Vibration Perception Threshold and Related Factors for Balance Assessment in Patients with Type 2 Diabetes Mellitus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Vibration Perception Threshold (VPT) Assessment
2.3. Nerve Conduction Study (NCS) Assessment
2.4. Postural Steadiness Assessment
2.5. Functional Balance Assessment
2.6. Fear of Falling Assessment
2.7. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Differences in Postural Steadiness, Functional Balance, and Fear of Falling between the NVS Group and IVS Group
3.3. Correlations between the VPT Value and Postural Steadiness, Functional Balance, and the Fear of Falling
3.4. Factors Contributing to Postural Steadiness, Functional Balance, and the Fear of Falling in Patients with Type 2 DM
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, M.A.B.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Al Kaabi, J. Epidemiology of Type 2 Diabetes—Global Burden of Disease and Forecasted Trends. J. Epidemiol. Glob. Health 2020, 10, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Alzaid, A.; Ladrón de Guevara, P.; Beillat, M.; Lehner Martin, V.; Atanasov, P. Burden of disease and costs associated with type 2 diabetes in emerging and established markets: Systematic review analyses. Expert Rev. Pharmacoecon. Outcomes Res. 2020, 1–14. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation. Diabetes Complications. Available online: https://www.idf.org/aboutdiabetes/complications.html (accessed on 22 February 2021).
- Boulton, A.J. Management of diabetic peripheral neuropathy. Clin. Diabetes 2005, 23, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Bansal, D.; Gudala, K.; Muthyala, H.; Esam, H.P.; Nayakallu, R.; Bhansali, A. Prevalence and risk factors of develop-ment of peripheral diabetic neuropathy in type 2 diabetes mellitus in a tertiary care setting. J. Diabetes Investig. 2014, 5, 714–721. [Google Scholar] [CrossRef]
- Hicks, C.W.; Selvin, E. Epidemiology of Peripheral Neuropathy and Lower Extremity Disease in Diabetes. Curr. Diabetes Rep. 2019, 19, 86. [Google Scholar] [CrossRef]
- Kumar, S.; Ashe, H.A.; Parnell, L.N.; Fernando, D.J.; Tsigos, C.; Young, R.J.; Ward, J.D.; Boulton, A.J. The prevalence of foot ulceration and its correlates in type 2 diabetic patients: A population-based study. Diabet. Med. 1994, 11, 480–484. [Google Scholar] [CrossRef] [PubMed]
- Hewston, P.; Deshpande, N. Falls and balance impairments in older adults with type 2 diabetes: Thinking beyond diabetic peripheral neuropathy. Can. J. Diabetes 2016, 40, 6–9. [Google Scholar] [CrossRef] [Green Version]
- Rifkin, H.; Porte, D. Ellenberg and Rifkin’s Diabetes Mellitus: Theory and Practice, 4th ed.; Elsevier Science: New York, NY, USA, 1990. [Google Scholar]
- Simoneau, G.G.; Ulbrecht, J.S.; Derr, J.A.; Becker, M.B.; Cavanagh, P.R. Postural instability in patients with diabetic sensory neuropathy. Diabetes Care 1994, 17, 1411–1421. [Google Scholar] [CrossRef]
- Oppenheim, U.; Kohen-Raz, R.; Alex, D.; Kohen-Raz, A.; Azarya, M. Postural characteristics of diabetic neuropathy. Diabetes Care 1999, 22, 328–332. [Google Scholar] [CrossRef]
- Sugimoto, S.; Fukunaga, Y.; Katayama, N.; Yoshida, T.; Teranishi, M.; Sugiura, S.; Uchida, Y.; Kamiya, H.; Oiso, Y.; Nakashima, T. Factors contributing to postural sway in patients with diabetes in an in-hospital education program. Audiol. Neurotol. Extra 2014, 4, 23–31. [Google Scholar] [CrossRef]
- de Mettelinge, T.R.; Calders, P.; Palmans, T.; Vanden Bossche, L.; Van Den Noortgate, N.; Cambier, D. Vibration perception threshold in relation to postural control and fall risk assessment in elderly. Disabil. Rehabil. 2013, 35, 1712–1717. [Google Scholar] [CrossRef]
- Ghanavati, T.; Shaterzadeh Yazdi, M.J.; Goharpey, S.; Arastoo, A.A. Functional balance in elderly with diabetic neuropathy. Diabetes Res. Clin. Pract. 2012, 96, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, C.T.; Ray, C. Peripheral neuropathy may not be the only fundamental reason explaining increased sway in diabetic individuals. Clin. Biomech. 2011, 26, 699–706. [Google Scholar] [CrossRef]
- Fortaleza, A.C.d.S.; Chagas, E.F.; Ferreira, D.M.A.; Mantovani, A.M.; Barela, J.A.; Chagas, E.F.B.; Fregonesi, C.E.P.T. Postural control and functional balance in individuals with diabetic peripheral neuropathy. Rev. Bras. Cineantropom. Desempenho Hum. 2013, 15, 305–314. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.G.; Kim, S.C.; Chang, M.; Nam, E.; Kim, S.G.; Cho, S.I.; Ryu, D.H.; Kam, S.; Choi, B.Y.; Park, S.B.; et al. Complications and socioeconomic costs associated with falls in the elderly population. Ann. Rehabil. Med. 2018, 42, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, I.N.; Ponirakis, G.; Khan, A.; Almuhannadi, H.; Gad, H.; Malik, R.A. Diagnosing Diabetic Neuropathy: Something Old, Something New. Diabetes Metab. J. 2018, 42, 255–269. [Google Scholar] [CrossRef]
- Garrow, A.P.; Boulton, A.J. Vibration perception threshold–A valuable assessment of neural dysfunction in people with diabetes. Diabetes Metab. Res. Rev. 2006, 22, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Santos, T.R.M.; Melo, J.V.; Leite, N.C.; Salles, G.F.; Cardoso, C.R.L. Usefulness of the vibration perception thresholds measurement as a diagnostic method for diabetic peripheral neuropathy: Results from the Rio de Janeiro type 2 diabetes cohort study. J. Diabetes Complicat. 2018, 32, 770–776. [Google Scholar] [CrossRef]
- Domínguez-Muñoz, F.J.; Adsuar, J.C.; Villafaina, S.; García-Gordillo, M.A.; Hernández-Mocholí, M.; Collado-Mateo, D.; Gusi, N. Test-retest reliability of vibration perception threshold test in people with type 2 diabetes mellitus. Int. J. Environ. Res. Public Health 2020, 17, 1773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, J.J.; Pribesh, S.L.; Baskette, K.G.; Vinik, A.I.; Colberg, S.R. A Comparison of screening tools for the early detection of peripheral neuropathy in adults with and without type 2 diabetes. J. Diabetes Res. 2017, 2017, 1467213. [Google Scholar] [CrossRef] [Green Version]
- Nolte, S.; van Londen, M.; Elting, J.W.J.; de Greef, B.T.A.; Kuks, J.B.M.; Faber, C.G.; Nolte, I.M.; Groen, R.J.M.; Bakker, S.J.L.; Groothof, D.; et al. Vibration threshold in non-diabetic subjects. PLoS ONE 2020, 15, e0237733. [Google Scholar] [CrossRef]
- Martin, C.L.; Waberski, B.H.; Pop-Busui, R.; Cleary, P.A.; Catton, S.; Albers, J.W.; Feldman, E.L.; Herman, W.H. Vibration perception threshold as a measure of distal symmetrical peripheral neuropathy in type 1 diabetes: Results from the DCCT/EDIC study. Diabetes Care 2010, 33, 2635–2641. [Google Scholar] [CrossRef] [Green Version]
- Young, M.J.; Breddy, J.L.; Veves, A.; Boulton, A.J. The prediction of diabetic neuropathic foot ulceration using vibration perception thresholds: A prospective study. Diabetes Care 1994, 17, 557–560. [Google Scholar] [CrossRef] [PubMed]
- Bril, V.; Kojic, J.; Ngo, M.; Clark, K. Comparison of a neurothesiometer and vibration in measuring vibration perception thresholds and relationship to nerve conduction studies. Diabetes Care 1997, 20, 1360–1362. [Google Scholar] [CrossRef] [PubMed]
- Heung, M.; Adamowski, T.; Segal, J.H.; Malani, P.N. A successful approach to fall prevention in an outpatient hemodialysis center. Clin. J. Am. Soc. Nephrol. CJASN 2010, 5, 1775–1779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toosizadeh, N.; Mohler, J.; Armstrong, D.G.; Talal, T.K.; Najafi, B. The influence of diabetic peripheral neuropathy on local postural muscle and central sensory feedback balance control. PLoS ONE 2015, 10, e0135255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timar, B.; Timar, R.; Gaita, L.; Oancea, C.; Levai, C.; Lungeanu, D. The impact of diabetic neuropathy on balance and on the risk of falls in patients with type 2 diabetes mellitus: A cross-sectional study. PLoS ONE 2016, 11, e0154654. [Google Scholar] [CrossRef] [Green Version]
- Bruce, D.G.; Devine, A.; Prince, R.L. Recreational physical activity levels in healthy older women: The importance of fear of falling. J. Am. Geriatr. Soc. 2002, 50, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Modig, F.; Patel, M.; Magnusson, M.; Fransson, P.A. Study II: Mechanoreceptive sensation is of increased importance for human postural control under alcohol intoxication. Gait Posture 2012, 35, 419–427. [Google Scholar] [CrossRef]
- Lin, Y.H.; Hsieh, S.C.; Chao, C.C.; Chang, Y.C.; Hsieh, S.T. Influence of aging on thermal and vibratory thresholds of quantitative sensory testing. J. Peripher. Nerv. Syst. 2005, 10, 269–281. [Google Scholar] [CrossRef]
- Lee, W.J.; Jang, S.; Lee, S.; Lee, H. Correlation Between the Severity of Diabetic Peripheral Polyneuropathy and Glycosylated Hemoglobin Levels: A Quantitative Study. Ann. Rehabil. Med. 2016, 40, 263–270. [Google Scholar] [CrossRef] [Green Version]
- Steinberg, N.; Eliakim, A.; Pantanowitz, M.; Kohen-Raz, R.; Zeev, A.; Nemet, D. The effect of a weight management program on postural balance in obese children. Eur. J. Pediatr. 2013, 172, 1619–1626. [Google Scholar] [CrossRef]
- Gorski, L.P.; Silva, A.M.D.; Cusin, F.S.; Cesaroni, S.; Ganança, M.M.; Caovilla, H.H. Body balance at static posturography in vestibular migraine. Braz. J. Otorhinolaryngol. 2019, 85, 183–192. [Google Scholar] [CrossRef]
- Ongun, N.; Atalay, N.S.; Degirmenci, E.; Sahin, F.; Bir, L.S. Tetra-ataxiometric Posturography in Patients with Migrainous Vertigo. Pain Physician 2016, 19, E87–E95. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Leem, M.J.; Yi, T.I.; Kim, J.S.; Yoon, S.Y. Balance Ability in Low Back Pain Patients With Lumbosacral Radiculopathy Evaluated With Tetrax: A Matched Case-Control Study. Ann. Rehabil. Med. 2020, 44, 195–202. [Google Scholar] [CrossRef]
- Kohen-Raz, R. Application of tetra-ataxiametric posturography in clinical and developmental diagnosis. Percept. Mot. Ski. 1991, 73, 635–656. [Google Scholar] [CrossRef]
- Berg, K.O.; Wood-Dauphinee, S.L.; Williams, J.I.; Maki, B. Measuring balance in the elderly: Validation of an instrument. Can. J. Public Health 1992, 83, S7–S11. [Google Scholar]
- Muir, S.W.; Berg, K.; Chesworth, B.; Speechley, M. Use of the Berg Balance Scale for predicting multiple falls in community-dwelling elderly people: A prospective study. Phys Ther 2008, 88, 449–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lusardi, M.M.; Fritz, S.; Middleton, A.; Allison, L.; Wingood, M.; Phillips, E.; Criss, M.; Verma, S.; Osborne, J.; Chui, K.K. Determining Risk of Falls in Community Dwelling Older Adults: A Systematic Review and Meta-analysis Using Posttest Probability. J. Geriatr. Phys. Ther. (2001) 2017, 40, 1–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bischoff, H.A.; Stähelin, H.B.; Monsch, A.U.; Iversen, M.D.; Weyh, A.; von Dechend, M.; Akos, R.; Conzelmann, M.; Dick, W.; Theiler, R. Identifying a cut-off point for normal mobility: A comparison of the timed ‘up and go’ test in community-dwelling and institutionalised elderly women. Age Ageing 2003, 32, 315–320. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, S.A. Analysis of measurement tools of fear of falling for high-risk, community-dwelling older adults. Clin. Nurs. Res. 2012, 21, 113–130. [Google Scholar] [CrossRef] [PubMed]
- Marques-Vieira, C.M.A.; Sousa, L.M.M.; Severino, S.; Sousa, L.; Caldeira, S. Cross-cultural validation of the falls efficacy scale international in elderly: Systematic literature review. J. Clin. Gerontol. Geriatr. 2016, 7, 72–76. [Google Scholar] [CrossRef] [Green Version]
- Pinheiro, H.A.; Vilaça, K.H.C.; Carvalho, G.d.A. Postural stability, risk of falls and fear of falling in elderly with diabetic neuropathy who do therapeutic exercises. Fisioter. Pesqui. 2014, 21, 127–132. [Google Scholar] [CrossRef]
- Hafström, A. Perceived and functional balance control ss negatively affected by diminished touch and vibration sensitivity in relatively healthy older adults and elderly. Gerontol. Geriatr. Med. 2018, 4, 2333721418775551. [Google Scholar] [CrossRef]
- Bergin, P.S.; Bronstein, A.M.; Murray, N.M.; Sancovic, S.; Zeppenfeld, D.K. Body sway and vibration perception thresholds in normal aging and in patients with polyneuropathy. J. Neurol. Neurosurg. Psychiatry 1995, 58, 335–340. [Google Scholar] [CrossRef] [Green Version]
- Lafond, D.; Corriveau, H.; Prince, F. Postural control mechanisms during quiet standing in patients with diabetic sensory neuropathy. Diabetes Care 2004, 27, 173–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boucher, P.; Teasdale, N.; Courtemanche, R.; Bard, C.; Fleury, M. Postural stability in diabetic polyneuropathy. Diabetes Care 1995, 18, 638–645. [Google Scholar] [CrossRef]
- Domínguez-Muñoz, F.J.; Adsuar, J.C.; Carlos-Vivas, J.; Villafaina, S.; Garcia-Gordillo, M.A.; Hernández-Mocholi, M.A.; Collado-Mateo, D.; Gusi, N. Association between TUG and anthropometric values, vibration perception threshold, FHSQ and 15-D in type 2 diabetes mellitus patients. Int. J. Environ. Res. Public Health 2020, 17, 2018. [Google Scholar] [CrossRef] [Green Version]
- Emam, A.A.; Gad, A.M.; Ahmed, M.M.; Assal, H.S.; Mousa, S.G. Quantitative assessment of posture stability using computerised dynamic posturography in type 2 diabetic patients with neuropathy and its relation to glycaemic control. Singap. Med. J. 2009, 50, 614–618. [Google Scholar]
- Cordeiro, R.C.; Jardim, J.R.; Perracini, M.R.; Ramos, L.R. Factors associated with functional balance and mobility among elderly diabetic outpatients. Arq. Bras. Endocrinol. Metabol. 2009, 53, 834–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vongsirinavarat, M.; Mathiyakom, W.; Kraiwong, R.; Hiengkaew, V. Fear of falling, lower extremity strength, and physical and balance performance in older adults with diabetes mellitus. J. Diabetes Res. 2020, 2020, 8573817. [Google Scholar] [CrossRef]
- Bassey, E.J.; Fiatarone, M.A.; O’Neill, E.F.; Kelly, M.; Evans, W.J.; Lipsitz, L.A. Leg extensor power and functional performance in very old men and women. Clin. Sci. (1979) 1992, 82, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Ringsberg, K.; Gerdhem, P.; Johansson, J.; Obrant, K.J. Is there a relationship between balance, gait performance and muscular strength in 75-year-old women? Age Ageing 1999, 28, 289–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, H.; Gadeberg, P.C.; Brock, B.; Jakobsen, J. Muscular atrophy in diabetic neuropathy: A stereological magnetic resonance imaging study. Diabetologia 1997, 40, 1062–1069. [Google Scholar] [CrossRef] [PubMed]
- Bokan-Mirković, V.; Škarić-Karanikić, Ž.; Nejkov, S.; Vuković, M.; Ćirović, D. Diabetic Polyneuropathy and Risk of Falls: Fear of Falling and Other Factors. Acta Clin. Croat. 2017, 56, 721–727. [Google Scholar] [CrossRef] [Green Version]
- Mustapa, A.; Justine, M.; Mohd Mustafah, N.; Jamil, N.; Manaf, H. Postural control and gait performance in the diabetic peripheral neuropathy: A systematic review. BioMed Res. Int. 2016, 2016, 9305025. [Google Scholar] [CrossRef] [Green Version]
- Allet, L.; Armand, S.; de Bie, R.A.; Golay, A.; Pataky, Z.; Aminian, K.; de Bruin, E.D. Clinical factors associated with gait alterations in diabetic patients. Diabet. Med. 2009, 26, 1003–1009. [Google Scholar] [CrossRef]
NVS (n = 34) | IVS (n = 29) | p-Value | |
---|---|---|---|
Male sex, n (%) | 14 (41.2%) | 14 (48.3%) | 0.572 |
Age, years | 66.76 ± 8.85 | 70.00 ± 10.62 | 0.192 |
Height, m | 1.59 ± 0.09 | 1.60 ± 0.11 | 0.819 |
Weight, kg | 67.1 ± 13.4 | 68.6 ± 14.0 | 0.660 |
BMI, kg/m2 | 26.28 ± 3.98 | 26.65 ± 3.22 | 0.687 |
DM duration, years | 14.88 ± 10.02 | 22.48 ± 9.53 | 0.003 * |
HbA1c, % | 10.6 ± 2.6 | 10.2 ± 2.6 | 0.526 |
MRC score | 20.0 ± 0.0 | 19.2 ± 0.8 | 0.184 |
Hypertension, n (%) | 27 (79.4%) | 17 (58.6%) | 0.073 |
DM nephropathy, n (%) | 7 (20.6%) | 10 (34.5%) | 0.216 |
Retinopathy, n (%) | 11 (32.4%) | 12 (41.4%) | 0.458 |
Chronic heart disease, n (%) | 5 (14.7%) | 3 (10.3%) | 0.716 |
Chronic lung disease, n (%) | 1 (2.9%) | 0 (0%) | >0.999 |
VPT, mean, μm | 5.01 ± 1.88 | 18.57 ± 7.76 | <0.001 * |
NCS, Composite score | 3.54 ± 3.20 | 9.15 ± 3.53 | <0.001 * |
NVS (n = 34) | IVS (n = 29) | p-Value | |
---|---|---|---|
Fall risk index | 39.1 ± 15.6 | 82.9 ± 23.7 | <0.001 * |
Position | Stability Index | Fourier Index (0.5–1.0 Hz, F 5–6) | ||||
---|---|---|---|---|---|---|
NVS (n = 34) | IVS (n = 29) | p-Value | NVS (n = 34) | IVS (n = 29) | p-Value | |
Eyes open | 15.4 ± 3.5 | 21.5 ± 5.7 | <0.001 * | 3.1 ± 0.8 | 4.1 ± 1.2 | <0.001 * |
Eyes closed | 29.0 ± 9.5 | 42.4 ± 20.1 | 0.002 * | 5.7 ± 2.0 | 7.9 ± 3.7 | 0.006 * |
Eyes open (Pillow) | 18.4 ± 5.2 | 28.0 ± 9.1 | <0.001 * | 3.5 ± 1.2 | 5.0 ± 1.8 | <0.001 * |
Eyes closed (Pillow) | 36.1 ± 14.3 | 48.5 ± 17.6 | 0.003 * | 6.8 ± 3.1 | 8.8 ± 3.3 | 0.018 * |
Head right | 27.3 ± 9.7 | 39.1 ± 15.9 | 0.001 * | 5.1 ± 1.9 | 7.1 ± 2.7 | 0.001 * |
Head left | 26.7 ± 8.9 | 40.2 ± 14.3 | <0.001 * | 5.1 ± 2.0 | 7.2 ± 2.9 | 0.001 * |
Head up | 28.3 ± 8.8 | 44.2 ± 16.1 | <0.001 * | 5.0 ± 1.4 | 8.1 ± 3.2 | <0.001 * |
Head down | 28.2 ± 7.2 | 38.5 ± 13.0 | <0.001 * | 5.4 ± 1.6 | 6.8 ± 2.9 | 0.019 * |
NVS (n = 34) | IVS (n = 29) | p-Value | |
---|---|---|---|
BBS (points) | 52.0 ± 3.3 | 43.7 ± 5.9 | <0.001 * |
TUG (s) | 8.8 ± 1.8 | 12.0 ± 4.9 | 0.001 * |
FES-I (points) | 20.2 ± 4.0 | 26.0 ± 7.0 | <0.001 * |
Correlation Coefficient, r (95% CI) | p-Value | |
---|---|---|
Fall risk index | 0.730 (0.588–0.834) | <0.001 * |
BBS | −0.680 (−0.817–−0.541) | <0.001 * |
TUG | 0.417 (0.196–0.661) | 0.001 * |
FES-I | 0.423 (0.177–0.642) | 0.001 * |
Independent Variable | B (95% CI) | Standardized B | p-Value | |
---|---|---|---|---|
Fall risk index | Intercept | 31.447 (23.058–39.837) | ||
VPT score | 2.472 (1.881–3.064) | 0.730 | <0.001 * | |
BBS | Intercept | 70.849 (63.848–77.851) | ||
VPT score | −0.412 (−0.529–−0.294) | −0.574 | <0.001 * | |
Age | −0.264 (−0.369–−0.160) | −0.414 | <0.001 * | |
TUG | Intercept | 31.646 (5.279–58.012) | ||
VPT score | 0.103 (0.017–0.188) | 0.230 | 0.020 * | |
Age | 0.209 (0.134–0.283) | 0.527 | <0.001 * | |
MRC score | −1.848 (−3.133–−0.562) | −0.268 | 0.006 * | |
FES-I | Intercept | 63.491 (14.291–112.692) | ||
VPT score | 0.209 (0.050–0.369) | 0.291 | 0.011 * | |
Age | 0.207 (0.067–0.347) | 0.324 | 0.004 * | |
MRC score | −2.871 (−5.270–−0.472) | −0.257 | 0.020 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, J.; Kim, M.-G.; Kang, Y.-J.; Min, K.; Han, K.-A.; Choi, H. Vibration Perception Threshold and Related Factors for Balance Assessment in Patients with Type 2 Diabetes Mellitus. Int. J. Environ. Res. Public Health 2021, 18, 6046. https://doi.org/10.3390/ijerph18116046
Jung J, Kim M-G, Kang Y-J, Min K, Han K-A, Choi H. Vibration Perception Threshold and Related Factors for Balance Assessment in Patients with Type 2 Diabetes Mellitus. International Journal of Environmental Research and Public Health. 2021; 18(11):6046. https://doi.org/10.3390/ijerph18116046
Chicago/Turabian StyleJung, Jisang, Min-Gyu Kim, Youn-Joo Kang, Kyungwan Min, Kyung-Ah Han, and Hyoseon Choi. 2021. "Vibration Perception Threshold and Related Factors for Balance Assessment in Patients with Type 2 Diabetes Mellitus" International Journal of Environmental Research and Public Health 18, no. 11: 6046. https://doi.org/10.3390/ijerph18116046
APA StyleJung, J., Kim, M. -G., Kang, Y. -J., Min, K., Han, K. -A., & Choi, H. (2021). Vibration Perception Threshold and Related Factors for Balance Assessment in Patients with Type 2 Diabetes Mellitus. International Journal of Environmental Research and Public Health, 18(11), 6046. https://doi.org/10.3390/ijerph18116046