epigenetic changes in human heart failure. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 1828–1836. [Google Scholar] [CrossRef]
- Sandip, C.; Tan, L.; Huang, J.; Li, Q.; Ni, L.; Cianflone, K.; Wang, D.W. Common variants in IL-17A/IL-17RA axis contribute to pre-disposition to and progression of congestive heart failure. Medicine 2016, 95, e4105. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Jiang, X.; Lv, Y.; Liang, X.; Zhao, B.; Bian, W.; Zhang, D.; Jiang, J.; Zhang, C. Circular RNA Expression Profiles in Plasma from Patients with Heart Failure Related to Platelet Activity. Biomolecules 2020, 10, 187. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, Y.; An, T.; Zhang, R.; Zhao, X.; Liu, N.; Yin, S.; Gan, T.; Liang, T.; Huang, Y.; et al. ErbB4 Gene Poly-mor-phism Is Associated With the Risk and Prognosis of Congestive Heart Failure in a Northern Han Chinese Population. J. Card. Fail 2016, 22, 700–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.; Zheng, X.; Zheng, Y.; Cao, R.; Zhang, M.; Sun, Y.; Wu, J. Construction and analysis of the lncRNA-miRNA-mRNA network based on competitive endogenous RNA reveals functional genes in heart failure. Mol. Med. Rep. 2019, 19, 994–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, T.; Chen, Y.; Du, Y.; Tao, J.; Li, W.; Zhou, Z.; Yang, Z. Circulating exosomal miR-92b-5p is a promising diagnostic biomarker of heart failure with reduced ejection fraction patients hospitalized for acute heart failure. J. Thorac. Dis. 2018, 10, 6211–6220. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, Y.; Cai, R.; He, S.; Dai, R.; Yang, X.; Kong, B.; Qin, Z.; Su, Q. Long non-coding RNA CASC7 is associated with the pathogenesis of heart failure via modulating the expression of miR-30c. J. Cell. Mol. Med. 2020, 24, 11500–11511. [Google Scholar] [CrossRef]
- Yan, Y.; Song, D.; Zhang, X.; Hui, G.; Wang, J. GEO Data Sets Analysis Identifies COX-2 and Its Related Micro RNAs as Bi-omarkers for Non-Ischemic Heart Failure. Front. Pharmacol. 2020, 11, 1155. [Google Scholar] [CrossRef]
- Zhang, G.; Dou, L.; Chen, Y. Association of long-chain non-coding RNA MHRT gene single nucleotide polymorphism with risk and prognosis of chronic heart failure. Medicine 2020, 99, e19703. [Google Scholar] [CrossRef]
- Zhang, S.; Jin, R.; Li, B. Serum NT-proBNP and TUG1 as novel biomarkers for elderly hypertensive patients with heart failure with preserved ejection fraction. Exp. Ther. Med. 2021, 21, 446. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, Y.; Cui, X.; Jiang, H.; Luo, W.; Weng, X.; Wang, Y.; Zhao, Y.; Sun, A.; Ge, J. Alteration of m6A RNA Methylation in Heart Failure with Preserved Ejection Fraction. Front. Cardiovasc. Med. 2021, 8. [Google Scholar] [CrossRef]
- Zheng, M.; Zhao, L.; Yang, X. Expression Profiles of Long Noncoding RNA and mRNA in Epicardial Adipose Tissue in Pa-tients with Heart Failure. Biomed. Res. Int. 2019, 2019, 3945475. [Google Scholar] [CrossRef] [PubMed]
- Akat, K.M.; Moore-McGriff, D.; Morozov, P.; Brown, M.; Gogakos, T.; Correa, D.R.J.; Mihailovic, A.; Sauer, J.R.; Rama, A.; Totary-Jain, H.; et al. Comparative RNA-sequencing analysis of myocardial and cir-culating small RNAs in human heart failure and their utility as biomarkers. Proc. Natl. Acad. Sci. USA 2014, 111, 11151–11156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beg, F.; Wang, R.; Saeed, Z.; Devaraj, S.; Masoor, K.; Nakshatri, H. Inflammation-associated microRNA changes in circulating exosomes of heart failure patients. BMC Res. Notes 2017, 10, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Cappola, T.P.; Li, M.; He, J.; Ky, B.; Gilmore, J.; Qu, L.; Keating, B.; Reilly, M.; Kim, C.E.; Glessner, J.; et al. Common Variants in HSPB7 and FRMD4B Associated with Advanced Heart Failure. Circ. Cardiovasc. Genet. 2010, 3, 147–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cappola, T.P.; Matkovich, S.J.; Wang, W.; van Booven, D.; Li, M.; Wang, X.; Qu, L.; Sweitzer, N.K.; Fang, J.C.; Reilly, M.P.; et al. Loss-of-function DNA sequence variant in the CLCNKA chloride channel implicates the cardio-renal axis in interindividual heart failure risk variation. Proc. Natl. Acad. Sci. USA 2011, 108, 2456–2461. [Google Scholar] [CrossRef] [Green Version]
- di Salvo, T.G.; Yang, K.C.; Brittain, E.; Absi, T.; Maltais, S.; Hemnes, A. Right ventricular myocardial biomarkers in human heart failure. J. Card. Fail 2015, 21, 398–411. [Google Scholar] [CrossRef]
- Kao, D.P.; Stevens, L.M.; Hinterberg, M.A.; Görg, C. Phenotype-Specific Association of Single-Nucleotide Polymorphisms with Heart Failure and Preserved Ejection Fraction: A Genome-Wide Association Analysis of the Cardiovascular Health Study. J. Cardiovasc. Transl. Res. 2017, 10, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Parsa, A.; Chang, Y.-P.C.; Kelly, R.J.; Corretti, M.C.; Ryan, K.A.; Robinson, S.W.; Gottlieb, S.S.; Kardia, S.L.; Shuldiner, A.R.; Liggett, S.B. Hypertrophy-Associated Polymorphisms Ascertained in a Founder Cohort Applied to Heart Failure Risk and Mortality. Clin. Transl. Sci. 2011, 4, 17–23. [Google Scholar] [CrossRef]
- Ramachandran, S.; Lowenthal, A.; Ritner, C.; Lowenthal, S.; Bernstein, H.S. Plasma microvesicle analysis identifies microRNA 129-5p as a biomarker of heart failure in univentricular heart disease. PLoS ONE 2017, 12, e0183624. [Google Scholar] [CrossRef] [PubMed]
- Schneider, B.P.; Shen, F.; Gardner, L.; Radovich, M.; Li, L.; Miller, K.D.; Jiang, G.; Lai, D.; O’Neill, A.; Sparano, J.A.; et al. Genome-Wide Association Study for An-thracycline-Induced Congestive Heart Failure. Clin. Cancer Res. 2017, 23, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Tzimas, C.; Rau, C.D.; Buergisser, P.E.; Jean-Louis, G.; Lee, K.; Chukwuneke, J.; Dun, W.; Wang, Y.; Tsai, E.J. WIPI1 is a conserved mediator of right ventricular failure. JCI Insight 2019, 4. [Google Scholar] [CrossRef] [Green Version]
- Hedayat, M.; Mahmoudi, M.J.; Taghvaei, M.; Nematipour, E.; Farhadi, E.; Esfahanian, N.; Mahmoudi, M.; Sadr, M.; Nourijelyani, K.; Amirzargar, A.A.; et al. Tumor Necrosis Factor-Alpha and Interleukin-6 Gene Polymorphisms in Iranian Patients with Ischemic Heart Failure. Avicenna J. Med. Biotechnol. 2018, 10, 105–109. [Google Scholar] [PubMed]
- Mahmoudi, M.J.; Hedayat, M.; Taghvaei, M.; Nematipour, E.; Farhadi, E.; Esfahanian, N.; Sadr, M.; Mahmoudi, M.; Nourijelyani, K.; Amirzargar, A.A.; et al. Association of interleukin-4 gene polymorphisms with ischemic heart failure. Cardiol. J. 2014, 21, 24–28. [Google Scholar] [CrossRef] [Green Version]
- Mahmoudi, M.J.; Taghvaei, M.; Harsini, S.; Amirzargar, A.A.; Hedayat, M.; Mahmoudi, M.; Nematipour, E.; Farhadi, E.; Esfahanian, N.; Sadr, M.; et al. Association of interleukin 1 gene cluster and interleukin 1 receptor gene polymor-phisms with ischemic heart failure. Bratisl. Lek. Listy 2016, 117, 367–370. [Google Scholar]
- Mahmoudi, M.J.; Harsini, S.; Farhadi, E.; Hedayat, M.; Taghvaei, M.; Mahmoudi, M.; Sadr, M.; Esfahanian, N.; Nematipour, E.; Nouri-jelyani, K.; et al. Interleukin-2 and Interferon-Gamma Single Nucleotide Polymorphisms in Iranian Pa-tients with Chronic Heart Failure. Avicenna J. Med. Biotechnol. 2018, 10, 173–177. [Google Scholar] [PubMed]
- Mahmoudi, M.J.; Hedayat, M.; Taghvaei, M.; Harsini, S.; Nematipour, E.; Rezaei, N.; Farhadi, E.; Mahmoudi, M.; Sadr, M.; Esfahanian, N.; et al. Interleukin-10 and Transforming Growth Factor Beta1 Gene Polymorphisms in Chronic Heart Failure. Acta Bio Medica Atenei Parm. 2019, 90, 221–227. [Google Scholar]
- Fatini, C.; Sticchi, E.; Marcucci, R.; Verdiani, V.; Nozzoli, C.; Vassallo, C.; Emdin, M.; Abbate, R.; Gensini, G.F. S38G single-nucleotide polymorphism at the KCNE1 locus is associated with heart failure. Heart Rhythm. 2010, 7, 363–367. [Google Scholar] [CrossRef] [Green Version]
- Greco, S.; Zaccagnini, G.; Perfetti, A.; Fuschi, P.; Valaperta, R.; Voellenkle, C.; Castelvecchio, S.; Gaetano, C.; Finato, N.; Beltrami, A.P.; et al. Long noncoding RNA dysregulation in ischemic heart failure. J. Transl. Med. 2016, 14, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiano, C.; Costa, V.; Aprile, M.; Grimaldi, V.; Maiello, C.; Esposito, R.; Soricelli, A.; Colantuoni, V.; Donatelli, F.; Ciccodicola, A.; et al. Heart failure: Pilot transcriptomic analysis of cardiac tissue by RNA-sequencing. Cardiol. J. 2017, 24, 539–553. [Google Scholar] [CrossRef] [Green Version]
- Scrutinio, D.; Conserva, F.; Passantino, A.; Iacoviello, M.; Lagioia, R.; Gesualdo, L. Circulating microRNA-150-5p as a novel bi-omarker for advanced heart failure: A genome-wide prospective study. J. Heart. Lung. Transplant. 2017, 36, 616–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ovchinnikova, E.S.; Schmitter, D.; Vegter, E.L.; Ter Maaten, J.M.; Valente, M.A.; Liu, L.C.; Van Der Harst, P.; Pinto, Y.M.; De Boer, R.A.; Meyer, S.; et al. Signature of circulating microRNAs in patients with acute heart failure. Eur. J. Heart Fail 2015, 18, 414–423. [Google Scholar] [CrossRef]
- Tijsen, A.J.; Creemers, E.E.; Moerland, P.D.; De Windt, L.J.; Van Der Wal, A.C.; Kok, W.E.; Pinto, Y.M. MiR423-5p As a Circulating Biomarker for Heart Failure. Circ. Res. 2010, 106, 1035–1039. [Google Scholar] [CrossRef]
- Vegter, E.L.; Schmitter, D.; Hagemeijer, Y.; Ovchinnikova, E.S.; van der Harst, P.; Teerlink, J.R.; O’Connor, C.M.; Metra, M.; Davison, B.A.; Bloomfield, D.; et al. Use of biomarkers to establish potential role and function of circulating microRNAs in acute heart failure. Int. J. Cardiol. 2016, 224, 231–239. [Google Scholar] [CrossRef] [Green Version]
- Boeckel, J.-N.; Perret, M.F.; Glaser, S.F.; Seeger, T.; Heumüller, A.W.; Chen, W.; John, D.; Kokot, K.E.; Katus, H.A.; Haas, J.; et al. Identification and regulation of the long non-coding RNA Heat2 in heart failure. J. Mol. Cell. Cardiol. 2019, 126, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Meder, B.; Haas, J.; Sedaghat-Hamedani, F.; Kayvanpour, E.; Frese, K.; Lai, A.; Nietsch, R.; Scheiner, C.; Mester, S.; Bordalo, D.M.; et al. Epigenome-Wide Association Study Identifies Cardiac Gene Patterning and a Novel Class of Biomarkers for Heart Failure. Circulation 2017, 136, 1528–1544. [Google Scholar] [CrossRef]
- Thum, T.; Galuppo, P.; Wolf, C.; Fiedler, J.; Kneitz, S.; van Laake, L.W.; Doevendans, P.A.; Mummery, C.L.; Borlak, J.; Haverich, A.; et al. MicroRNAs in the human heart: A clue to fetal gene reprogramming in heart failure. Circulation 2007, 116, 258–267. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.K.; Tsai, C.T.; Chang, Y.C.; Luo, J.L.; Wang, Y.C.; Hwang, J.J.; Lin, J.L.; Tseng, C.D.; Chiang, F.T. Genetic polymorphisms of the angi-otensin II type 1 receptor gene and diastolic heart failure. J. Hypertens. 2009, 27, 502–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.-K.; Huang, Y.-T.; Lee, J.-K.; Chiang, L.-T.; Chiang, F.-T.; Huang, S.-W.; Lin, J.-L.; Tseng, C.-D.; Chen, Y.-H.; Tsai, C.-T. Cardiac Myosin Binding Protein C and MAP-Kinase Activating Death Domain-Containing Gene Polymorphisms and Diastolic Heart Failure. PLoS ONE 2012, 7, e35242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bain, C.R.; Ziemann, M.; Kaspi, A.; Khan, A.W.; Taylor, R.; Trahair, H.; Khurana, I.; Kaipananickal, H.; Wallace, S.; El-Osta, A.; et al. DNA methylation patterns from peripheral blood separate coronary artery disease patients with and without heart failure. ESC Heart Fail 2020, 7, 2468–2478. [Google Scholar] [CrossRef] [PubMed]
- Marques, F.Z.; Vizi, D.; Khammy, O.; Mariani, J.A.; Kaye, D.M. The transcardiac gradient of cardio-microRNAs in the failing heart. Eur. J. Heart Fail 2016, 18, 1000–1008. [Google Scholar] [CrossRef] [Green Version]
- Ellis, K.L.; Cameron, V.A.; Troughton, R.W.; Frampton, C.M.; Ellmers, L.J.; Richards, A.M. Circulating microRNAs as candidate markers to distinguish heart failure in breathless patients. Eur. J. Heart Fail 2013, 15, 1138–1147. [Google Scholar] [CrossRef] [Green Version]
- El-Mahdy, R.; Saleem, T.H.; Essam, O.M.; Algowhary, M. Functional variants in the promoter region of macrophage migration inhibitory factor rs755622 gene (MIF G173C) among patients with heart failure: Association with echocardiographic in-dices and disease severity. Heart Lung. 2021, 50, 92–100. [Google Scholar] [CrossRef]
- Fukushima, Y.; Nakanishi, M.; Nonogi, H.; Goto, Y.; Iwai, N. Assessment of Plasma miRNAs in Congestive Heart Failure. Circ. J. 2011, 75, 336–340. [Google Scholar] [CrossRef] [Green Version]
- Bienertová-Vašků, J.A.; Spinarová, L.; Bienert, P.; Vašků, A. Association between variants in the genes for leptin, leptin receptor, and proopiomelanocortin with chronic heart failure in the Czech population. Heart Vessel. 2009, 24, 131–137. [Google Scholar] [CrossRef]
- Glezeva, N.; Moran, B.; Collier, P.; Moravec, C.S.; Phelan, D.; Donnellan, E.; Russell-Hallinan, A.; O’Connor, D.P.; Gallagher, W.M.; Gallagher, J.; et al. Targeted DNA Methylation Profiling of Human Cardiac Tissue Reveals Novel Epigenetic Traits and Gene Deregulation Across Different Heart Failure Patient Subtypes. Circ. Heart Fail 2019, 12, e005765. [Google Scholar] [CrossRef] [Green Version]
- Lai, K.-B.; Sanderson, J.E.; Izzat, M.B.; Yu, C.-M. Micro-RNA and mRNA myocardial tissue expression in biopsy specimen from patients with heart failure. Int. J. Cardiol. 2015, 199, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Henry, A.; Roselli, C.; Lin, H.; Sveinbjörnsson, G.; Fatemifar, G.; Hedman, A.K.; Wilk, J.B.; Morley, M.P.; Chaffin, M.D.; et al. Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure. Nat. Commun. 2020, 11, 163. [Google Scholar] [CrossRef] [PubMed]
- Wong, L.L.; Armugam, A.; Sepramaniam, S.; Karolina, D.S.; Lim, K.Y.; Lim, J.Y.; Chong, J.P.; Ng, J.Y.; Chen, Y.T.; Chan, M.M.; et al. Cir-culating microRNAs in heart failure with reduced and preserved left ventricular ejection fraction. Eur. J. Heart Fail 2015, 17, 393–404. [Google Scholar] [CrossRef]
- Zakrzewski-Jakubiak, M.; De Denus, S.; Dubé, M.-P.; Bélanger, F.; White, M.; Turgeon, J. Ten renin-angiotensin system-related gene polymorphisms in maximally treated Canadian Caucasian patients with heart failure. Br. J. Clin. Pharmacol. 2008, 65, 742–751. [Google Scholar] [CrossRef] [Green Version]
- Hulka, B.S. Overview of biological markers. In Biological Markers in Epidemiology; Hulka, B.S., Griffith, J.D., Wilcosky, T.C., Eds.; Oxford University Press: New York, NY, USA, 1990; pp. 3–15. [Google Scholar]
- Strimbu, K.; Tavel, J.A. What are biomarkers? Curr. Opin. HIV AIDS 2010, 5, 463–466. [Google Scholar] [CrossRef]
- Ibrahim, N.E.; Januzzi, J.L. Established and Emerging Roles of Biomarkers in Heart Failure. Circ. Res. 2018, 123, 614–629. [Google Scholar] [CrossRef]
- Basu, M.; Wang, K.; Ruppin, E.; Hannenhalli, S. Predicting tissue-specific gene expression from whole blood transcriptome. Sci. Adv. 2021, 7, eabd6991. [Google Scholar] [CrossRef] [PubMed]
“Heart Failure” |
---|
AND |
“transcriptome” OR “microRNA” OR “miRNA” OR “circular RNA” OR “epigenetic” OR “long noncoding RNA” OR “long non-coding RNA” OR “single nucleotide polymorphisms” OR “genome wide association studies” OR “GWAS” OR “polygenic risk score” OR “variants” |
AND |
“population” OR “cohort” OR “human” OR “patients” OR “cases” OR “subjects” OR “participants” |
AND |
“correlated” OR “correlation” OR “correlations” OR “associated” OR “association” OR “associations” OR “allele frequencies” OR “genotype frequencies” OR “differentially expressed” OR “upregulated” OR “downregulated” |
AND |
“genes” OR “gene” OR “biomarkers” OR “transcripts” OR “RNA” |
Biomarkers | Number of Samples | Ethnic Group | Risk of HF/Clinical Outcome (Sensitivity, Specificity) | Tissues Used | References |
---|---|---|---|---|---|
Gene (SNP) | |||||
HDC (rs17740607) | 1771 | Chinese | CHF predisposition | Peripheral blood | [18] |
VDR | 235 | Chinese | CHF predisposition | Peripheral blood | [19] |
ADA (rs452159) | 700 | Chinese | CHF predisposition | Peripheral blood | [20] |
HRH3 (rs3787429) | 687 | Chinese | HF prognosis | Peripheral blood | [21] |
IL-17A (rs8193037) IL-17RA (rs4819554) | >1000 | Chinese | HF prognosis and mortality | Peripheral blood | [26] |
ErbB4 (rs1300941) | >1000 | Chinese | HF prognosis and cardiovascular death | Peripheral blood | [28] |
MHRT (rs7140721) (rs3729829) (rs3729825) | 480 | Chinese | HF predisposition and prognosis | Peripheral blood | [33] |
HSPB7 (rs1739843), FRMD4B (6787362) | 4789 | American | HF predisposition | Peripheral blood | [39] |
CLCNKA (rs10927887) | 5459 | American | HF predisposition | Peripheral blood | [40] |
TGFBR3 (rs6996224) | 3038 | American | HFpEF predisposition | Peripheral blood | [42] |
Chromosome 20p 12 (rs2207418) | 2073 | American | HF predisposition and mortality | Peripheral blood | [43] |
Chromosome 15 (rs28714259) | 2307 | American | HF predisposition | Peripheral blood | [45] |
TNF-α(−238) | 193 | Iranian | HF predisposition | Peripheral blood | [47] |
IL-4 (−590), IL-4 (−33), IL-4 (−1098) | 182 | Iranian | HF predisposition | Peripheral blood | [48] |
IL-1β (−511) | 183 | Iranian | HF predisposition | Peripheral blood | [49] |
IL-2 (−330, +166) | 195 | Iranian | HF predisposition | Peripheral blood | [50] |
IL-10 (−1082, −819, −592), TGF-β1 (codon 10, codon 25) | 197 | Iranian | CHF predisposition | Peripheral blood | [51] |
KCNE1 (S38G) | 933 | Italian | HF predisposition | Peripheral blood | [52] |
AGTR1 (rs16860760) (rs389566) (rs5186) | 352 | Taiwanese | Diastolic HF prognosis | Peripheral blood | [62] |
MYBPC3 (rs2290149) | 352 | Taiwanese | Diastolic HF predisposition | Peripheral blood | [63] |
MIF G173C (rs755622) | 150 | Egyptian | HF predisposition | Peripheral blood | [67] |
LEP (Gln223Arg) | 779 | Czech | HF predisposition | Peripheral blood | [69] |
Chr 1 (rs660240), chr 4 (rs17042102), chr 5 (rs11745324), chr 6 (rs4135240, rs55730499, rs140570886), chr 9 (rs1556516, rs600038), chr10 (rs4746140, rs17617337), chr 12 (rs4766578), chr16 (rs56094641) | 977,323 | Global | HF predisposition | Peripheral blood | [72] |
AGT (M174, T235), ACE(D) | 169 | Canadian | HF predisposition | Peripheral blood | [74] |
Transcriptomes | |||||
COL1A1 | 169 | Chinese | HF progression and survival time | Cardiac tissue and peripheral blood | [23] |
GAS5, TUG1, and Hotair | 20 | Chinese | HF predisposition | Peripheral blood | [29] |
UNC93B1 | 10 | Chinese | HF prognosis | Epicardial adipose tissue | [36] |
STEAP4, SPARCL1, VSIG4 | 27 | Not mentioned | Prognosis of HF with right ventricular dysfunction | Right ventricular cardiac tissue | [41] |
WIPI1 | 15 | American | Discriminate HF with right ventricular dysfunction from healthy controls | Cardiac tissue | [46] |
SLC8A1, CHRNE, HCN2, BDKRB2, CACNA1G | 8 | Italian | Discriminate HF with left ventricular dysfunction from healthy controls | Left ventricular cardiac tissue | [54] |
ANP, BNP, Slc8a1, CACNB2, MHC | Not mentioned | German | HF prognosis | Cardiac tissue | [61] |
casp3, coll I, coll III, and TGF | 34 | Chinese | HF predisposition | Peripheral blood | [71] |
miRNA | |||||
miR-3135b, miR-3908, miR-5571-5p | 69 | Chinese | HF predisposition and discriminate HFrEF and HFpEF | Peripheral blood | [14] |
CDR1as, miR-135a, miR-135b, and HMOX-1 | 60 | Chinese | HF predisposition | Peripheral blood | [15] |
miRNA-21-5p, miRNA 30a-3p, miRNA 30a-5p, miRNA 155-5p, miRNA 216a, miRNA217 | 124 | Chinese | HF predisposition | Peripheral blood | [16] |
miR-195-3p | 167 | Chinese | HF predisposition | Peripheral blood | [22] |
COL1A1 | 169 | Chinese | HF progression and survival time | Cardiac tissue and peripheral blood | [23] |
miR-660-3p, miR-665, miR-1285-3p, miR-4491 | 114 | Chinese | HF predisposition and severity | Cardiac tissue and peripheral blood | [24] |
hsa-miR-26b-5p, hsa-miR-8485, hsa-miR-940 | 20 | Chinese | HF predisposition | Peripheral blood | [29] |
miR-92b-5p | 58 | Chinese | Discriminate HFrEF from healthy controls | Peripheral blood | [30] |
miR-30c | 186 | Chinese | HF predisposition | Peripheral blood | [31] |
COX-2, miR-4649, miR-1297 | 147 | Chinese | Discriminate nonischemic HF from healthy controls | Peripheral blood | [32] |
mir-208a, mir-208b, mir499 | 171 | American | Prognosis, severity of HF, prediction after LVAD implantation | Cardiac tissue and peripheral blood | [37] |
miRNA-146a | 60 | USA | HF predisposition | Peripheral blood | [38] |
miR129-5p | 71 | American | HF predisposition and severity | Peripheral blood | [44] |
miR-150-5p | 69 | Italian | HF severity | Peripheral blood | [55] |
let-7i-5p, miR-18a-5p, miR-18b-5p, miR-223-3p, miR-301a-3p, miR-423-5p miR-652-3p | 198 | Dutch | HF predisposition and prognosis | Peripheral blood | [56] |
miR-423-5p | 113 | Dutch | HF predisposition | Peripheral blood | [57] |
miR-16-5p, miR-106a-5p, miR-223-3p, miR-652-3p, miR-199a-3p, miR-18a-5p | 124 | Not mentioned | HF prognosis | Peripheral blood | [58] |
miR-21, miR-129, miR212 | Not mentioned | German | HF prognosis | Cardiac tissue | [61] |
let-7b-5p, let-7c-5p, let-7e-5p, miR-122-5p, miR-21-5p, miR-16-5p, miR-17-5p, miR-27a-3p, miR-30a-5p, miR-30d-5p, miR-30e-5p, miR-130a-3p, miR-140-5p, miR-199a-5p, and miR-451a | 17 | Australian | HF predisposition | Aortic and coronary sinus blood | [65] |
miR_103, miR_142_3p, miR_199a_3p, miR_23a, miR_27b, miR_324_5p, miR_342_3p miR_30b | 287 | New Zealanders | HF predisposition | Peripheral blood | [66] |
miR126 | 60 | Japanese | HF predisposition and severity | Peripheral blood | [68] |
miR-1, miR-21, miR-23, miR-29, miR-130, miR-195, miR-199 | 34 | Chinese | HF predisposition | Peripheral blood | [71] |
miR-1233, miR-125a-5p, miR-183-3p, miR-190a, miR-193b-3p, miR-193b-5p, miR-211–5p, miR-494, miR-545–5p, miR-550a-5p, miR-638, miR-671-5p | 176 | Singaporeans | Distinguishing between HF and controls and between HFrEF and HFpEF | Peripheral blood | [73] |
lncRNA | |||||
COL1A1 | 169 | Chinese | HF progression and survival time | Cardiac tissue and peripheral blood | [23] |
GAS5, TUG1 and Hotair | 20 | Chinese | HF predisposition | Peripheral blood | [29] |
CASC7 | 186 | Chinese | HF predisposition | Peripheral blood | [31] |
TUG1 | 160 | Chinese | HF predisposition and severity | Peripheral blood | [34] |
ENST00000610659 | 10 | Chinese | HF prognosis | Epicardial adipose tissue | [36] |
STEAP4, SPARCL1, VSIG4 | 27 | Not mentioned | Prognosis of HF with right ventricular dysfunction | Right ventricular cardiac tissue | [41] |
CDKN2B-AS1, HOTAIR, LOC285194 | 46 | Italian | HF progression | Left ventricular cardiac tissue | [53] |
SLC8A1, CHRNE, HCN2, BDKRB2, CACNA1G | 8 | Italian | Discriminate HF with left ventricular dysfunction from healthy controls | Left ventricular cardiac tissue | [54] |
Heat2 | 139 | German | Discriminate HFrEF from healthy controls | Cardiac tissue and peripheral blood | [59] |
DNA methylation | |||||
SLC2A1, MPV17L, PLEC | 47 | Chinese | HF predisposition | Peripheral blood | [25] |
METTL3, METTL4, KIAA1429, FTO, YTHDF2 | 40 | Chinese | HF predisposition | Peripheral blood | [35] |
B9D1 | 72 | German | HF predisposition | Cardiac tissue and peripheral blood | [60] |
HDAC9 | 20 | Australian | HF predisposition | Peripheral blood | [64] |
HEY2, MSR1, MYOM3, COX17, MMP2, CTGF, miR-24-1, miR-155 | 78 | Irish | HF predisposition | Peripheral blood | [70] |
circRNA | |||||
hsa_circ_0099476, hsa_circ_0001312, hsa_circ_0005158, hsa_circ_0029696, hsa_circ_0040414 | 89 | Chinese | HF predisposition | Peripheral blood | [17] |
has_circ_0112085, hsa_circ_0062960, hsa_circ_0053919, hsa_circ_0014010 | 60 | Chinese | HF predisposition | Peripheral blood | [27] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chair, S.-Y.; Chan, J.-Y.-W.; Waye, M.-M.-Y.; Liu, T.; Law, B.-M.-H.; Chien, W.-T. Exploration of Potential Genetic Biomarkers for Heart Failure: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 5904. https://doi.org/10.3390/ijerph18115904
Chair S-Y, Chan J-Y-W, Waye M-M-Y, Liu T, Law B-M-H, Chien W-T. Exploration of Potential Genetic Biomarkers for Heart Failure: A Systematic Review. International Journal of Environmental Research and Public Health. 2021; 18(11):5904. https://doi.org/10.3390/ijerph18115904
Chicago/Turabian StyleChair, Sek-Ying, Judy-Yuet-Wa Chan, Mary-Miu-Yee Waye, Ting Liu, Bernard-Man-Hin Law, and Wai-Tong Chien. 2021. "Exploration of Potential Genetic Biomarkers for Heart Failure: A Systematic Review" International Journal of Environmental Research and Public Health 18, no. 11: 5904. https://doi.org/10.3390/ijerph18115904
APA StyleChair, S. -Y., Chan, J. -Y. -W., Waye, M. -M. -Y., Liu, T., Law, B. -M. -H., & Chien, W. -T. (2021). Exploration of Potential Genetic Biomarkers for Heart Failure: A Systematic Review. International Journal of Environmental Research and Public Health, 18(11), 5904. https://doi.org/10.3390/ijerph18115904