Low-to-Moderate-Intensity Resistance Exercise Is More Effective than High-Intensity at Improving Endothelial Function in Adults: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Searching Processes
2.2. Article Inclusion and Exclusion Criteria
2.3. Extraction of Data from the Included Studies
2.4. Assessment of Risk of Bias
Study | Country | Health Status | Age (Y) | Participants (M/F) | Description of RE | Intensity (%1RM) | Repetitions | Sets | Frequency (t/wk) | Duration (wk) | Outcome | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
RE/Control | RE | Control | ||||||||||
Beck et al., 2013 [24] | America | Young prehypertensive | 21.1 ± 2.5/ 21.6 ± 2.9 | 15 (11/4) | 15 (10/5) | Leg extension, leg curl, leg press, lat pull down, chest press, overhead press, and biceps curl | 50% | 8–12 | 2 | 3 | 8 | FMD; ↑ BADrest↔ |
Boeno et al., 2020 [19] | Brazil | Middle-aged hypertensive patients | 30–59 | 15 (nr) | 12 (nr) | Bench press, leg press, lat pulldown, leg extension, shoulder press, leg curl, bicep curl and triceps extension; abdominal crunches were performed during each session | 65% | 8–20 | 2–3 | 3 | 12 | FMD; ↑ BADrest↔ |
Casey et al., 2007 [31] | America | Healthy | 21 ± 2.45/ 22 ± 2.97 | 24 (11/13) | 18 (8/10) | Leg extension, leg curl, leg press, lat pulldown, chest press, overhead press, and bicep curl | 70% | 8–12 | 2 | 3 | 12 | FMD↔ |
Franklin et al., 2015 [25] | America | Obese women | 30.3 ± 5.4/ 30.8 ± 9.0 | 10 (0/10) | 8 (0/8) | 8–10 dynamic-resistance exercises in sequence with a 30s rest period between exercises, to target the major muscle groups of the upper and lower body | 65% | 8–10 | 2–3 | 2 | 8 | FMD; ↑ BADrest↔ |
Hildreth et al., 2018 [32] | America | Healthy older men | 66 ± 5/ 67 ± 5 | 19 (19/0) | 21 (21/0) | Four upper- and three lower-body exercises | 80% | 6–8 | 3 | 3 | 48 | FMD; ↔ BADrest↔ |
Hildreth et al., 2018 [32] | America | Healthy older men | 66 ± 5/ 67 ± 5 | 19 (19/0) | 21 (21/0) | Four upper- and three lower-body exercises | 80% | 6–8 | 3 | 3 | 24 | FMD; ↔ BADrest↔ |
Jaime et al., 2019 [26] | America | Postmenopausal nonobese women | 64 ± 3.46/ 67 ± 2.83 | 12 (0/12) | 8 (0/8) | Leg press, leg extension, leg flexion, and calf raise | 40% | 15 | 2 | 3 | 12 | FMD; ↑ BADrest↔ |
Kwon et al., 2011 [17] | Korea | Overweight type 2 diabetes | 56.3 ± 6.1/ 58.9 ± 5.7 | 12 (0/12) | 15 (0/15) | Upper body exercises: bicep curls, tricep extensions, upright rows, shoulder chest press, and seated rows. Core exercises: trunk side bends, and lower body exercises included a leg press, hip flexions, leg flexions, and leg extensions | 40–50% | nr | 3 | 3 | 12 | FMD↔ |
McDermott et al., 2009 [33] | America | People with peripheral arterial disease | 71.7 ± 8.7/ 68.5 ± 11.9 | 36 (nr) | 28 (nr) | Knee extension, leg press, and leg curl exercises using standard equipment | 80% | 8 | 3 | 3 | 24 | FMD↔ |
Okamoto et al., 2008 [28] | Japan | Healthy young men | 19.4 ± 0.2/ 19.4 ± 0.2 | 10 (10/0) | 9 (9/0) | Chest press, arm curl, lateral pull down, seated row, shoulder press, leg extension, leg curl, leg press and sit-up (3s lowering phase and 3s lifting phase) | 40% | 10 | 5 | 2 | 8 | FMD; ↑ BADrest↑ |
Okamoto et al., 2009 [34] | Japan | Healthy young adults | 19.6 ± 1.26/ 19.7 ± 0.95 | 10 (10/0) | 10 (10/0) | Chest presses, arm curls, seated rowing, leg curls, leg presses and sit-ups (1s lifting phase and 3s lowering phase) | 80% | 8–10 | 5 | 2 | 10 | FMD; ↔ BADrest↑ |
Okamoto et al., 2009 [34] | Japan | healthy young adults | 19.2 ± 0.95/ 19.7 ± 0.95 | 10 (10/0) | 10 (10/0) | Chest presses, arm curls, seated rowing, leg curls, leg presses and sit-ups (3s lifting phase and 1s lowering phase) | 80% | 8–10 | 5 | 2 | 10 | FMD; ↔ BADrest↑ |
Okamoto et al., 2011 [27] | Japan | Healthy young | 18.5 ± 0.5/ 18.6 ± 0.5 | 13 (10/3) | 13 (9/4) | Chest press, arm curl, seated row, lateral pull down, leg press, leg extension, leg curl, and sit-ups | 50% | 10 | 5 | 2 | 10 | FMD; ↑ BADrest↑ |
Olson et al., 2006 [29] | America | Overweight women | 38 ± 3.87/ 38 ± 7.75 | 15 (0/15) | 15 (0/15) | RE was performed using isotonic variable resistance machines and free weights targeting the following major muscle groups: quadriceps, hamstrings, gluteals, pectorals, latissimus dorsi, rhomboids, deltoids, biceps, and triceps. | 75% | 8–10 | 3 | 2 | 48 | FMD; ↑ BADrest↔ |
Rech et al., 2019 [35] | Brazil | Elderly individuals with T2DM | 70.5 ± 7.4/ 68 ± 6.5 | 17 (10/7) | 21 (10/11) | Partial squat, bench stepping, unilateral leg press, unilateral knee extension, knee flexion, plantar flexion, bench press, low row, biceps curl, elbow extension, hip abduction and abdominal crunches. | 60% | 10–12 | 2–3 | 3 | 12 | FMD; ↔ BADrest↔ |
Vona et al., 2009 [16] | Switzerland | Patients with recent myocardial infarction | 57 ± 8/ 58 ± 7 | 54 (39/15) | 50 (37/13) | Chest press, shoulder press, triceps extension, biceps curl, pull-down [upper back], lowerback extension, abdominal crunch/curl-up, quadriceps extension or leg press, leg curls [hamstrings], and calf raise. | 60% | 10–12 | 4 | 4 | 4 | FMD; ↑ BADrest↔ |
Yu et al., 2016 [30] | China | Healthy adolescents | 12.3 ± 0.42/ 12.1 ± 0.30 | 19 (12/7) | 19 (13/6) | Elbow extension, elbow flexion, trunk extension, trunk flexion, shoulder press, knee extension, knee flexion, push ups, squats, incline dip, hip abduction, and hip adduction | 70% | 12 | 4 | 2 | 10 | FMD↑ |
2.5. Outcomes and Subgroups Division
2.6. Statistical Analyses
3. Results
3.1. Summary of the Included Articles
3.2. Risk of Bias of the Included Studies
3.3. Low- To Moderate-Intensity RE Is Effective than High-Intensity RE in Improving FMD
3.4. Resistance Exercise Improves BADrest in Young, but Not in Middle-Aged to Elderly
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Widlansky, E.M.; Gokce, N.; Keaney, J.F.; Vita, A.J. The clinical implications of endothelial dysfunction. J. Am. Coll. Cardiol. 2003, 42, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, T.; Hirata, K.; Elkind, M.S.; Jin, Z.; Rundek, T.; Miyake, Y.; Boden-Albala, B.; Di Tullio, M.R.; Sacco, R.; Homma, S. Metabolic syndrome, endothelial dysfunction, and risk of cardiovascular events: The Northern Manhattan Study (NOMAS). Am. Hear. J. 2008, 156, 405–410. [Google Scholar] [CrossRef] [Green Version]
- Maruhashi, T.; Soga, J.; Fujimura, N.; Idei, N.; Mikami, S.; Iwamoto, Y.; Iwamoto, A.; Kajikawa, M.; Matsumoto, T.; Oda, N.; et al. Endothelial Dysfunction, Increased Arterial Stiffness, and Cardiovascular Risk Prediction in Patients With Coronary Artery Disease: FMD-J (Flow-Mediated Dilation Japan) Study A. J. Am. Hear. Assoc. 2018, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ras, R.T.; Streppel, M.T.; Draijer, R.; Zock, P.L. Flow-mediated dilation and cardiovascular risk prediction: A systematic review with meta-analysis. Int. J. Cardiol. 2013, 168, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Maruhashi, T.; Soga, J.; Fujimura, N.; Idei, N.; Mikami, S.; Iwamoto, Y.; Iwamoto, A.; Kajikawa, M.; Matsumoto, T.; Oda, N.; et al. Brachial artery diameter as a marker for cardiovascular risk assessment: FMD-J Study. Atherosclerosis 2018, 268, 92–98. [Google Scholar] [CrossRef]
- Welsch, M.A.; Allen, J.; Geaghan, J.P. Stability and reproducibility of brachial artery flow-mediated dilation. Med. Sci. Sports Exerc. 2002, 34, 960–965. [Google Scholar] [CrossRef]
- Matsuzawa, Y.; Kwon, T.; Lennon, R.J.; Lerman, L.O.; Lerman, A. Prognostic Value of Flow-Mediated Vasodilation in Brachial Artery and Fingertip Artery for Cardiovascular Events: A Systematic Review and Meta-Analysis. J. Am. Hear. Assoc. 2015, 4, e002270. [Google Scholar] [CrossRef] [Green Version]
- Shenouda, N.; Gillen, J.B.; Gibala, M.J.; Macdonald, M.J. Changes in brachial artery endothelial function and resting diameter with moderate-intensity continuous but not sprint interval training in sedentary men. J. Appl. Physiol. 2017, 123, 773–780. [Google Scholar] [CrossRef] [Green Version]
- Seals, D.R.; Nagy, E.E.; Moreau, K.L. Aerobic exercise training and vascular function with ageing in healthy men and women. J. Physiol. 2019, 597, 4901–4914. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.S.; Del Giudice, M.; Gurd, B.J.; Pyke, K.E. Reproducible improvement in endothelial function following two separate periods of high intensity interval training in young males. J. Appl. Physiol. 2020, 129, 725–731. [Google Scholar] [CrossRef]
- Thijssen, D.H.J.; De Groot, P.C.E.; Smits, P.; Hopman, M.T.E. Vascular adaptations to 8-week cycling training in older men. Acta Physiol. 2007, 190, 221–228. [Google Scholar] [CrossRef]
- Swift, D.L.; Earnest, C.; Blair, S.N.; Church, T.S. The effect of different doses of aerobic exercise training on endothelial function in postmenopausal women with elevated blood pressure: Results from the DREW study. Br. J. Sports Med. 2012, 46, 753–758. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, M.W.; Johns, J.A.; Robinson, S.A.; Bungay, A.; Mekary, S.; Kimmerly, D.S. Impact of High-Intensity Interval Training, Moderate-Intensity Continuous Training, and Resistance Training on Endothelial Function in Older Adults. Med. Sci. Sports Exerc. 2020, 52, 1057–1067. [Google Scholar] [CrossRef] [PubMed]
- Vona, M.; Rossi, A.; Capodaglio, P.; Rizzo, S.; Servi, P.; De Marchi, M.; Cobelli, F. Impact of physical training and detraining on endothelium-dependent vasodilation in patients with recent acute myocardial infarction. Am. Hear. J. 2004, 147, 1039–1046. [Google Scholar] [CrossRef]
- Moriguchi, J.; Itoh, H.; Harada, S.; Takeda, K.; Hatta, T.; Nakata, T.; Sasaki, S.; Moriguchi, H.I.J. Low Frequency Regular Exercise Improves Flow-Mediated Dilatation of Subjects with Mild Hypertension. Hypertens. Res. 2005, 28, 315–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vona, M.; Codeluppi, G.; Iannino, T.; Ferrari, E.; Bogousslavsky, J.; Von Segesser, L. Effects of Different Types of Exercise Training Followed by Detraining on Endothelium-Dependent Dilation in Patients With Recent Myocardial Infarction. Circulation 2009, 119, 1601–1608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, H.R.; Min, K.W.; Ahn, H.J.; Seok, H.G.; Lee, J.H.; Park, G.S.; Han, K.A. Effects of Aerobic Exercise vs. Resistance Training on Endothelial Function in Women with Type 2 Diabetes Mellitus. Diabetes Metab. J. 2011, 35, 364–373. [Google Scholar] [CrossRef]
- Qiu, S.; Cai, X.; Yin, H.; Sun, Z.; Zügel, M.; Steinacker, J.M.; Schumann, U. Exercise training and endothelial function in patients with type 2 diabetes: A meta-analysis. Cardiovasc. Diabetol. 2018, 17, 1–12. [Google Scholar] [CrossRef]
- Boeno, F.P.; Ramis, T.R.; Munhoz, S.V.; Farinha, J.B.; Moritz, C.E.J.; Leal-Menezes, R.; Ribeiro, J.L.; Christou, D.D.; Reischak-Oliveira, A. Effect of aerobic and resistance exercise training on inflammation, endothelial function and ambulatory blood pressure in middle-aged hypertensive patients. J. Hypertens. 2020, 38, 2501–2509. [Google Scholar] [CrossRef]
- Kollet, D.P.; Marenco, A.B.; Bellé, N.L.; Barbosa, E.; Boll, L.; Eibel, B.; Waclawovsky, G.; Lehnen, A.M. Aerobic exercise, but not isometric handgrip exercise, improves endothelial function and arterial stiffness in patients with myocardial infarction undergoing coronary intervention: A randomized pilot study. BMC Cardiovasc. Disord. 2021, 21, 1–12. [Google Scholar] [CrossRef]
- Afousi, A.G.; Izadi, M.R.; Rakhshan, K.; Mafi, F.; Biglari, S.; Bagheri, H.G. Improved brachial artery shear patterns and increased flow-mediated dilatation after low-volume high-intensity interval training in type 2 diabetes. Exp. Physiol. 2018, 103, 1264–1276. [Google Scholar] [CrossRef] [Green Version]
- Ashor, A.W.; Lara, J.; Siervo, M.; Celis-Morales, C.; Oggioni, C.; Jakovljevic, D.G.; Mathers, J.C. Exercise Modalities and Endothelial Function: A Systematic Review and Dose–Response Meta-Analysis of Randomized Controlled Trials. Sports Med. 2015, 45, 279–296. [Google Scholar] [CrossRef]
- Early, K.; Stewart, A.; Johannsen, N.; Lavie, C.J.; Thomas, J.R.; Welsch, M. The Effects of Exercise Training on Brachial Artery Flow-Mediated Dilation. J. Cardiopulm. Rehabil. Prev. 2017, 37, 77–89. [Google Scholar] [CrossRef]
- Beck, D.T.; Casey, D.P.; Martin, J.S.; Emerson, B.D.; Braith, R.W. Exercise training improves endothelial function in young prehypertensives. Exp. Biol. Med. 2013, 238, 433–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franklin, N.C.; Robinson, A.T.; Bian, J.-T.; Ali, M.; Norkeviciute, E.; McGinty, P.; Phillips, S.A. Circuit Resistance Training Attenuates Acute Exertion-Induced Reductions in Arterial Function but Not Inflammation in Obese Women. Metab. Syndr. Relat. Disord. 2015, 13, 227–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaime, S.J.; Maharaj, A.; Alvarez-Alvarado, S.; Figueroa, A. Impact of low-intensity resistance and whole-body vibration training on aortic hemodynamics and vascular function in postmenopausal women. Hypertens. Res. 2019, 42, 1979–1988. [Google Scholar] [CrossRef]
- Okamoto, T.; Masuhara, M.; Ikuta, K. Effect of low-intensity resistance training on arterial function. Graefe’s Arch. Clin. Exp. Ophthalmol. 2010, 111, 743–748. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, T.; Masuhara, M.; Ikuta, K. Effects of low-intensity resistance training with slow lifting and lowering on vascular function. J. Hum. Hypertens. 2008, 22, 509–511. [Google Scholar] [CrossRef] [PubMed]
- Olson, T.P.; Dengel, D.R.; Leon, A.S.; Schmitz, K.H. Moderate Resistance Training and Vascular Health in Overweight Women. Med. Sci. Sports Exerc. 2006, 38, 1558–1564. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.C.-W.; McManus, A.M.; So, H.-K.; Chook, P.; Au, C.-T.; Li, A.M.; Kam, J.T.-C.; So, R.C.-H.; Lam, C.W.-K.; Chan, I.H.-S.; et al. Effects of resistance training on cardiovascular health in non-obese active adolescents. World J. Clin. Pediatr. 2016, 5, 293–300. [Google Scholar] [CrossRef]
- Casey, D.P.; Beck, D.T.; Braith, R.W. Progressive Resistance Training Without Volume Increases Does Not Alter Arterial Stiffness and Aortic Wave Reflection. Exp. Biol. Med. 2007, 232, 1228–1235. [Google Scholar] [CrossRef]
- Hildreth, K.L.; Schwartz, R.S.; Griend, J.V.; Kohrt, W.M.; Blatchford, P.J.; Moreau, K.L. Effects of testosterone and progressive resistance exercise on vascular function in older men. J. Appl. Physiol. 2018, 125, 1693–1701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDermott, M.M.; Ades, A.P.; Guralnik, J.M.; Dyer, A.R.; Ferrucci, L.; Liu, K.; Nelson, E.M.; Lloyd-Jones, D.; Van Horn, L.; Garside, D.B.; et al. Treadmill Exercise and Resistance Training in Patients With Peripheral Arterial Disease With and Without Intermittent Claudication: A Randomized Controlled Trial. JAMA 2009, 301, 165–174. [Google Scholar] [CrossRef]
- Okamoto, T.; Masuhara, M.; Ikuta, K. Effects of muscle contraction timing during resistance training on vascular function. J. Hum. Hypertens. 2008, 23, 470–478. [Google Scholar] [CrossRef] [Green Version]
- Rech, A.; Botton, C.E.; Lopez, P.; Quincozes-Santos, A.; Umpierre, D.; Pinto, R.S. Effects of short-term resistance training on endothelial function and inflammation markers in elderly patients with type 2 diabetes: A randomized controlled trial. Exp. Gerontol. 2019, 118, 19–25. [Google Scholar] [CrossRef]
- Otsuki, T.; Maeda, S.; Iemitsu, M.; Saito, Y.; Tanimura, Y.; Ajisaka, R.; Miyauchi, T. Vascular endothelium-derived factors and arterial stiffness in strength- and endurance-trained men. Am. J. Physiol. Circ. Physiol. 2007, 292, H786–H791. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 2014, 14, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, D.; Wan, X.; Liu, J.; Tong, T. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat. Methods Med Res. 2018, 27, 1785–1805. [Google Scholar] [CrossRef] [Green Version]
- Nasser, M. New Standards for Systematic Reviews Incorporate Population Health Sciences. Am. J. Public Heal. 2020, 110, 753–754. [Google Scholar] [CrossRef]
- Yeboah, J.; Crouse, J.R.; Hsu, F.-C.; Burke, G.L.; Herrington, D.M. Brachial Flow-Mediated Dilation Predicts Incident Cardiovascular Events in Older Adults. The Cardiovascular Health Study. Circulation 2007, 115, 2390–2397. [Google Scholar] [CrossRef] [PubMed]
- American College of Sports Medicine. ACSM Guidelines for Exercise Testing and Prescription, 10th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2017. [Google Scholar]
- Miyachi, M. Effects of resistance training on arterial stiffness: A meta-analysis. Br. J. Sports Med. 2012, 47, 393–396. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Ye, W.; Chen, Q.; Zhang, Y.; Kuo, C.-H.; Korivi, M. Resistance Exercise Intensity is Correlated with Attenuation of HbA1c and Insulin in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2019, 16, 140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, F.; Ye, W.; Kuo, C.-H.; Zhang, Y.; Qian, Y.; Korivi, M. Exercise Intervention Improves Clinical Outcomes, but the “Time of Session” is Crucial for Better Quality of Life in Breast Cancer Survivors: A Systematic Review and Meta-Analysis. Cancers 2019, 11, 706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourke, L.; Smith, D.; Steed, L.; Hooper, R.; Carter, A.; Catto, J.; Albertsen, P.C.; Tombal, B.; Payne, H.A.; Rosario, D.J. Exercise for Men with Prostate Cancer: A Systematic Review and Meta-analysis. Eur. Urol. 2016, 69, 693–703. [Google Scholar] [CrossRef] [Green Version]
- Green, D.J.; Maiorana, A.; O’Driscoll, G.; Taylor, R. Effect of exercise training on endothelium-derived nitric oxide function in humans. J. Physiol. 2004, 561, 1–25. [Google Scholar] [CrossRef]
- Green, D.J.; Jones, H.; Thijssen, D.H.J.; Cable, N.T.; Atkinson, G. Flow-Mediated Dilation and Cardiovascular Event Prediction: Does Nitric Oxide Matter? Hypertensions 2011, 57, 363–369. [Google Scholar] [CrossRef] [Green Version]
- Tinken, T.M.; Thijssen, D.H.; Hopkins, N.; Black, M.A.; Dawson, E.A.; Minson, C.T.; Newcomer, S.C.; Laughlin, M.H.; Cable, N.T.; Green, D.J. Impact of Shear Rate Modulation on Vascular Function in Humans. Hypertensions 2009, 54, 278–285. [Google Scholar] [CrossRef] [Green Version]
- Johnson, B.D.; Mather, K.J.; Wallace, J.P. Mechanotransduction of shear in the endothelium: Basic studies and clinical implications. Vasc. Med. 2011, 16, 365–377. [Google Scholar] [CrossRef] [Green Version]
- Di Francescomarino, S.; Sciartilli, A.; Di Valerio, V.; Di Baldassarre, A.; Gallina, S. The Effect of Physical Exercise on Endothelial Function. Sports Med. 2009, 39, 797–812. [Google Scholar] [CrossRef]
- Masaki, T.; Sawamura, T. Endothelin and endothelial dysfunction. In Proceedings of the Japan Academy, Series B; Japan Academy: Tokyo, Japan, 2006; Volume 82, pp. 17–24. [Google Scholar]
- Terwoord, J.D.; Hearon, C.M.; Luckasen, G.J.; Richards, J.C.; Joyner, M.J.; Dinenno, F.A. Elevated extracellular potassium prior to muscle contraction reduces onset and steady-state exercise hyperemia in humans. J. Appl. Physiol. 2018, 125, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Thijssen, D.H.J.; Dawson, E.A.; Black, M.A.; Hopman, M.T.E.; Cable, N.T.; Green, D.J. Brachial Artery Blood Flow Responses to Different Modalities of Lower Limb Exercise. Med. Sci. Sports Exerc. 2009, 41, 1072–1079. [Google Scholar] [CrossRef] [Green Version]
- Thijssen, D.H.; Dawson, E.A.; Tinken, T.M.; Cable, N.T.; Green, D.J. Retrograde Flow and Shear Rate Acutely Impair Endothelial Function in Humans. Hypertensions 2009, 53, 986–992. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, K.S.; Gotlieb, I.A. The role of shear stress in the pathogenesis of atherosclerosis. Lab. Investig. 2004, 85, 9–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newcomer, S.C.; Thijssen, D.H.J.; Green, D.J. Effects of exercise on endothelium and endothelium/smooth muscle cross talk: Role of exercise-induced hemodynamics. J. Appl. Physiol. 2011, 111, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Harrison, D.G.; Widder, J.; Grumbach, I.; Chen, W.; Weber, M.; Searles, C. Endothelial mechanotransduction, nitric oxide and vascular inflammation. J. Intern. Med. 2006, 259, 351–363. [Google Scholar] [CrossRef]
- Johnson, B.D.; Mather, K.J.; Newcomer, S.C.; Mickleborough, T.D.; Wallace, J.P. Brachial Artery Flow-mediated Dilation Following Exercise with Augmented Oscillatory and Retrograde Shear Rate. Cardiovasc. Ultrasound 2012, 10, 34. [Google Scholar] [CrossRef] [Green Version]
- MacDougall, J.D.; Tuxen, D.; Sale, D.G.; Moroz, J.R.; Sutton, J.R. Arterial blood pressure response to heavy resistance exercise. J. Appl. Physiol. 1985, 58, 785–790. [Google Scholar] [CrossRef] [Green Version]
- MacDougall, J.D.; McKelvie, R.S.; Moroz, D.E.; Sale, D.G.; McCartney, N.; Buick, F. Factors affecting blood pressure during heavy weight lifting and static contractions. J. Appl. Physiol. 1992, 73, 1590–1597. [Google Scholar] [CrossRef]
- Jurva, J.W.; Phillips, S.A.; Syed, A.Q.; Syed, A.Y.; Pitt, S.; Weaver, A.; Gutterman, D.D. The Effect of Exertional Hypertension Evoked by Weight Lifting on Vascular Endothelial Function. J. Am. Coll. Cardiol. 2006, 48, 588–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziegler, T.; BouzourèneK; Harrison, V.J.; Brunner, H.R.; Hayoz, D. Influence of Oscillatory and Unidirectional Flow Environments on the Expression of Endothelin and Nitric Oxide Synthase in Cultured Endothelial Cells. Arter. Thromb. Vasc. Biol. 1998, 18, 686–692. [Google Scholar] [CrossRef] [Green Version]
- Champsaur, G.; Vedrinne, C.; Martinot, S.; Tronc, F.; Robin, J.; Ninet, J.; Franck, M. Flow-induced release of endothelium-derived relaxing factor during pulsatile bypass: Experimental study in the fetal lamb. J. Thorac. Cardiovasc. Surg. 1997, 114, 738–745. [Google Scholar] [CrossRef] [Green Version]
- Bilfinger, T.V.; Stefano, G.B. Human aortocoronary grafts and nitric oxide release: Relationship to pulsatile pressure. Ann. Thorac. Surg. 2000, 69, 480–485. [Google Scholar] [CrossRef]
- Gonzales, J.U.; Thompson, B.C.; Thistlethwaite, J.R.; Scheuermann, B.W. Association between exercise hemodynamics and changes in local vascular function following acute exercise. Appl. Physiol. Nutr. Metab. 2011, 36, 137–144. [Google Scholar] [CrossRef]
- Buchanan, C.E.; Kadlec, A.O.; Hoch, A.Z.; Gutterman, D.D.; Durand, M.J. Hypertension during Weight Lifting Reduces Flow-Mediated Dilation in Nonathletes. Med. Sci. Sports Exerc. 2017, 49, 669–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okamoto, T.; Masuhara, M.; Ikuta, K. Relationship between plasma endothelin-1 concentration and cardiovascular responses during high-intensity eccentric and concentric exercise. Clin. Physiol. Funct. Imaging 2007, 28, 43–48. [Google Scholar] [CrossRef]
- Morishima, T.; Tsuchiya, Y.; Iemitsu, M.; Ochi, E. High-intensity resistance exercise with low repetitions maintains endothelial function. Am. J. Physiol. Circ. Physiol. 2018, 315, H681–H686. [Google Scholar] [CrossRef]
- Loaiza-Betancur, A.F.; Chulvi-Medrano, I. Is Low-Intensity Isometric Handgrip Exercise an Efficient Alternative in Lifestyle Blood Pressure Management? A Systematic Review. Sports Health A Multidiscip. Approach 2020, 12, 470–477. [Google Scholar] [CrossRef]
- Goto, C.; Higashi, Y.; Kimura, M.; Noma, K.; Hara, K.; Nakagawa, K.; Kawamura, M.; Chayama, K.; Yoshizumi, M.; Nara, I. Effect of Different Intensities of Exercise on Endothelium-Dependent Vasodilation in Humans: Role of Endothelium-Dependent Nitric Oxide and Oxidative Stress. Circulation 2003, 108, 530–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hijmering, M.L.; Stroes, E.S.; Olijhoek, J.; Hutten, A.B.; Blankestijn, P.J.; Rabelink, T.J. Sympathetic activation markedly reduces endothelium-dependent, flow-mediated vasodilation. J. Am. Coll. Cardiol. 2002, 39, 683–688. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, G.; Batterham, A.; Thijssen, D.H.; Green, D.J. A new approach to improve the specificity of flow-mediated dilation for indicating endothelial function in cardiovascular research. J. Hypertens. 2013, 31, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Rakobowchuk, M.; McGowan, C.L.; De Groot, P.C.; Hartman, J.W.; Phillips, S.M.; Macdonald, M.J. Endothelial function of young healthy males following whole body resistance training. J. Appl. Physiol. 2005, 98, 2185–2190. [Google Scholar] [CrossRef]
- Esler, M.D.; Thompson, J.M.; Kaye, D.M.; Turner, A.G.; Jennings, G.; Cox, H.; Lambert, G.W.; Seals, D.R. Effects of Aging on the Responsiveness of the Human Cardiac Sympathetic Nerves to Stressors. Circulation 1995, 91, 351–358. [Google Scholar] [CrossRef]
- Montero, D.; Padilla, J.; Diaz-Cañestro, C.; Muris, D.M.J.; Pyke, K.E.; Obert, P.; Walther, G. Flow-Mediated Dilation in Athletes: Influence of Aging. Med. Sci. Sports Exerc. 2014, 46, 2148–2158. [Google Scholar] [CrossRef] [PubMed]
- Thijssen, D.H.J.; Carter, S.; Green, D.J. Arterial structure and function in vascular ageing: Are you as old as your arteries? J. Physiol. 2015, 594, 2275–2284. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhang, Y.-J.; Zhang, H.-W.; Ye, W.-B.; Korivi, M. Low-to-Moderate-Intensity Resistance Exercise Is More Effective than High-Intensity at Improving Endothelial Function in Adults: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 6723. https://doi.org/10.3390/ijerph18136723
Zhang Y, Zhang Y-J, Zhang H-W, Ye W-B, Korivi M. Low-to-Moderate-Intensity Resistance Exercise Is More Effective than High-Intensity at Improving Endothelial Function in Adults: A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health. 2021; 18(13):6723. https://doi.org/10.3390/ijerph18136723
Chicago/Turabian StyleZhang, Yong, Ya-Jun Zhang, Hong-Wei Zhang, Wei-Bing Ye, and Mallikarjuna Korivi. 2021. "Low-to-Moderate-Intensity Resistance Exercise Is More Effective than High-Intensity at Improving Endothelial Function in Adults: A Systematic Review and Meta-Analysis" International Journal of Environmental Research and Public Health 18, no. 13: 6723. https://doi.org/10.3390/ijerph18136723
APA StyleZhang, Y., Zhang, Y. -J., Zhang, H. -W., Ye, W. -B., & Korivi, M. (2021). Low-to-Moderate-Intensity Resistance Exercise Is More Effective than High-Intensity at Improving Endothelial Function in Adults: A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health, 18(13), 6723. https://doi.org/10.3390/ijerph18136723