Selective Inhibitory Control in Middle Childhood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Stimulus-Selective Stopping Task
2.3. Task-Related Measures
2.3.1. Inhibitory Control-Related Measures
2.3.2. Attention-Related Measures
2.4. Data Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DelGiudice, M. Middle Childhood: An Evolutionary-Developmental Synthesis. In Handbook of Life Course Health Development; Halfon, N., Forrest, C.B., Lerner, R.M., Faustman, E.M., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 95–107. [Google Scholar]
- Moffitt, T.E.; Arseneault, L.; Belsky, D.; Dickson, N.; Hancox, R.J.; Harrington, H.; Houts, R.; Poulton, R.; Roberts, B.W.; Ross, S.; et al. A gradient of childhood self-control predicts health, wealth, and public safety. Proc. Natl. Acad. Sci. USA 2011, 108, 2693–2698. [Google Scholar] [CrossRef] [Green Version]
- Moffitt, T.E.; Poulton, R.; Caspi, A. Lifelong Impact of Early Self-Control. Am. Sci. 2013, 101, 352–359. [Google Scholar] [CrossRef]
- Lebel, C.; Walker, L.; Leemans, A.; Phillips, L.; Beaulieu, C. Microstructural maturation of the human brain from childhood to adulthood. Neuroimage 2008, 40, 1044–1055. [Google Scholar] [CrossRef]
- Rubia, K. Functional brain imaging across development. Eur. Child Adolesc. Psychiatry 2013, 22, 719–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engelhardt, L.E.; Harden, K.P.; Tucker-Drob, E.M.; Church, J.A. The neural architecture of executive functions is established by middle childhood. Neuroimage 2019, 185, 479–489. [Google Scholar] [CrossRef] [PubMed]
- Brocki, K.C.; Bohlin, G. Executive functions in children aged 6 to 13: A dimensional and developmental study. Dev. Neuropsychol. 2004, 26, 571–593. [Google Scholar] [CrossRef] [PubMed]
- Betts, J.; McKay, J.; Maruff, P.; Anderson, V. The development of sustained attention in children: The effect of age and task load. Child Neuropsychol. 2006, 12, 205–221. [Google Scholar] [CrossRef]
- Klimkeit, E.I.; Mattingley, J.B.; Sheppard, D.M.; Farrow, M.; Bradshaw, J.L. Examining the development of attention and executive functions in children with a novel paradigm. Child Neuropsychol. 2004, 10, 201–211. [Google Scholar] [CrossRef]
- Lewis, F.C.; Reeve, R.A.; Kelly, S.P.; Johnson, K.A. Evidence of substantial development of inhibitory control and sustained attention between 6 and 8years of age on an unpredictable Go/No-Go task. J. Exp. Child Psychol. 2017, 157, 66–80. [Google Scholar] [CrossRef]
- Suades-González, E.; Forns, J.; García-Esteban, R.; López-Vicente, M.; Esnaola, M.; Álvarez-Pedrerol, M.; Julvez, J.; Cáceres, A.; Basagaña, X.; López-Sala, A.; et al. A Longitudinal Study on Attention Development in Primary School Children with and without Teacher-Reported Symptoms of ADHD. Front. Psychol. 2017, 8, 655. [Google Scholar] [CrossRef]
- Van de Laar, M.C.; van den Wildenberg, W.P.; van Boxtel, G.J.; van der Molen, M.W. Lifespan changes in global and selective stopping and performance adjustments. Front. Psychol. 2011, 2, 357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diamond, A. Executive functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bari, A.; Robbins, T.W. Inhibition and impulsivity: Behavioral and neural basis of response control. Prog. Neurobiol. 2013, 108, 44–79. [Google Scholar] [CrossRef]
- Friedman, N.P.; Miyake, A. Unity and diversity of executive functions: Individual differences as a window on cognitive structure. Cortex 2017, 86, 186–204. [Google Scholar] [CrossRef] [Green Version]
- Bissett, P.G.; Logan, G.D. Selective stopping? Maybe not. J. Exp. Psychol. Gen. 2014, 143, 455–472. [Google Scholar] [CrossRef] [Green Version]
- Aron, A.R. From reactive to proactive and selective control: Developing a richer model for stopping inappropriate responses. Biol. Psychiatry 2011, 69, e55–e68. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Carmona, A.J.; Albert, J.; Hinojosa, J.A. Neural and behavioral correlates of selective stopping: Evidence for a different strategy adoption. Neuroimage 2016, 139, 279–293. [Google Scholar] [CrossRef]
- Sánchez-Carmona, A.J.; Santaniello, G.; Capilla, A.; Hinojosa, J.A.; Albert, J. Oscillatory brain mechanisms supporting response cancellation in selective stopping strategies. Neuroimage 2019, 197, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Soltanifar, M.; Knight, K.; Dupuis, A.; Schachar, R.; Escobar, M. A Time Series-Based Point Estimation of Stop Signal Reaction Times: More Evidence on the Role of Reactive Inhibition-Proactive Inhibition Interplay on the SSRT Estimations. Brain Sci. 2020, 10, 598. [Google Scholar] [CrossRef]
- Cai, W.; Oldenkamp, C.L.; Aron, A.R. A proactive mechanism for selective suppression of response tendencies. J. Neurosci. 2011, 31, 5965–5969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenhouse, I.; Oldenkamp, C.L.; Aron, A.R. Stopping a response has global or nonglobal effects on the motor system depending on preparation. J. Neurophysiol. 2012, 107, 384–392. [Google Scholar] [CrossRef] [Green Version]
- Smittenaar, P.; Guitart-Masip, M.; Lutti, A.; Dolan, R.J. Preparing for selective inhibition within frontostriatal loops. J. Neurosci. 2013, 33, 18087–18097. [Google Scholar] [CrossRef] [Green Version]
- Rincón-Pérez, I.; Echeverry-Alzate, V.; Sánchez-Carmona, A.; Bühler, K.; Hinojosa, J.; López-Moreno, J.; Albert, J. The influence of dopaminergic polymorphisms on selective stopping. Behav. Brain Res. 2020, 381, 112441. [Google Scholar] [CrossRef]
- Logan, G.D.; Cowan, W.B.; Davis, K.A. On the ability to inhibit simple and choice reaction time responses: A model and a method. J. Exp. Psychol. Hum. Percept. Perform. 1984, 10, 276–291. [Google Scholar] [CrossRef]
- Verbruggen, F.; Logan, G.D. Response inhibition in the stop-signal paradigm. Trends Cogn. Sci. 2008, 12, 418–424. [Google Scholar] [CrossRef] [Green Version]
- Bissett, P.G.; Jones, H.M.; Poldrack, R.A.; Logan, G.D. Severe violations of independence in response inhibition tasks. Sci. Adv. 2021, 7. [Google Scholar] [CrossRef] [PubMed]
- Dutilh, G.; Vandekerckhove, J.; Forstmann, B.U.; Keuleers, E.; Brysbaert, M.; Wagenmakers, E.J. Testing theories of post-error slowing. Atten. Percept. Psychophys. 2012, 74, 454–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danielmeier, C.; Ullsperger, M. Post-error adjustments. Front. Psychol. 2011, 2, 233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wessel, J.R. An adaptive orienting theory of error processing. Psychophysiology 2018, 55, e13041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robbins, T.W.; Dalley, J.W. Dissecting Impulsivity: Brain Mechanisms and Neuropsychiatric Implications. In Impulsivity: How Time and Risk Influence Decision Making; Stevens, J.R., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 201–226. [Google Scholar]
- Voon, V.; Irvine, M.A.; Derbyshire, K.; Worbe, Y.; Lange, I.; Abbott, S.; Morein-Zamir, S.; Dudley, R.; Caprioli, D.; Harrison, N.A.; et al. Measuring “waiting” impulsivity in substance addictions and binge eating disorder in a novel analogue of rodent serial reaction time task. Biol. Psychiatry 2014, 75, 148–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voon, V. Models of Impulsivity with a Focus on Waiting Impulsivity: Translational Potential for Neuropsychiatric Disorders. Curr. Addict. Rep. 2014, 1, 281–288. [Google Scholar] [CrossRef] [Green Version]
- Dalley, J.W.; Robbins, T.W. Fractionating impulsivity: Neuropsychiatric implications. Nat. Rev. Neurosci. 2017, 18, 158–171. [Google Scholar] [CrossRef] [PubMed]
- Best, J.R.; Miller, P.H. A developmental perspective on executive function. Child Dev. 2010, 81, 1641–1660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bedard, A.C.; Nichols, S.; Barbosa, J.A.; Schachar, R.; Logan, G.D.; Tannock, R. The development of selective inhibitory control across the life span. Dev. Neuropsychol. 2002, 21, 93–111. [Google Scholar] [CrossRef]
- Kray, J.; Kipp, K.H.; Karbach, J. The development of selective inhibitory control: The influence of verbal labeling. Acta Psychol. 2009, 130, 48–57. [Google Scholar] [CrossRef]
- Vaurio, R.G.; Simmonds, D.J.; Mostofsky, S.H. Increased intra-individual reaction time variability in attention-deficit/hyperactivity disorder across response inhibition tasks with different cognitive demands. Neuropsychologia 2009, 47, 2389–2396. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.Y.; Gau, S.S.; Huang-Gu, S.L.; Shang, C.Y.; Wu, Y.H.; Tseng, W.Y. Neural substrates of behavioral variability in attention deficit hyperactivity disorder: Based on ex-Gaussian reaction time distribution and diffusion spectrum imaging tractography. Psychol. Med. 2014, 44, 1751–1764. [Google Scholar] [CrossRef]
- Lacouture, Y.; Cousineau, D. How to use MATLAB to fit the ex-Gaussian and other probability functions to a distribution of response times. Tutor. Quant. Methods Psychol. 2008, 4, 35–45. [Google Scholar] [CrossRef]
- Sánchez-Carmona, A.J.; Rincón-Pérez, I.; López-Martín, S.; Albert, J.; Hinojosa, J.A. The effects of discrimination on the adoption of different strategies in selective stopping. Psychon. Bull. Rev. 2021, 28, 209–218. [Google Scholar] [CrossRef]
- Schachar, R.J.; Chen, S.; Logan, G.D.; Ornstein, T.J.; Crosbie, J.; Ickowicz, A.; Pakulak, A. Evidence for an error monitoring deficit in attention deficit hyperactivity disorder. J. Abnorm. Child Psychol. 2004, 32, 285–293. [Google Scholar] [CrossRef]
- Gupta, R.; Kar, B.R.; Srinivasan, N. Development of task switching and post-error-slowing in children. Behav. Brain Funct. 2009, 5, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smulders, S.F.; Soetens, E.; van der Molen, M.W. What happens when children encounter an error? Brain Cogn. 2016, 104, 34–47. [Google Scholar] [CrossRef] [PubMed]
- Wiersema, J.R.; van der Meere, J.J.; Roeyers, H. Developmental changes in error monitoring: An event-related potential study. Neuropsychologia 2007, 45, 1649–1657. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, S.W.; Nyberg, L.; Bäckman, L. Intra-individual variability in behavior: Links to brain structure, neurotransmission and neuronal activity. Trends Neurosci. 2006, 29, 474–480. [Google Scholar] [CrossRef]
- Williams, B.R.; Hultsch, D.F.; Strauss, E.H.; Hunter, M.A.; Tannock, R. Inconsistency in reaction time across the life span. Neuropsychology 2005, 19, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Verbruggen, F.; Aron, A.R.; Band, G.P.; Beste, C.; Bissett, P.G.; Brockett, A.T.; Brown, J.W.; Chamberlain, S.R.; Chambers, C.D.; Colonius, H.; et al. A consensus guide to capturing the ability to inhibit actions and impulsive behaviors in the stop-signal task. eLife 2019, 8. [Google Scholar] [CrossRef] [PubMed]
- Rouder, J.N.; Speckman, P.L.; Sun, D.; Morey, R.D.; Iverson, G. Bayesian t tests for accepting and rejecting the null hypothesis. Psychon. Bull. Rev. 2009, 16, 225–237. [Google Scholar] [CrossRef]
- Verbruggen, F.; Chambers, C.D.; Logan, G.D. Fictitious inhibitory differences: How skewness and slowing distort the estimation of stopping latencies. Psychol. Sci. 2013, 24, 352–362. [Google Scholar] [CrossRef] [Green Version]
- Dutilh, G.; van Ravenzwaaij, D.; Nieuwenhuis, S.; van der Maas, H.L.J.; Forstmann, B.U.; Wagenmakers, E.J. How to measure post-error slowing: A confound and a simple solution. J. Math. Psychol. 2012, 56, 208–216. [Google Scholar] [CrossRef]
- Freeman, G.H.; Halton, J.H. Note on an exact treatment of contingency, goodness of fit and other problems of significance. Biometrika 1951, 38, 141–149. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Erlbaum: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Sebastian, A.; Rössler, K.; Wibral, M.; Mobascher, A.; Lieb, K.; Jung, P.; Tüscher, O. Neural Architecture of Selective Stopping Strategies: Distinct Brain Activity Patterns Are Associated with Attentional Capture But Not with Outright Stopping. J. Neurosci. 2017, 37, 9785–9794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urben, S.; Van der Linden, M.; Barisnikov, K. Development of the ability to inhibit a prepotent response: Influence of working memory and processing speed. Br. J. Dev. Psychol. 2011, 29, 981–998. [Google Scholar] [CrossRef] [PubMed]
- Bellgrove, M.A.; Hester, R.; Garavan, H. The functional neuroanatomical correlates of response variability: Evidence from a response inhibition task. Neuropsychologia 2004, 42, 1910–1916. [Google Scholar] [CrossRef] [PubMed]
- Tamnes, C.K.; Fjell, A.M.; Westlye, L.T.; Østby, Y.; Walhovd, K.B. Becoming consistent: Developmental reductions in intraindividual variability in reaction time are related to white matter integrity. J. Neurosci. 2012, 32, 972–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Belle, J.; van Raalten, T.; Bos, D.J.; Zandbelt, B.B.; Oranje, B.; Durston, S. Capturing the dynamics of response variability in the brain in ADHD. Neuroimage Clin. 2015, 7, 132–141. [Google Scholar] [CrossRef] [Green Version]
- Van Belle, J.; van Hulst, B.M.; Durston, S. Developmental differences in intra-individual variability in children with ADHD and ASD. J. Child Psychol. Psychiatry 2015, 56, 1316–1326. [Google Scholar] [CrossRef]
- Thomson, P.; Vijayakumar, N.; Johnson, K.A.; Malpas, C.B.; Sciberras, E.; Efron, D.; Hazell, P.; Silk, T.J. Longitudinal Trajectories of Sustained Attention Development in Children and Adolescents with ADHD. J. Abnorm. Child Psychol 2020, 48, 1529–1542. [Google Scholar] [CrossRef] [PubMed]
- Hwang-Gu, S.L.; Chen, Y.C.; Liang, S.H.; Ni, H.C.; Lin, H.Y.; Lin, C.F.; Gau, S.S. Exploring the Variability in Reaction Times of Preschoolers at Risk of Attention-Deficit/Hyperactivity Disorder: An ex-Gaussian Analysis. J. Abnorm. Child Psychol. 2019, 47, 1315–1326. [Google Scholar] [CrossRef]
- Kanaka, N.; Matsuda, T.; Tomimoto, Y.; Noda, Y.; Matsushima, E.; Matsuura, M.; Kojima, T. Measurement of development of cognitive and attention functions in children using continuous performance test. Psychiatry Clin. Neurosci. 2008, 62, 135–141. [Google Scholar] [CrossRef]
- Hsieh, S.; Lin, Y.C. Strategies for stimulus selective stopping in the elderly. Acta Psychol. 2017, 173, 122–131. [Google Scholar] [CrossRef]
Younger Children | Older Children | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
StD | iDtS | dDtS | StD | iDtS | dDtS | |||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Go RT | 671.32 | 110.70 | 685.89 | 137.80 | 611.06 | 73.56 | 561.02 | 131.18 | 587.11 | 147.38 | 565.00 | 116.35 |
Ignore RT | 779.45 | 128.25 | 721.02 | 148.57 | 690.11 | 107.49 | 648.75 | 140.72 | 600.75 | 149.42 | 676.31 | 158.97 |
Failed stop RT | 516.65 | 104.89 | 521.24 | 103.39 | 571.34 | 85.39 | 433.47 | 96.31 | 442.52 | 102.84 | 522.48 | 97.87 |
SSRT * | 314.14 | 68.70 | 334.85 | 76.09 | 439.41 | 134.01 | 281.20 | 64.84 | 297.40 | 49.04 | 449.72 | 71.84 |
SSD | 302.27 | 105.20 | 309.29 | 107.80 | 235.71 | 59.26 | 245.83 | 108.88 | 252.78 | 127.28 | 235.00 | 96.18 |
Younger Children | Older Children | ANCOVAs | |||||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | F (1117) | Uncorrected p Value | ηp2 | |
SSRT | 339.17 | 88.06 | 309.26 | 68.38 | 9.78 | 0.002 * | 0.08 |
Premature responses | 20.70 | 21.41 | 7.04 | 7.52 | 23.10 | <0.001 * | 0.17 |
Mu 1 | 471.72 | 143.26 | 410.68 | 140.18 | 5.37 | 0.022 | 0.04 |
Sigma 2 | 149.34 | 71.58 | 112.02 | 76.46 | 7.26 | 0.008 * | 0.06 |
Tau 3 | 158.57 | 87.80 | 142.77 | 79.45 | 0.66 | 0.417 | 0.01 |
Go omissions | 6.22 | 5.86 | 2.70 | 3.38 | 16.32 | <0.001 * | 0.12 |
Ignore omissions | 1.36 | 1.75 | 0.38 | 0.62 | 17.55 | <0.001 * | 0.13 |
Post-stop success | 4.61 | 145.11 | 1.02 | 125.17 | 0.09 | 0.76 | 0.01 |
Post-stop error | 130.53 | 146.21 | 100.73 | 115.31 | 1.57 | 0.21 | 0.01 |
Post-correct ignore | 167.45 | 207.40 | 109.88 | 79.81 | 3.78 | 0.05 | 0.03 |
Heading | Wald Test | 95% Confidence Interval | |||||
---|---|---|---|---|---|---|---|
Beta | Standardized Beta | Odds Ratio | Wald Statistic | p | Lower Bound | Upper Bound | |
Ignore omissions | −0.63 | −0.91 | 0.53 | 6.24 | 0.01 | −1.13 | −0.14 |
Premature responses | −0.07 | −1.23 | 0.93 | 8.68 | 0.003 | −0.12 | −0.02 |
Strategy (iDtS) | 2.17 | 2.17 | 8.72 | 14.28 | <0.001 | 1.04 | 3.29 |
Strategy (dDtS) | 1.56 | 1.56 | 4.74 | 3.45 | 0.06 | −0.09 | 3.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rincón-Pérez, I.; Sánchez-Carmona, A.J.; Arroyo-Lozano, S.; García-Rubio, C.; Hinojosa, J.A.; Fernández-Jaén, A.; López-Martín, S.; Albert, J. Selective Inhibitory Control in Middle Childhood. Int. J. Environ. Res. Public Health 2021, 18, 6300. https://doi.org/10.3390/ijerph18126300
Rincón-Pérez I, Sánchez-Carmona AJ, Arroyo-Lozano S, García-Rubio C, Hinojosa JA, Fernández-Jaén A, López-Martín S, Albert J. Selective Inhibitory Control in Middle Childhood. International Journal of Environmental Research and Public Health. 2021; 18(12):6300. https://doi.org/10.3390/ijerph18126300
Chicago/Turabian StyleRincón-Pérez, Irene, Alberto J. Sánchez-Carmona, Susana Arroyo-Lozano, Carlos García-Rubio, José Antonio Hinojosa, Alberto Fernández-Jaén, Sara López-Martín, and Jacobo Albert. 2021. "Selective Inhibitory Control in Middle Childhood" International Journal of Environmental Research and Public Health 18, no. 12: 6300. https://doi.org/10.3390/ijerph18126300
APA StyleRincón-Pérez, I., Sánchez-Carmona, A. J., Arroyo-Lozano, S., García-Rubio, C., Hinojosa, J. A., Fernández-Jaén, A., López-Martín, S., & Albert, J. (2021). Selective Inhibitory Control in Middle Childhood. International Journal of Environmental Research and Public Health, 18(12), 6300. https://doi.org/10.3390/ijerph18126300