Assessment of Cytogenetic Damage and Cholinesterases’ Activity in Workers Occupationally Exposed to Pesticides in Zamora-Jacona, Michoacan, Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Sample Collection
2.2. Cholinesterases Activity
2.2.1. Serum Cholinesterase Activities
2.2.2. Whole Blood Acetylcholinesterase Activity
2.3. Cytogenetic Assays
2.3.1. Comet Assay
2.3.2. Cytokinesis-Block MN Assay (L-CBMNcyt)
2.3.3. Buccal Micronucleus Cytome Assay
2.4. Statistical Analysis
3. Results
3.1. Sociodemographic Characteristics of the Study Groups
3.2. Cholinesterases Activity
3.3. Cytogenetic Damage
3.3.1. Comet Assay
3.3.2. Cytokinesis-Block MN Assay (L-CBMNcyt)
3.3.3. Buccal MN Cytome Assays
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Zamora-Torres, A.I.; Riveros-Figueroa, E. Estudio de la región michoacana de Zamora como polo de competitividad internacional agrícola. Clío América 2016, 10, 139–159. [Google Scholar] [CrossRef] [Green Version]
- SIAP. Servicio de Información Agroalimentaria y Pesquera: Anuario Estadístico de la Producción Agrícola. 2019. Available online: http://infosiap.siap.gob.mx/aagricola_siap_gb/icultivo/index.jsp (accessed on 20 April 2019).
- Álvarez-Medina, A.; Silva-Rojas, H.V.; Leyva-Mir, S.G.; Marbán-Mendoza, N.; Rebollar-Alviter, Á. Resistance of Botrytis cinerea from strawberry (Fragaria x ananassa Duch.) to fungicides in Michoacan Mexico. Agrociencia 2017, 51, 783–798. [Google Scholar]
- Valerio-Salgado, A.; Ayala-Ortega, J.J.; Ramos-Lima, M.; Lara-Chávez, M.B.N.; Aguirre-Paleo, S.; Vargas-Sandoval, M. Ácaros asociados al cultivo de fresa (Fraggaria ssp.) en cinco municipios de Michoacán. Entomol. Mex. 2019, 6, 55–61. [Google Scholar]
- Hernández, A.F.; Parrón, T.; Tsatsakis, A.M.; Requena, M.; Alarcón, R.; López-Guarnido, O. Toxic effects of pesticide mixtures at a molecular level: Their relevance to human health. Toxicology 2013, 307, 136–145. [Google Scholar] [CrossRef]
- Marcelino, A.F.; Wachtel, C.C.; Ghisi, N.C. Are our farm workers in danger? Genetic damage in farmers exposed to pesticides. Int. J. Environ. Res. Public Health 2019, 16, 358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.; Kabir, E.; Jahan, S.A. Exposure to pesticides and the associated human health effects. Sci. Total Environ. 2017, 575, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Ogut, S. Genotoxic effects of pesticides. J. Environ. Prot. Ecol. 2019, 20, 224–229. [Google Scholar]
- Bolognesi, C. Genotoxicity of pesticides: A review of human biomonitoring studies. Mutat. Res. Rev. Mutat. Res. 2003, 543, 251–272. [Google Scholar] [CrossRef]
- Bull, S.; Fletcher, K.; Boobis, A.R.; Battersill, J.M. Evidence for genotoxicity of pesticides in pesticide applicators: A review. Mutagenesis 2006, 21, 93–103. [Google Scholar] [CrossRef] [Green Version]
- Bolognesi, C.; Creus, A.; Ostrosky-Wegman, P.; Marcos, R. Micronuclei and pesticide exposure. Mutagenesis 2011, 26, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Bolognesi, C.; Holland, N. The use of the lymphocyte cytokinesis-block micronucleus assay for monitoring pesticide-exposed populations. Mutat. Res. Rev. Mutat. Res. 2016, 770, 183–203. [Google Scholar] [CrossRef] [PubMed]
- Paz-y-Miño, C.; Bustamante, G.; Sánchez, M.E.; Leone, P.E. Cytogenetic monitoring in a population occupationally exposed to pesticides in Ecuador. Environ. Health Perspect. 2002, 110, 1077–1080. [Google Scholar] [CrossRef] [Green Version]
- Naravaneni, R.; Jamil, K. Determination of AChE levels and genotoxic effects in farmers occupationally exposed to pesticides. Hum. Exp. Toxicol. 2007, 26, 723–731. [Google Scholar] [CrossRef]
- Želježić, D.; Vrdoljak, A.L.; Radić, B.; Fuchs, N.; Berend, S.; Oreščanin, V.; Kopjar, N. Comparative evaluation of acetylcholinesterase status and genome damage in blood cells of industrial workers exposed to carbofuran. Food Chem. Toxicol. 2007, 45, 2488–2498. [Google Scholar] [CrossRef] [PubMed]
- Ali, T.; Bhalli, J.A.; Rana, S.M.; Khan, Q.M. Cytogenetic damage in female Pakistani agricultural workers exposed to pesticides. Environ. Mol. Mutagen. 2008, 49, 374–380. [Google Scholar] [CrossRef]
- Simoniello, M.F.; Kleinsorge, E.C.; Carballo, M.A. Evaluación bioquímica de trabajadores rurales expuestos a pesticidas [Biochemical evaluation on rural workers exposed to pesticides]. Medicina 2010, 70, 489–498. (In Spanish) [Google Scholar] [PubMed]
- Da Silva, F.R.; Kvitko, K.; Rohr, P.; Abreu, M.B.; Thiesen, F.V.; Da Silva, J. Genotoxic assessment in tobacco farmers at different crop times. Sci. Total Environ. 2014, 490, 334–341. [Google Scholar] [CrossRef]
- Dhananjayan, V.; Ravichandran, B.; Panjakumar, K.; Kalaiselvi, K.; Kausic, R.; Mala, A.; Avinash, G.; Shridhar, K.; Manju, A.; Rajesh, W. Assessment of genotoxicity and cholinesterase activity among women workers occupationally exposed to pesticides in tea garden. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2019, 841, 1–7. [Google Scholar] [CrossRef]
- Bernieri, T.; Moraes, M.F.; Ardenghi, P.G.; Basso da Silva, L. Assessment of DNA damage and cholinesterase activity in soybean farmers in southern Brazil: High versus low pesticide exposure. J. Environ. Sci. Health Part B 2020, 55, 355–360. [Google Scholar] [CrossRef]
- Massoulié, J.; Pezzementi, L.; Bon, S.; Krejci, E.; Vallette, F.M. Molecular and cellular biology of cholinesterases. Prog. Neurobiol. 1993, 41, 31–91. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Speit, G.; Hartmann, A. The comet assay: A sensitive genotoxicity test for the detection of DNA damage and repair. Methods Mol. Biol. 2006, 314, 275–286. [Google Scholar] [CrossRef]
- Møller, P.; Azqueta, A.; Boutet-Robinet, E.; Koppen, G.; Bonassi, S.; Milić, M.; Gajski, G.; Costa, S.; Teixeira, J.P.; Costa Pereira, C.; et al. Minimum Information for Reporting on the Comet Assay (MIRCA): Recommendations for describing comet assay procedures and results. Nat. Protoc. 2020, 15, 3817–3826. [Google Scholar] [CrossRef]
- Bolognesi, C.; Fenech, M. Micronucleus Cytome Assays in Human Lymphocytes and Buccal Cells. Methods Mol. Biol. 2019, 2031, 147–163. [Google Scholar] [CrossRef]
- Thomas, P.; Holland, N.; Bolognesi, C.; Kirsch-Volders, M.; Bonassi, S.; Zieger, E.; Knasmueller, S.; Fenech, M. Buccal micronucleus cytome assay. Nat. Protoc. 2009, 4, 825–837. [Google Scholar] [CrossRef]
- Holland, N.; Bolognesi, C.; Kirsch-Volders, M.; Bonassi, S.; Zeiger, E.; Knasmueller, S.; Fenech, M. The micronucleus in human buccal cells as a tool for biomonitoring DNA damage: The HUMN project perspective on current status and knowledge gaps. Mutat. Res. 2008, 659, 93–108. [Google Scholar] [CrossRef] [PubMed]
- WHO. The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019; World Health Organization: Geneva, Switzerland, 2020; Available online: https://apps.who.int/iris/bitstream/handle/10665/332193/9789240005662-eng.pdf?ua=1 (accessed on 6 April 2021).
- USEPA. Chemicals Evaluated for Carcinogenic Potential Office of Pesticide Programs; Anual Cáncer Report; U.S. Environmental Protection Agency: Washington, DC, USA, 2018; p. 44. Available online: http://npic.orst.edu/chemicals_evaluated.pdf (accessed on 6 April 2021).
- IARC. IARC Monographs on the Identification of Carcinogenic Hazards to Humans, Agents Classifed by the IARC Monographs; IARC: Geneva, Switzerland, 2020; Volume 1–125, Available online: https://monographs.iarc.fr/agents-classified-by-the-iarc/ (accessed on 6 April 2021).
- Møller, P. Assessment of reference values for DNA damage detected by the Comet assay in human blood cell DNA. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2006, 612, 84–104. [Google Scholar] [CrossRef] [PubMed]
- AMIFAC. Asociación Mexicana de la Industria Fitosanitaria A.C., México. 2015. Available online: http://amifac.org.mx/nosotros.html (accessed on 6 April 2021).
- Strelitz, J.; Engel, L.S.; Keifer, M.C. Blood acetylcholinesterase and butyrylcholinesterase as biomarkers of cholinesterase depression among pesticide handlers. Occup. Environ. Med. 2014, 71, 842–847. [Google Scholar] [CrossRef] [Green Version]
- Perumalla Venkata, R.; Rahman, M.F.; Mahboob, M.; Indu Kumari, S.; Chinde, S.M.B.; Dumala, N.; Grover, P. Assessment of genotoxicity in female agricultural workers exposed to pesticides. Biomarkers 2017, 22, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Taghavian, F.; Vaezi, G.; Abdollahi, M.; Malekirad, A.A. Comparative toxicological study between exposed and non-exposed farmers to organophosphorus pesticides. Cell J. 2016, 18, 89–96. [Google Scholar] [CrossRef]
- Krieger, R.I.; Dinoff, T.M. Malathion deposition, metabolite clearance, and cholinesterase status of date dusters and harvesters in California. Arch. Environ. Contam. Toxicol. 2000, 38, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Hongsibsong, S.; Sittitoon, N.; Sapbamrer, R. Association of health symptoms with low-level exposure to organophosphates, DNA damage, AChE activity, and occupational knowledge and practice among rice, corn, and double-crop farmers. J. Occup. Health 2017, 59, 165–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arévalo-Jaramillo, P.; Idrobo, A.; Salcedo, L.; Cabrera, A.; Vintimilla, A.; Carrión, M.; Bailon-Moscoso, N. Biochemical and genotoxic effects in women exposed to pesticides in Southern Ecuador. Environ. Sci. Pollut. Res. 2019, 26, 24911–24921. [Google Scholar] [CrossRef]
- Milatovic, D.; Gupta, R.C.; Aschner, M. Anticholinesterase toxicity and oxidative stress. Sci. World J. 2006, 6, 295–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilgert Jacobsen-Pereira, C.; Dos Santos, C.R.; TroinaMaraslis, F.; Pimentel, L.; Feijó, A.J.L.; Iomara Silva, C.; de Medeiros, G.D.S.; Costa Zeferino, R.; CuriPedrosa, R.; Weidner Maluf, S. Markers of genotoxicity and oxidative stress in farmers exposed to pesticides. Ecotoxicol. Environ. Saf. 2018, 148, 177–183. [Google Scholar] [CrossRef]
- Hatjian, B.A.; Mutch, E.; Williams, F.M.; Blain, P.G.; Edwards, J.W. Cytogenetic response without changes in peripheral cholinesterase enzymes following exposure to a sheep dip containing diazinon in vivo and in vitro. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2000, 472, 85–92. [Google Scholar] [CrossRef]
- Cavallo, D.; Ursini, C.L.; Rondinone, B.; Iavicoli, S. Evaluation of a suitable DNA damage biomarker for human biomonitoring of exposed workers. Environ. Mol. Mutag. 2009, 50, 781–790. [Google Scholar] [CrossRef]
- Aiassa, D.E.; Manas, F.J.; Gentile, N.E.; Bosch, B.; Salinero, M.C.; Gorla, N.B.M. Evaluation of genetic damage in pesticides applicators from the Province of Cordoba. Environ. Sci. Pollut. Res. 2019, 26, 20981–20988. [Google Scholar] [CrossRef]
- Carbajal-López, Y.; Gómez-Arroyo, S.; Villalobos-Pietrini, R.; Calderón-Segura, M.E.; Martínez-Arroyo, A. Biomonitoring of agricultural workers exposed to pesticide mixtures in Guerrero State, Mexico, with comet assay and micronucleus test. Environ. Sci. Pollut. Res. 2016, 23, 2513–2520. [Google Scholar] [CrossRef] [PubMed]
- Cayir, A.; Coskun, M.; Coskun, M.; Cobanoglu, H. Comet assay for assessment of DNA damage in greenhouse workers exposed to pesticides. Biomarkers 2019, 24, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Bahadur, M. Comet assay genotoxicity evaluation of occupationally exposed tea-garden workers in Northern West Bengal, India. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2019, 844, 1–9. [Google Scholar] [CrossRef]
- Zepeda-Arce, R.; Rojas-García, A.E.; Benitez-Trinidad, A.; Herrera-Moreno, F.; Medina-Díaz, I.M.; Barron-Vivanco, B.S.; Villegas, G.P.; Hernández-Ochoa, I.; Heredia, M.J.S.; Bernal-Hernández, Y.Y. Oxidative stress and genetic damage among workers exposed primarily to organophosphate and pyrethroid pesticides. Environ. Toxicol. 2017, 32, 1754–1764. [Google Scholar] [CrossRef]
- Simoniello, M.F.; Kleinsorge, E.C.; Scagnetti, J.A.; Mastandrea, C.; Grigolato, R.A.; Paonessa, A.M.; Carballo, M.A. Biomarkers of cellular reaction to pesticide exposure in a rural population. Biomarkers 2010, 15, 52–60. [Google Scholar] [CrossRef]
- Benedetti, D.; Nunes, E.; Sarmento, M.; Porto, C.; Santos, C.E.I.; Dias, J.F.; Silva, J. Genetic damage in soybean workers exposed to pesticides: Evaluation with the comet and buccal micronucleus cytome assays. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2013, 752, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, C.M.; Kunz, A.C.; Basso da Siva, L. Assessment of DNA damage in floriculturists in southern Brazil. Environ. Sci. Pollut. Res. 2015, 22, 8182–8189. [Google Scholar] [CrossRef] [PubMed]
- Ceppi, M.; Biasotti, B.; Fenech, M.; Bonassi, S. Human population studies with the exfoliated buccal micronucleus assay: Statistical and epidemiological issues. Mutat. Res. 2010, 705, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Bonassi, S.; Coskun, E.; Ceppi, M.; Lando, C.; Bolognesi, C.; Burgaz, S.; Holland, N.; Kirsh-Volders, M.; Knasmueller, S.; Zeiger, E.; et al. The HUman MicroNucleus project on eXfoLiated buccal cells (HUMN(XL)): The role of life-style, host factors, occupational exposures, health status, and assay protocol. Mutat. Res. 2011, 728, 88–97. [Google Scholar] [CrossRef]
- Moshou, H.; Karakitsou, A.; Yfanti, F.; Hela, D.; Vlastos, D.; Paschalidou, A.K.; Kassomenos, P.; Petrou, I. Assessment of genetic effects and pesticide exposure of farmers in NW Greece. Environ. Res. 2020, 186, 109558. [Google Scholar] [CrossRef]
- Fenech, M.; Crott, J.W. Micronuclei, nucleoplasmic bridges and nuclear buds induced in folic acid deficient humanlymphocytes-evidence for breakage-fusion-bridge cycles in the cytokinesis-block micronucleus assay. Mutat. Res. 2002, 504, 131–136. [Google Scholar] [CrossRef]
- Ilgren, E.B. The initiation and control of trophoblastic growth in the mouse: Binucleation and polyploidy. Placenta 1981, 2, 317–331. [Google Scholar] [CrossRef]
- Shi, Q.; King, R.W. Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature 2005, 437, 1038–1042. [Google Scholar] [CrossRef]
- Cairns, J. Mutation selection and the natural history of cancer. Nature 1975, 255, 197–200. [Google Scholar] [CrossRef]
- Thomas, P.; Harvey, S.; Gruner, T.; Fenech, M. The buccal cytome and micronucleus frequency is substantially altered in Down’s syndrome and normal ageing compared to young healthy controls. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2008, 638, 37–47. [Google Scholar] [CrossRef]
- Silvério, A.C.P.; Machado, S.C.; Azevedo, L.; Nogueira, D.A.; de Castro Graciano, M.M.; Simoes, J.S.; Nachado Viana, A.L.; Martins, I. Assessment of exposure to pesticides in rural workers in southern of Minas Gerais, Brazil. Environ. Toxicol. Pharmacol. 2017, 55, 99–106. [Google Scholar] [CrossRef]
- Garaj-Vrhovac, V.; Želježić, D. Cytogenetic monitoring of Croatian population occupationally exposed to a complex mixture of pesticides. Toxicology 2001, 165, 153–162. [Google Scholar] [CrossRef]
- Jonnalagadda, P.R.; Jahan, P.; Venkatasubramanian, S.; Khan, I.A.; Prasad, A.Y.E.; Reddy, K.A.; Rao, M.V.; Venkaiah, K.; Hasan, Q. Genotoxicity in agricultural farmers from Guntur district of South India-A case study. Hum. Exp. Toxicol. 2012, 31, 741–747. [Google Scholar] [CrossRef] [PubMed]
- Pasquini, R.; Scassellati-Sforzolini, G.; Angeli, G.; Fatigoni, C.; Monarca, S.; Beneventi, L.; DiGiulio, A.M.; Bauleo, F.A. Cytogenetic biomonitoring of pesticide-exposed farmers in central Italy. J. Environ. Pathol. Toxicol. Oncol. 1996, 15, 29–39. [Google Scholar] [PubMed]
- Joksić, G.; Vidaković, A.; Spasojević-Tiŝma, V. Cytogenetic monitoring of pesticide sprayers. Environ. Res. 1997, 75, 113–118. [Google Scholar] [CrossRef]
- Kapka-Skrzypczak, L.; Czajka, M.; Sawicki, K.; Matysiak-Kucharek, M.; Gabelova, A.; Sramkova, M.; Bartyzel-Lechforowicz, H.; Kruszewski, M. Assessment of DNA damage in Polish children environmentally exposed to pesticides. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2019, 843, 52–56. [Google Scholar] [CrossRef]
- Ghosh, R.; Siddharth, M.; Kuman Kare, P.; Piakash Kalra, O.; Kumar Tripathi, A. Role of Organochlorine Pesticides in Chronic Kidney Diseases of Unknown Etiology: Chronic Kidney Disease—From Pathophysiology to Clinical Improvements; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Q.; Xu, C.; Shao, W.; Zhang, C.; Liu, H.; Jiang, Z.; Gu, A. Organochloride pesticides impaired mitochondrial function in hepatocytes and aggravated disorders of fatty acid metabolism. Sci. Rep. 2017, 7, 46339. [Google Scholar] [CrossRef] [Green Version]
- Setayesh, T.; Nersesyan, A.; Mišík, M.; Ferk, F.; Langie, S.; Andrade, V.M.; Haslberger, A.; Knasmüller, S. Impact of obesity and overweight on DNA stability: Few facts and many hypotheses. Mutat. Res. 2018, 777, 64–91. [Google Scholar] [CrossRef]
- Piperakis, M.M. Investigation of the genotoxic effect of pesticides on greenhouse workers’ lymphocytes. Environ. Mol. Mutagen. 2009, 50, 121–126. [Google Scholar] [CrossRef]
- Piperakis, S.M.; Kontogianni, K.; Piperakis, M.M.; Tsilimigaki, S. Effects of pesticides on occupationally exposed humans. Sci. World J. 2006, 25, 1211–1220. [Google Scholar] [CrossRef] [PubMed]
- Piperakis, S.M.; Kontogianni, K.; Siffel, C.; Piperakis, M.M. Measuring the effects of pesticides on occupationally exposed humans with the comet assay. Environ. Toxicol. 2006, 21, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Bonassi, S.; Neri, M.; Lando, C.; Ceppi, M.; Lin, Y.P.; Chang, W.P.; Holland, N.; Kirsch-Volders, M.; Zeiger, E.; HUMN Collaborative Group; et al. Effect of smoking habit on the frequency of micronuclei in human lymphocytes: Results from the Human MicroNucleus project. Mutat. Res. 2003, 543, 155–166. [Google Scholar] [CrossRef]
- Fenech, M.; Bonassi, S. The effect of age, gender, diet and lifestyle on DNA damage measured using micronucleus frequency in human peripheral blood lymphocytes. Mutagenesis 2011, 26, 43–49. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Control Group | Exposed Group | ||
---|---|---|---|---|
n | 26 | 54 | ||
Gender (M/F) (%) | 8/18 | (31/69) | 52/2 | (96/4) |
Age (years, mean ± SD) (range) | 37.62 ± 3.10 | (19–72) | 36.09 ± 1.60 | (18–71) |
BMI (kg/m2, mean ± SD) (range) | 26.05 ± 1.06 | (18.51–39.89) | 28.49 ± 0.65 | (17.90–41.91) |
Exposure time (in years, mean ± SD) (range) | NA | 5.36 ± 0.43 | (1 ≤ 10) | |
Smoking | ||||
Smokers, n (%) | 3 | (12) | 17 | (31) |
Non-smokers, n (%) | 23 | (88) | 37 | (69) |
Alcohol intake | ||||
yes, n (%) | 2 | (8) | 30 | (56) |
no, n (%) | 24 | (92) | 24 | (44) |
PPM, n (%) | NA | 47 of 54 | (87) |
P | CC | Compound | IUPAC Name | WHO | USEPA/IARC |
---|---|---|---|---|---|
I | Organophosphate | Diazinon | O,O-diethyl O-[4-methyl-6-(propan-2-yl)pyrimidin-2-yl] phosphorothioate | II | NLC/Group 2A |
Dimethoate | O,O-dimethyl S-[2-(methylamino)-2-oxoethyl] dithiophosphate | II | Group C/NE | ||
Gusathion (Azinphos-ethyl) | O,O-diethyl S-[(4-oxo-1,2,3-benzotriazin-3(4H)-yl)methyl] phosphorodithioate | Ib | NE | ||
Lorsban (Chlorpyrifos) | O,O-diethyl O-3,5,6-trichloropyridin-2-yl phosphorothioate | II | Group E/NE | ||
Malathion | Diethyl 2-[(dimethoxyphosphorothioyl)sulfanyl]butanedioate | III | SEC/Group 2A | ||
Orthene (Acephate) | N-(methoxy-methylsulfanylphosphoryl)acetamide | II | Group C/NE | ||
Parathion (Folidol) | O,O-diethyl O-(4-nitrophenyl) phosphorothioate | Ia | Group C/Group 2B | ||
Tamaron (Methamidophos) | O,S-dimethyl phosphoramidothioate | Ib | NLC/NE | ||
Carbamate | Furadan (Carbofuran) | 2,2-dimethyl-2,3-dihydro-1-benzofuran-7-yl methylcarbamate | Ib | NLC/NE | |
Lannate (Methomyl) | (E,Z)-methyl N-{[(methylamino)carbonyl]oxy}ethanimidothioate | Ib | Group E/NE | ||
Vydate (Oxamyl) | Methyl 2-(dimethylamino)-N-[(methylcarbamoyl)oxy]-2-oxoethanimidothioate | Ib | Group E/NE | ||
Organochlorine | Aldrin | 1,2,3,4,10,10-hexachloro-1,4,4a,5,8,8a-hexahydro-1,4:5,8-dimethanonaphthalene | O | Group B2/Group 3 | |
Dicofol (Kelthane) | 2,2,2-trichloro-1,1-bis(4-chlorophenyl)ethanol | II | Group C/Group 3 | ||
Endosulfan | 6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro- 6,9-methano-2,4,3-benzodioxathiepine-3-oxide | II | NLC/NE | ||
Piretroides | Baytroid (Cyfluthrin) | β-cyfluthrin Cyano{4-fluoro-3-phenoxyphenyl)methyl-3-{2,2-dichloroethenyl)-2,2-dimethyl-cyclopropanecarboxylate | 1b | NLC/NE | |
Karate (Lambda-cyhalothrin) | (R)-α-cyano-3-phenoxybenzyl (1S)-cis-3-[(Z)-2-chloro-3,3,3-trifluoropropenyl]-2,2-dimethylcyclopropanecarboxylate and (S)-a-cyano-3-phenoxybenzyl (1R)-cis-3-[(Z)-2-chloro-3,3,3-trifluoropropenyl]-2,2-dimethylcyclopropanecarboxylate | II | Group D/NE | ||
Talstar (Bifenthrin) | 2-Methyl-3-phenylphenyl)methyl (1S,3S)-3-[(Z)-2-chloro-3,3,3-trifluoroprop-1-enyl]- 2,2-dimethylcyclopropane-1-carboxylate | II | Group C/NE | ||
H | Organophosphate | Paraquat | 1,1′-dimethyl-4,4′-bipyridinium dichloride | II | Group C/NE |
F | Carbamate | Manzate (Mancozeb) | Zinc;manganese(2+);N-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate | U | Group B/Group 2B |
AChE Whole Blood | AChE Serum | BChE Serum | ||||
---|---|---|---|---|---|---|
Parameter | Subjects | Subjects | Subjects | |||
Unexposed | Exposed | Unexposed | Exposed | Unexposed | Exposed | |
Mean (U/mL) | 4.02 | 4.73 | 35.32 | 52.35 | 231.76 | 296.73 |
Maximum | 6.68 | 7.11 | 20.18 | 79.83 | 380.35 | 414.71 |
Minimum | 1.40 | 2.38 | 55.07 | 34.98 | 118.86 | 204.26 |
SD | 1.40 | 1.23 | 11.07 | 10.04 | 81.60 | 60.78 |
p > 0.16 | p < 0.0006 | p < 0.0047 | ||||
AChE—Acethylcholinesterase, BChE—Buthyrilcholinesterase |
Assay/Parameters | Control Group (n = 26) | Exposed Group (n = 54) | Level of Significance (p) |
---|---|---|---|
Comet Assay | |||
Tail Length,µm | 55.62 ± 13.88 | 78.80 ± 25.00 | <0.0001 |
Tail Intensity, % | 9.21 ± 4.10 | 22.40 ± 9.82 | <0.0001 |
Tail Moment | 1.89 ± 1.24 | 6.34 ± 5.02 | <0.0001 |
Olive Tail Moment | 0.24 ± 1.18 | 6.31 ± 9.73 | <0.0001 |
Cytokinesis-block micronucleus cytome assay | |||
MN | 2.68 ± 4.35 | 7.53 ± 5.45 | <0.001 |
Buccal micronucleous cytome assay | |||
MN | 0.269 ± 0.365 | 0.777 ± 1.39 | <0.05 |
Binucleated cells | 3.712 ± 2.069 | 8.754 ± 6.43 | <0.001 |
Karyorrhectic cells | 0.038 ± 0.141 | 1.067 ± 1.07 | <0.001 |
Pyknotic cells | 1.243 ± 1.841 | 3.863 ± 4.34 | 0.001 |
Karyolitic cells | 0.962 ± 1.110 | 2.449 ± 2.09 | <0.001 |
Nuclear Buds | 0.571 ± 0.744 | 1.762 ± 1.30 | <0.001 |
Condensed Chromatin | 2.252 ± 1.785 | 9.662 ± 6.91 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valencia-Quintana, R.; López-Durán, R.M.; Milić, M.; Bonassi, S.; Ochoa-Ocaña, M.A.; Uriostegui-Acosta, M.O.; Pérez-Flores, G.A.; Gómez-Olivares, J.L.; Sánchez-Alarcón, J. Assessment of Cytogenetic Damage and Cholinesterases’ Activity in Workers Occupationally Exposed to Pesticides in Zamora-Jacona, Michoacan, Mexico. Int. J. Environ. Res. Public Health 2021, 18, 6269. https://doi.org/10.3390/ijerph18126269
Valencia-Quintana R, López-Durán RM, Milić M, Bonassi S, Ochoa-Ocaña MA, Uriostegui-Acosta MO, Pérez-Flores GA, Gómez-Olivares JL, Sánchez-Alarcón J. Assessment of Cytogenetic Damage and Cholinesterases’ Activity in Workers Occupationally Exposed to Pesticides in Zamora-Jacona, Michoacan, Mexico. International Journal of Environmental Research and Public Health. 2021; 18(12):6269. https://doi.org/10.3390/ijerph18126269
Chicago/Turabian StyleValencia-Quintana, Rafael, Rosa María López-Durán, Mirta Milić, Stefano Bonassi, Ma. Antonieta Ochoa-Ocaña, Mayrut Osdely Uriostegui-Acosta, Guillermo Alejandro Pérez-Flores, José Luis Gómez-Olivares, and Juana Sánchez-Alarcón. 2021. "Assessment of Cytogenetic Damage and Cholinesterases’ Activity in Workers Occupationally Exposed to Pesticides in Zamora-Jacona, Michoacan, Mexico" International Journal of Environmental Research and Public Health 18, no. 12: 6269. https://doi.org/10.3390/ijerph18126269
APA StyleValencia-Quintana, R., López-Durán, R. M., Milić, M., Bonassi, S., Ochoa-Ocaña, M. A., Uriostegui-Acosta, M. O., Pérez-Flores, G. A., Gómez-Olivares, J. L., & Sánchez-Alarcón, J. (2021). Assessment of Cytogenetic Damage and Cholinesterases’ Activity in Workers Occupationally Exposed to Pesticides in Zamora-Jacona, Michoacan, Mexico. International Journal of Environmental Research and Public Health, 18(12), 6269. https://doi.org/10.3390/ijerph18126269