A Bayesian Spatio-Temporal Analysis of Malaria in the Greater Accra Region of Ghana from 2015 to 2019
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Data Sources
- A seasonal-trend decomposition, based on locally weighted regression (STL) was used to decompose the time series of malaria incidence to reveal the seasonal relationship, inter-annual pattern, and the residual variability. The STL model was structured as follows:
- Standardized morbidity ratios (SMRs) per district were analyzed using the following formula:
2.3. Independent Climatic Variable Selection
2.4. Spatio-Temporal Model
wij
3. Results
3.1. Descriptive Analysis
3.2. Time Series Decompositions
3.3. Negative Binomial Regression Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AIC | Akaike’s information criterion |
API | Annual parasitic incidence |
BIC | Bayesian information criterion |
CAR | Conditional autoregressive |
COVID-19 | Coronavirus disease 2019 |
CrI | Credible interval |
DHIMS | District Health Information and Management System |
DIC | Deviance information criterion |
EIP | extrinsic incubation period |
GAR | Greater Accra Region |
LGAs | Local Government Areas |
IPTp | Intermittent Preventive Treatment in pregnancy |
IRS | indoor residual spraying |
LLIN | long lasting insecticide net |
MCMC | Markov chain Monte Carlo |
NB | Negative Binomial |
RR | Relative risk |
SMR | Standardized morbidity ratios |
STL | Seasonal-trend decomposition, based on locally |
VIF | Variance inflation factors |
WHO | World Health Organization |
References
- Bahadur, S.; Pujani, M.; Jain, M. Use of rapid detection tests to prevent transfusion-transmitted malaria in India. Asian J. Transfus. Sci. 2010, 4, 140. [Google Scholar] [PubMed]
- Chauhan, V.; Negi, R.; Verma, B.; Thakur, S. Transfusion transmitted malaria in a non-endemic area. J. Assoc. Physicians India 2009, 57, 654–656. [Google Scholar] [PubMed]
- Gitau, G.M.; Eldred, J.M. Malaria in pregnancy: Clinical, therapeutic and prophylactic considerations. Obstet. Gynaecol. 2005, 7, 5–11. [Google Scholar] [CrossRef] [Green Version]
- Kitchen, A.; Chiodini, P. Malaria and blood transfusion. Vox Sang. 2006, 90, 77–84. [Google Scholar] [CrossRef]
- World Health Organization. World Malaria Report 2019; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Robert, V.; Macintyre, K.; Keating, J.; Trape, J.-F.; Duchemin, J.-B.; Warren, M.; Beier, J.C. Malaria transmission in urban sub-Saharan Africa. Am. J. Trop. Med. Hyg. 2003, 68, 169–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abellana, R.; Ascaso, C.; Aponte, J.; Saute, F.; Nhalungo, D.; Nhacolo, A.; Alonso, P. Spatio-seasonal modeling of the incidence rate of malaria in Mozambique. Malar. J. 2008, 7, 228. [Google Scholar] [CrossRef] [Green Version]
- Zacarias, O.P.; Andersson, M. Mapping malaria incidence distribution that accounts for environmental factors in Maputo Province—Mozambique. Malar. J. 2010, 9, 79. [Google Scholar] [CrossRef] [Green Version]
- Ghana Ministry of Health. Malaria Operational Plan. FY 2018; Ghana Ministry of Health: Accra, Ghana, 2018. [Google Scholar]
- World Health Organization. World Malaria Report 2018; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- World Health Organization. Recommendation, Updated WHO Policy, Intermittent Preventive Treatment of Malaria in Pregnancy Using Sulfadoxine-Pyrimethamine (IPTp-SP); World Health Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Ghana Ministry of Health. Ghana Malaria Operational Plan. FY 2014; Ghana Ministry of Health: Accra, Ghana, 2014. [Google Scholar]
- World Health Organization. World Malaria Report 2017; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Amratia, P.; Psychas, P.; Abuaku, B.; Ahorlu, C.; Millar, J.; Oppong, S.; Koram, K.; Valle, D. Characterizing local-scale heterogeneity of malaria risk: A case study in Bunkpurugu-Yunyoo district in northern Ghana. Malar. J. 2019, 18, 81. [Google Scholar] [CrossRef]
- Ghana Statistical Service. Ghana Malaria Indicator Survey 2016; Ghana Statistical Service: Accra, Ghana, 2016. [Google Scholar]
- Clark, T.D.; Greenhouse, B.; Njama-Meya, D.; Nzarubara, B.; Maiteki-Sebuguzi, C.; Staedke, S.G.; Seto, E.; Kamya, M.R.; Rosenthal, P.J.; Dorsey, G. Factors Determining the Heterogeneity of Malaria Incidence in Children in Kampala, Uganda. J. Infect. Dis. 2008, 198, 393–400. [Google Scholar] [CrossRef] [Green Version]
- Mackinnon, M.J.; Mwangi, T.W.; Snow, R.W.; Marsh, K.; Williams, T.N. Heritability of malaria in Africa. Plos Med. 2005, 2, e340. [Google Scholar] [CrossRef] [Green Version]
- Ghana Health Service. Greater Accra Regional Health Directorate at a Glance; Ghana Health Service: Accra, Ghana, 2019. [Google Scholar]
- Songsore, J. The Urban Transition in Ghana: Urbanization, National Development and Poverty Reduction; University of Ghana: Legon–Accra, Ghana, 2009. [Google Scholar]
- Worldclim. Worldclim—Global Climate and Weather Data. Available online: https://www.worldclim.org/data/index.html (accessed on 1 June 2020).
- DIVA-GIS Website. Free Spatial Data. Available online: https://www.diva-gis.org (accessed on 10 June 2020).
- Environmental Systems Research Institute (ESRI). ArcMap Version 10.7.1, ArcGIS Desktop 10.7.1; ESRI: Redlands, CA, USA, 2019; Available online: https://www.esri.com (accessed on 1 April 2020).
- Cleveland, R.B.; Cleveland, W.S.; McRae, J.E.; Terpenning, I. STL: A seasonal-trend decomposition. J. Off. Stat. 1990, 6, 3–73. [Google Scholar]
- Sang, S.; Gu, S.; Bi, P.; Yang, W.; Yang, Z.; Xu, L.; Yang, J.; Liu, X.; Jiang, T.; Wu, H. Predicting unprecedented dengue outbreak using imported cases and climatic factors in Guangzhou, 2014. PLoS Negl. Trop. Dis. 2015, 9, e0003808. [Google Scholar] [CrossRef] [Green Version]
- Wangdi, K.; Clements, A.C.; Du, T.; Nery, S.V. Spatial and temporal patterns of dengue infections in Timor-Leste, 2005–2013. Parasites Vectors 2018, 11, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- StataCorp. Stata Statistical Software: Release 16; StataCorp LLC: College Station, TX, USA, 2019. [Google Scholar]
- Lunn, D.J.; Thomas, A.; Best, N.; Spiegelhalter, D. WinBUGS-a Bayesian modelling framwork: Concepts, structure and extensibility. Stat. Comput. 2000, 10, 325–337. Available online: https://www.mrc-bsu.cam.ac.uk/software/bugs/ (accessed on 1 July 2020). [CrossRef]
- Gelfand, A.E.; Smith, A.F.M. Sampling-Based Approaches to Calculating Marginal Densities. J. Am. Stat. Assoc. 1990, 85, 398–409. [Google Scholar] [CrossRef]
- INFORM Project & NMCP Ghana. An epidemiological profle of malaria and its control in Ghana. In A Report Prepared for the Ministry of Health, Ghana, the Roll Back Malaria Partnership and the Department for International Development; Ghana MOH, Ed.; Ghana MOH: Accra, Ghana, 2013. [Google Scholar]
- Millar, J.; Psychas, P.; Abuaku, B.; Ahorlu, C.; Amratia, P.; Koram, K.; Oppong, S.; Valle, D. Detecting local risk factors for residual malaria in northern Ghana using Bayesian model averaging. Malar. J. 2018, 17, 343. [Google Scholar] [CrossRef] [Green Version]
- Tatem, A.J.; Gething, P.W.; Smith, D.L.; Hay, S.I. Urbanization and the global malaria recession. Malar. J. 2013, 12, 133. [Google Scholar] [CrossRef] [Green Version]
- Bousema, T.; Drakeley, C.; Gesase, S.; Hashim, R.; Magesa, S.; Mosha, F.; Otieno, S.; Carneiro, I.; Cox, J.; Msuya, E.; et al. Identification of Hot Spots of Malaria Transmission for Targeted Malaria Control. J. Infect. Dis. 2010, 201, 1764–1774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Silva, P.M.; Marshall, J.M. Factors Contributing to Urban Malaria Transmission in Sub-Saharan Africa: A Systematic Review. J. Trop. Med. 2012, 2012, 819563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klinkenberg, E.; McCall, P.; Wilson, M.D.; Amerasinghe, F.P.; Donnelly, M.J. Impact of urban agriculture on malaria vectors in Accra, Ghana. Malar. J. 2008, 7, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donovan, C.; Siadat, B.; Frimpong, J. Seasonal and socio-economic variations in clinical and self-reported malaria in Accra, Ghana: Evidence from facility data and a community survey. Ghana Med. J. 2012, 46, 85–94. [Google Scholar] [PubMed]
- Wangdi, K.; Canavati, S.; Duc, T.N.; Nguyen, T.M.; Tran, L.K.; Kelly, G.C.; Martin, N.J.; Clements, A.C.A. Spatial and Temporal Patterns of Malaria in Phu Yen Province, Vietnam, from 2005 to 2016. Am. J. Trop. Med. Hyg. 2020, 103, 1540–1548. [Google Scholar] [CrossRef]
- Klutse, N.A.B.; Aboagye-Antwi, F.; Owusu, K.; Ntiamoa-Baidu, Y. Assessment of patterns of climate variables and malaria cases in two ecological zones of Ghana. Open J. Ecol. 2014, 4, 764. [Google Scholar] [CrossRef] [Green Version]
- Tay, S.C.K.; Danuor, S.K.; Mensah, D.C.; Abruquah, H.H.; Morse, A.; Caminade, C.; BADU, K.; Tompkins, A.; Hassan, H.A. Climate Variability and Malaria Incidence in Peri-Urban, Urban and Rural Communities around Kumasi, Ghana: A Case Study at Three Health Facilities; Emena, Atonsu and Akropong. Int. J. Parasitol. Res. 2012, 4, 83–89. [Google Scholar]
- Danuor, S.; Tay, S.; Annor, T.; Forkuo, E.; Bosompem, K.; Antwi, V. The impact of climate variability on malaria incidence and prevalence in the forest zone of Ghana–A case study at two (2) hospitals located within the Kumasi Metropolitan area of the Ashanti Region of Ghana. In Proceedings of the 2nd International Conference: Climate, Sustainability and Development in Semi-arid Regions, Fortaleza, Brazil, 16–20 August 2010; pp. 16–20. [Google Scholar]
- Krefis, A.C.; Schwarz, N.G.; Krüger, A.; Fobil, J.; Nkrumah, B.; Acquah, S.; Loag, W.; Sarpong, N.; Adu-Sarkodie, Y.; Ranft, U. Modeling the relationship between precipitation and malaria incidence in children from a holoendemic area in Ghana. Am. J. Trop. Med. Hyg. 2011, 84, 285–291. [Google Scholar] [CrossRef]
- Briët, O.J.; Vounatsou, P.; Gunawardena, D.M.; Galappaththy, G.N.; Amerasinghe, P.H. Models for short term malaria prediction in Sri Lanka. Malar. J. 2008, 7, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomson, M.C.; Doblas-Reyes, F.; Mason, S.J.; Hagedorn, R.; Connor, S.J.; Phindela, T.; Morse, A.; Palmer, T. Malaria early warnings based on seasonal climate forecasts from multi-model ensembles. Nature 2006, 439, 576–579. [Google Scholar] [CrossRef]
- Wangdi, K.; Canavati, S.E.; Ngo, T.D.; Tran, L.K.; Nguyen, T.M.; Tran, D.T.; Martin, N.J.; Clements, A.C.A. Analysis of clinical malaria disease patterns and trends in Vietnam 2009-2015. Malar. J. 2018, 17, 332. [Google Scholar] [CrossRef] [Green Version]
- Clements, A.C.; Barnett, A.G.; Cheng, Z.W.; Snow, R.W.; Zhou, H.N. Space-time variation of malaria incidence in Yunnan province, China. Malar. J. 2009, 8, 180. [Google Scholar] [CrossRef] [PubMed]
- Gubler, D.J.; Reiter, P.; Ebi, K.L.; Yap, W.; Nasci, R.; Patz, J.A. Climate variability and change in the United States: Potential impacts on vector-and rodent-borne diseases. Environ. Health Perspect. 2001, 109 (Suppl. S2), 223–233. [Google Scholar]
- Craig, M.H.; Snow, R.; le Sueur, D. A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol. Today 1999, 15, 105–111. [Google Scholar] [CrossRef]
- Reiner, R.C.; Geary, M.; Atkinson, P.M.; Smith, D.L.; Gething, P.W. Seasonality of Plasmodium falciparum transmission: A systematic review. Malar. J. 2015, 14, 343. [Google Scholar] [CrossRef] [Green Version]
- Midekisa, A.; Senay, G.; Henebry, G.M.; Semuniguse, P.; Wimberly, M.C. Remote sensing-based time series models for malaria early warning in the highlands of Ethiopia. Malar. J. 2012, 11, 165. [Google Scholar] [CrossRef] [Green Version]
- Teklehaimanot, H.D.; Lipsitch, M.; Teklehaimanot, A.; Schwartz, J. Weather-based prediction of Plasmodium falciparum malaria in epidemic-prone regions of Ethiopia I. Patterns of lagged weather effects reflect biological mechanisms. Malar. J. 2004, 3, 41. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; Minakawa, N.; Githeko, A.K.; Yan, G. Association between climate variability and malaria epidemics in the East African highlands. Proc. Natl. Acad. Sci. USA 2004, 101, 2375–2380. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, L.L.; Whitehead, S.A.; Thomas, M.B. Quantifying the effects of temperature on mosquito and parasite traits that determine the transmission potential of human malaria. PLoS Biol. 2017, 15, e2003489. [Google Scholar] [CrossRef] [Green Version]
- Wangdi, K.; Singhasivanon, P.; Silawan, T.; Lawpoolsri, S.; White, N.J.; Kaewkungwal, J. Development of temporal modelling for forecasting and prediction of malaria infections using time-series and ARIMAX analyses: A case study in endemic districts of Bhutan. Malar. J. 2010, 9, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alemu, A.; Abebe, G.; Tsegaye, W.; Golassa, L. Climatic variables and malaria transmission dynamics in Jimma town, South West Ethiopia. Parasites Vectors 2011, 4, 30. [Google Scholar] [CrossRef] [Green Version]
- Bunyavanich, S.; Landrigan, C.P.; McMichael, A.J.; Epstein, P.R. The impact of climate change on child health. Ambul. Pediatr. 2003, 3, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Kotepui, M.; Kotepui, K.U. Impact of weekly climatic variables on weekly malaria incidence throughout Thailand: A country-based six-year retrospective study. J. Environ. Public Health 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Lunde, T.M.; Bayoh, M.N.; Lindtjørn, B. How malaria models relate temperature to malaria transmission. Parasites Vectors 2013, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Assiri, A.; McGeer, A.; Perl, T.M.; Price, C.S.; Al Rabeeah, A.A.; Cummings, D.A.; Alabdullatif, Z.N.; Assad, M.; Almulhim, A.; Makhdoom, H. Hospital outbreak of Middle East respiratory syndrome coronavirus. N. Engl. J. Med. 2013, 369, 407–416. [Google Scholar] [CrossRef]
- Faye, O.; Boëlle, P.-Y.; Heleze, E.; Faye, O.; Loucoubar, C.; Magassouba, N.F.; Soropogui, B.; Keita, S.; Gakou, T.; Koivogui, L. Chains of transmission and control of Ebola virus disease in Conakry, Guinea, in 2014: An observational study. Lancet Infect. Dis. 2015, 15, 320–326. [Google Scholar] [CrossRef] [Green Version]
- Salje, H.; Lessler, J.; Paul, K.K.; Azman, A.S.; Rahman, M.W.; Rahman, M.; Cummings, D.; Gurley, E.S.; Cauchemez, S. How social structures, space, and behaviors shape the spread of infectious diseases using chikungunya as a case study. Proc. Natl. Acad. Sci. USA 2016, 113, 13420–13425. [Google Scholar] [CrossRef] [Green Version]
- Di Gennaro, F.; Marotta, C.; Locantore, P.; Pizzol, D.; Putoto, G. Malaria and COVID-19: Common and different findings. Trop. Med. Infect. Dis. 2020, 5, 141. [Google Scholar] [CrossRef]
- Hussein, M.I.H.; Albashir, A.A.D.; Elawad, O.A.M.A.; Homeida, A. Malaria and COVID-19: Unmasking their ties. Malar. J. 2020, 19, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Weiss, D.J.; Bertozzi-Villa, A.; Rumisha, S.F.; Amratia, P.; Arambepola, R.; Battle, K.E.; Cameron, E.; Chestnutt, E.; Gibson, H.S.; Harris, J. Indirect effects of the COVID-19 pandemic on malaria intervention coverage, morbidity, and mortality in Africa: A geospatial modelling analysis. Lancet Infect. Dis. 2021, 21, 59–69. [Google Scholar] [CrossRef]
No. | Districts | Total Malaria Cases | Percentage | API * |
---|---|---|---|---|
1 | Adenta Municipal | 69,758 | 6.3 | 156.1 |
2 | Ledzokuku Municipal | 39,394 | 3.6 | 49.7 |
3 | Ada East | 32,175 | 3.0 | 78.0 |
4 | Shai Osudoku | 48,989 | 4.4 | 164.2 |
5 | Ada West | 23,941 | 2.2 | 70.1 |
6 | Ningo/Prampram | 66,714 | 6.0 | 162.7 |
7 | La Dade-Kotopon | 17,437 | 1.6 | 16.4 |
8 | La-Nkwantanang-Madina | 51,889 | 4.7 | 80.2 |
9 | Ga East | 68,924 | 6.2 | 80.1 |
10 | Ayawaso West | 1739 | 0.2 | 4.0 |
11 | Ga South Municipal | 57,602 | 5.2 | 36.3 |
12 | Ga West Municipal | 54,642 | 5.0 | 77.0 |
13 | Ga Central Municipal | 36,113 | 3.3 | 53.3 |
14 | Tema West Municipal | 6369 | 0.6 | 9.6 |
15 | Ashaiman Municipal | 187,322 | 16.9 | 168.8 |
16 | Kpone Katamanso | 93,987 | 8.5 | 148.3 |
17 | Ablekuma Central Municipal | 3355 | 0.3 | 3.4 |
18 | Korle Klottey Municipal | 20,227 | 1.8 | 26.5 |
19 | Ablekuma North Municipala | 11,356 | 1.0 | 12.6 |
20 | Ayawaso North Municipal | 10,142 | 0.9 | 22.4 |
21 | Ayawaso East Municipal | 5981 | 0.5 | 9.9 |
22 | Okaikwei North Municipal | 21,544 | 1.9 | 18.0 |
23 | Ga North Municipal | 49,129 | 4.4 | 84.6 |
24 | Weija Gbawe Municipal | 25,038 | 2.3 | 27.4 |
25 | Krowor Municipal | 6241 | 0.6 | 11.8 |
26 | Tema Metropolitan | 16,993 | 1.5 | 16.5 |
27 | Ablekuma West Municipal | 13,122 | 1.2 | 13.7 |
28 | Ayawaso Central Municipal | 7523 | 0.7 | 6.5 |
29 | Accra Metropolis | 57,724 | 5.2 | 22.3 |
Total | 1,105,370 | 100 | 1630.1 |
Month | Average Rainfall | Average Max. Temperature | Average Min. Temperature | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2015 | 2016 | 2017 | 2018 | 2019 | 2015 | 2016 | 2017 | 2018 | 2019 | 2015 | 2016 | 2017 | 2018 | 2019 | |
Jan. | 6.5 | 9.2 | 21.7 | 4.7 | 4.7 | 32.4 | 33.5 | 33.5 | 33.0 | 33.0 | 23.0 | 23.8 | 23.5 | 23.0 | 23.0 |
Feb. | 66.0 | 15.8 | 19.7 | 36.8 | 36.8 | 33.7 | 34.8 | 34.2 | 34.0 | 34.0 | 24.7 | 25.1 | 24.5 | 24.7 | 24.7 |
Mar. | 121.6 | 96.9 | 68.1 | 74.7 | 74.7 | 33.8 | 34.0 | 34.2 | 33.1 | 33.1 | 24.5 | 24.9 | 24.8 | 24.2 | 24.2 |
Apr. | 83.5 | 98.9 | 88.7 | 84.6 | 84.6 | 33.7 | 33.5 | 33.6 | 33.3 | 33.3 | 24.7 | 25.3 | 25.0 | 24.6 | 24.6 |
May | 120.4 | 175.2 | 166.6 | 137 | 136.9 | 32.8 | 32.6 | 32.1 | 32.4 | 32.4 | 24.6 | 24.6 | 24.5 | 24.4 | 24.4 |
Jun. | 211.1 | 195.4 | 314.9 | 178 | 178.3 | 30.6 | 30.2 | 30.2 | 30.4 | 30.4 | 24.1 | 23.9 | 23.9 | 24.0 | 24.0 |
July | 45.9 | 52.8 | 72.5 | 67.8 | 67.8 | 29.3 | 29.2 | 29.4 | 29.3 | 29.3 | 23.2 | 23.3 | 23.3 | 23.3 | 23.3 |
Aug. | 34.0 | 31.8 | 41.2 | 45.0 | 45.1 | 29.0 | 29.0 | 28.6 | 29.0 | 29.0 | 23.0 | 23.0 | 22.6 | 23.0 | 23.0 |
Sept. | 64.7 | 102.5 | 82.5 | 115.1 | 115.1 | 30.2 | 29.9 | 29.9 | 30.1 | 30.1 | 23.3 | 23.5 | 23.2 | 23.3 | 23.3 |
Oct. | 120.0 | 111.7 | 65.2 | 145.5 | 145.5 | 31.5 | 31.8 | 32.0 | 31.5 | 31.5 | 23.7 | 23.9 | 23.9 | 23.8 | 23.8 |
Nov. | 77.1 | 99.0 | 119.5 | 50.6 | 50.6 | 33.0 | 33.1 | 33.0 | 32.8 | 32.8 | 24.1 | 24.5 | 24.1 | 24.2 | 24.2 |
Dec. | 11.6 | 44.0 | 28.7 | 26.1 | 26.1 | 33.0 | 34.0 | 33.2 | 32.9 | 32.9 | 23.7 | 24.7 | 24.1 | 23.5 | 23.5 |
Model/Variable | Coeff, Posterior Mean (95% CrI) | RR, Posterior Mean (95% CrI) |
---|---|---|
Model I (Unstructured) ** | ||
Mean monthly trend | 0.207 (0.179, 0.228) | 1.229 (1.196, 1.261) |
Monthly rainfall (10 mm) * | 1.58 × 10−5 (−9.39 × 10−5, 4.65 × 10−4) | 1.000 (1.000, 1.000) |
Monthly maximum Temp (°C) ⁑ | −3.55 × 10−3 (−3.12 × 10−2, 6.78 × 10−3) | 0.996 (0.969, 1.007) |
Monthly minimum Temp (°C) | −2.30 × 10−3 (−4.24 × 10−2, −7.34 × 10−3) | 0.977 (0.958, 0.993) a |
Heterogeneity | ||
Structured (trend) | 0.503 (0.267, 0.816) | |
Unstructured | 0.502 (0.270, 0.809) | |
DIC | 16,563.2 | |
Model II (Structured) | ||
Mean monthly trend | 0.261 (0.254, 0.268) | 1.231 (1.202, 1.260) |
Monthly rainfall (10 mm) * | −1.33 × 10−5 (−1.04 × 10−4, 7.467 × 10−5) | 1.000 (1.000, 1.000) |
Monthly maximum Temp (°C) ⁑ | −1.59 × 10−3 (−1.17 × 10−2, 8.6 × 10−3) | 0.998 (0.988, 1.009) |
Monthly minimum Temp (°C) | −2.17 × 10−2 (−3.76 × 10−2, −5.22 × 10−3) | 0.978 (0.963, 0.995) |
Heterogeneity | ||
Structured (trend) | 0.508 (0.272, 0.828) | |
Structured (spatial) | 0.116 (0.064, 0.184) | |
DIC | 16,589.8 | |
Model III (Mixed) | ||
Mean monthly trend | 0.207 (0.182, 0.232) | 1.230 (1.200, 1.261) |
Monthly rainfall (10 mm) * | −5.35 × 10−6 (−1.06 × 10−4, 8.20 × 10−5) | 1.000 (0.9999, 1.0001) |
Monthly maximum Temp (°C) ⁑ | −1.98 × 10−3 (−1.30 × 10−2, 9.56 × 10−3) | 0.998 (0.9871, 1.0096) |
Monthly minimum Temp (°C) | −2.18 × 10−2 (−3.92 × 10−2, −5.53 × 10−3) | 0.978 (0.9616, 0.9945) |
Heterogeneity | ||
Structured (trend) | 0.504 (0.269, 0.821) | |
Unstructured | 0.951 (0.423, 2.236) | |
Structured (spatial) | 1.590 (0.153, 5.376) | |
DIC | 16,579.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donkor, E.; Kelly, M.; Eliason, C.; Amotoh, C.; Gray, D.J.; Clements, A.C.A.; Wangdi, K. A Bayesian Spatio-Temporal Analysis of Malaria in the Greater Accra Region of Ghana from 2015 to 2019. Int. J. Environ. Res. Public Health 2021, 18, 6080. https://doi.org/10.3390/ijerph18116080
Donkor E, Kelly M, Eliason C, Amotoh C, Gray DJ, Clements ACA, Wangdi K. A Bayesian Spatio-Temporal Analysis of Malaria in the Greater Accra Region of Ghana from 2015 to 2019. International Journal of Environmental Research and Public Health. 2021; 18(11):6080. https://doi.org/10.3390/ijerph18116080
Chicago/Turabian StyleDonkor, Elorm, Matthew Kelly, Cecilia Eliason, Charles Amotoh, Darren J. Gray, Archie C. A. Clements, and Kinley Wangdi. 2021. "A Bayesian Spatio-Temporal Analysis of Malaria in the Greater Accra Region of Ghana from 2015 to 2019" International Journal of Environmental Research and Public Health 18, no. 11: 6080. https://doi.org/10.3390/ijerph18116080
APA StyleDonkor, E., Kelly, M., Eliason, C., Amotoh, C., Gray, D. J., Clements, A. C. A., & Wangdi, K. (2021). A Bayesian Spatio-Temporal Analysis of Malaria in the Greater Accra Region of Ghana from 2015 to 2019. International Journal of Environmental Research and Public Health, 18(11), 6080. https://doi.org/10.3390/ijerph18116080