Development and Psychometric Assessment of the Problematic QQ Use Scale among Adolescents
Abstract
:1. Introduction
1.1. The QQ Social Media Platform in China
1.2. The Present Study
2. Method
2.1. Participants and Procedure
2.2. Measures
2.2.1. Problematic QQ Use Scale
2.2.2. Beck Anxiety Inventory (BAI)
2.2.3. Beck Depression Inventory (BDI)
2.2.4. Satisfaction with Life Scale (SWSL)
2.2.5. Rosenberg Self-Esteem Scale (RSES)
2.3. Ethics
2.4. Statistical Analysis
3. Results
3.1. Participants’ Description
3.2. Main Results
4. Discussion
5. Limitations and Recommendations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
SL | Item | Scoring | ||||
---|---|---|---|---|---|---|
Very Rarely | Rarely | Sometimes | Often | Very Often | ||
1 | 2 | 3 | 4 | 5 | ||
1 | Spent a lot of time thinking about QQ or planned use of QQ? | 1 | 2 | 3 | 4 | 5 |
2 | Felt an urge to use QQ more and more? | 1 | 2 | 3 | 4 | 5 |
3 | Used QQ in order to forget about personal problems? | 1 | 2 | 3 | 4 | 5 |
4 | Tried to cut down on the use of QQ without success? | 1 | 2 | 3 | 4 | 5 |
5 | Become restless or troubled if you have been prohibited from using QQ? | 1 | 2 | 3 | 4 | 5 |
6 | Used QQ so much that it has had a negative impact on your job/studies? | 1 | 2 | 3 | 4 | 5 |
References
- Griffiths, M.D. A “components” model of addiction within a biopsychosocial framework. J. Subst. Use 2005, 10, 191–197. [Google Scholar] [CrossRef]
- Griffiths, M.D. Internet sex addiction: A review of empirical research. Addict. Res. Theory 2011, 20, 111–124. [Google Scholar] [CrossRef] [Green Version]
- Kuss, D.J.; Griffiths, M.D. Online Social Networking and Addiction—A Review of the Psychological Literature. Int. J. Environ. Res. Public Health 2011, 8, 3528–3552. [Google Scholar] [CrossRef] [Green Version]
- Sussman, S.; Lisha, N.; Griffiths, M. Prevalence of the Addictions: A Problem of the Majority or the Minority? Eval. Health Prof. 2010, 34, 3–56. [Google Scholar] [CrossRef]
- Van Rooij, A.J.; Prause, N. A critical review of “Internet addiction” criteria with suggestions for the future. J. Behav. Addict. 2014, 3, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Yau, Y.H.C.; Potenza, M.N. Gambling Disorder and Other Behavioral Addictions. Harv. Rev. Psychiatry 2015, 23, 134–146. [Google Scholar] [CrossRef] [PubMed]
- Petry, N.M.; O’Brien, C.P. Internet gaming disorder and the DSM-5. Addiction 2013, 108, 1186–1187. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, M. Internet addiction: Fact or fiction? Psychologist 1999, 12, 246–250. [Google Scholar]
- Young, K. Internet Addiction: Diagnosis and Treatment Considerations. J. Contemp. Psychother. 2009, 39, 241–246. [Google Scholar] [CrossRef]
- Andreassen, C.S.; Torsheim, T.; Brunborg, G.S.; Pallesen, S. Development of a Facebook Addiction Scale. Psychol. Rep. 2012, 110, 501–517. [Google Scholar] [CrossRef]
- Kircaburun, K.; Griffiths, M.D. Instagram addiction and the Big Five of personality: The mediating role of self-liking. J. Behav. Addict. 2018, 7, 158–170. [Google Scholar] [CrossRef] [PubMed]
- Orosz, G.; Tóth-Király, I.; Bőthe, B.; Melher, D. Too many swipes for today: The development of the Problematic Tinder Use Scale (PTUS). J. Behav. Addict. 2016, 5, 518–523. [Google Scholar] [CrossRef] [PubMed]
- Kircaburun, K. Effects of gender and personality differences on Twitter addiction among Turkish undergradu-ates. J. Educ. Pract. 2016, 7, 33–42. [Google Scholar]
- Balakrishnan, J.; Griffiths, M.D. Social media addiction: What is the role of content in YouTube? J. Behav. Addict. 2017, 6, 364–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee-Won, R.J.; Herzog, L.; Park, S.G. Hooked on Facebook: The Role of Social Anxiety and Need for Social Assurance in Problematic Use of Facebook. Cyberpsychol. Behav. Soc. Netw. 2015, 18, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Bodroža, B.; Jovanović, T. Validation of the new scale for measuring behaviors of Facebook users: Psycho-Social Aspects of Facebook Use (PSAFU). Comput. Hum. Behav. 2016, 54, 425–435. [Google Scholar] [CrossRef]
- Wegmann, E.; Stodt, B.; Brand, M. Addictive use of social networking sites can be explained by the interaction of Internet use expectancies, Internet literacy, and psychopathological symptoms. J. Behav. Addict. 2015, 4, 155–162. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, M.D.; Kuss, D.J.; Demetrovics, Z. Social networking addiction: An overview of preliminary findings. In Behavioral Addictions; Criteria, Evidence and Treatment; Rosenberg, K., Feder, L., Eds.; Academic Press: San Diego, CA, USA, 2014; pp. 119–141. [Google Scholar]
- Alimoradi, Z.; Lin, C.-Y.; Broström, A.; Bülow, P.H.; Bajalan, Z.; Griffiths, M.D.; Ohayon, M.M.; Pakpour, A.H. Internet addiction and sleep problems: A systematic review and meta-analysis. Sleep Med. Rev. 2019, 47, 51–61. [Google Scholar] [CrossRef] [Green Version]
- Li, J.-B.; Lau, J.T.F.; Mo, P.; Su, X.-F.; Tang, J.; Qin, Z.-G.; Gross, D.L. Insomnia partially mediated the association between problematic Internet use and depression among secondary school students in China. J. Behav. Addict. 2017, 6, 554–563. [Google Scholar] [CrossRef] [PubMed]
- Vernon, L.; Modecki, K.L.; Barber, B.L. Tracking Effects of Problematic Social Networking on Adolescent Psychopathology: The Mediating Role of Sleep Disruptions. J. Clin. Child Adolesc. Psychol. 2016, 46, 269–283. [Google Scholar] [CrossRef]
- Armstrong, L.; Phillips, J.G.; Saling, L.L. Potential determinants of heavier internet usage. Int. J. Hum. Comput. Stud. 2000, 53, 537–550. [Google Scholar] [CrossRef] [Green Version]
- Ko, C.-H.; Yen, J.-Y.; Chen, C.-C.; Chen, S.-H.; Yen, C.-F. Gender Differences and Related Factors Affecting Online Gaming Addiction among Taiwanese Adolescents. J. Nerv. Ment. Dis. 2005, 193, 273–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bozoglan, B.; Demirer, V.; Sahin, I. Loneliness, self-esteem, and life satisfaction as predictors of Internet addiction: A cross-sectional study among Turkish university students. Scand. J. Psychol. 2013, 54, 313–319. [Google Scholar] [CrossRef]
- Alexander, B.K. Dislocation Theory of Addiction; Addiction: Hopeful Prophesy from a Time of Despair. Available online: http://www.brucekalexander.com/articles-speeches/dislocation-theory-addiction/290-addiction-a-hopeful-prophecy-from-a-time-of-despair-2 (accessed on 9 June 2021).
- Tateno, M.; Teo, A.R.; Ukai, W.; Kanazawa, J.; Katsuki, R.; Kubo, H.; Kato, T.A. Internet Addiction, Smartphone Addiction, and Hikikomori Trait in Japanese Young Adult: Social Isolation and Social Network. Front. Psychiatry 2019, 10, 455. [Google Scholar] [CrossRef]
- Alexander, B.K. The Roots of Addiction in Free Market Society; Canadian Centre for Policy Alternatives: Vancouver, BC, USA, 2001. [Google Scholar]
- Alexander, B.K. The Globalisation of Addiction: A Study in Poverty of the Spirit; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Błachnio, A.; Przepiorka, A.; Pantic, I. Association between Facebook addiction, self-esteem and life satisfaction: A cross-sectional study. Comput. Hum. Behav. 2016, 55, 701–705. [Google Scholar] [CrossRef]
- Kraut, R.; Kiesler, S.; Boneva, B.; Cummings, J.; Helgeson, V.; Crawford, A. Internet Paradox Revisited. J. Soc. Issues 2002, 58, 49–74. [Google Scholar] [CrossRef]
- Kross, E.; Verduyn, P.; Demiralp, E.; Park, J.; Lee, D.S.; Lin, N.; Shablack, H.; Jonides, J.; Ybarra, O. Facebook Use Predicts Declines in Subjective Well-Being in Young Adults. PLoS ONE 2013, 8, e69841. [Google Scholar] [CrossRef] [Green Version]
- Thomala, L.L. Monthly Active Users of the Leading Apps in China in March 2021. Statista, 27 May 2021. Available online: https://www.statista.com/statistics/1032630/china-leading-apps-by-monthly-active-users/ (accessed on 15 June 2021).
- Wong, S. Smartphone Market in China–Statistics & Facts. 27 April 2020. Available online: https://www.statista.com/topics/1416/smartphone-market-in-china/ (accessed on 11 November 2020).
- Yang, Z.; Asbury, K.; Griffiths, M.D. Do Chinese and British University Students Use Smartphones Differently? A Cross-cultural Mixed Methods Study. Int. J. Ment. Health Addict. 2018, 17, 644–657. [Google Scholar] [CrossRef] [Green Version]
- Junjie. Top 7 Chinese Social Media Apps You Should Know for 2020. 30 January 2020. Available online: https://pandaily.com/top-7-chinese-social-media-apps-you-should-know-for-2020/ (accessed on 11 November 2020).
- Butrymowicz, S. A Day in the Life of Chinese Students. 15 May 2021. Available online: http://hechingered.org/content/a-day-in-the-life-of-chinese-students_3826/ (accessed on 9 June 2021).
- Park, C.; Park, Y.R. The Conceptual Model on Smart Phone Addiction among Early Childhood. Int. J. Soc. Sci. Humanit. 2014, 4, 147–150. [Google Scholar] [CrossRef]
- Lopez-Fernandez, O.; Honrubia-Serrano, M.L.; Freixa-Blanxart, M.; Gibson, W. Prevalence of Problematic Mobile Phone Use in British Adolescents. Cyberpsychol. Behav. Soc. Netw. 2014, 17, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Yen, C.-F.; Tang, T.-C.; Yen, J.-Y.; Lin, H.-C.; Huang, C.-F.; Liu, S.-C.; Ko, C.-H. Symptoms of problematic cellular phone use, functional impairment and its association with depression among adolescents in Southern Taiwan. J. Adolesc. 2009, 32, 863–873. [Google Scholar] [CrossRef]
- Haug, S.; Castro, R.P.; Kwon, M.; Filler, A.; Kowatsch, T.; Schaub, M.P. Smartphone use and smartphone addiction among young people in Switzerland. J. Behav. Addict. 2015, 4, 299–307. [Google Scholar] [CrossRef] [Green Version]
- Cha, S.-S.; Seo, B.-K. Smartphone use and smartphone addiction in middle school students in Korea: Prevalence, social networking service, and game use. Health Psychol. Open 2018, 5, 1–15. [Google Scholar] [CrossRef]
- Nikhita, C.S. Prevalence of Mobile Phone Dependence in Secondary School Adolescents. J. Clin. Diagn. Res. 2015, 9, VC06–VC09. [Google Scholar] [CrossRef]
- Lee, E.J.; Kim, H.S. Gender Differences in Smartphone Addiction Behaviors Associated with Parent–Child Bonding, Parent–Child Communication, and Parental Mediation among Korean Elementary School Students. J. Addict. Nurs. 2018, 29, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Xin, M.; Xing, J.; Pengfei, W.; Houru, L.; Mengcheng, W.; Hong, Z. Online activities, prevalence of Internet addiction and risk factors related to family and school among adolescents in China. Addict. Behav. Rep. 2018, 7, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Mak, K.-K.; Lai, C.-M.; Watanabe, H.; Kim, D.-I.; Bahar, N.; Ramos, M.; Young, K.S.; Ho, R.; Aum, N.-R.; Cheng, C. Epidemiology of Internet Behaviors and Addiction Among Adolescents in Six Asian Countries. Cyberpsychol. Behav. Soc. Netw. 2014, 17, 720–728. [Google Scholar] [CrossRef] [PubMed]
- Ho, R.C.; Zhang, M.W.; Tsang, T.Y.; Toh, A.H.; Pan, F.; Lu, Y.; Cheng, C.; Yip, P.S.; Lam, L.T.; Lai, C.-M.; et al. The association between internet addiction and psychiatric co-morbidity: A meta-analysis. BMC Psychiatry 2014, 14, 183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.W.B.; Lim, R.B.C.; Lee, C.; Ho, R. Prevalence of Internet Addiction in Medical Students: A Meta-analysis. Acad. Psychiatry 2018, 42, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.W.; Tran, B.X.; Huong, L.T.; Hinh, N.D.; Nguyen, H.L.T.; Tho, T.D.; Latkin, C.; Ho, R. Internet addiction and sleep quality among Vietnamese youths. Asian J. Psychiatry 2017, 28, 15–20. [Google Scholar] [CrossRef]
- Tran, B.X.; Huong, L.T.; Hinh, N.D.; Nguyen, L.H.; Le, B.N.; Nong, V.M.; Thuc, V.T.M.; Tho, T.D.; Latkin, C.; Zhang, M.W.; et al. A study on the influence of internet addiction and online interpersonal influences on health-related quality of life in young Vietnamese. BMC Public Health 2017, 17, 138. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.-Q.; Zhou, Z.-K.; Yang, X.-J.; Kong, F.-C.; Niu, G.-F.; Fan, C.-Y. Mobile phone addiction and sleep quality among Chinese adolescents: A moderated mediation model. Comput. Hum. Behav. 2017, 72, 108–114. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, Z.; Liu, Q.; Fan, C. Mobile Phone Addiction and Adolescents’ Anxiety and Depression: The Moderating Role of Mindfulness. J. Child Fam. Stud. 2019, 28, 822–830. [Google Scholar] [CrossRef]
- Li, G.; Hou, G.; Yang, D.; Jian, H.; Wang, W. Relationship between anxiety, depression, sex, obesity, and internet addiction in Chinese adolescents: A short-term longitudinal study. Addict. Behav. 2019, 90, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-W.; Ho, R.T.H.; Chan, C.L.; Tse, S.S.-K. Exploring personality characteristics of Chinese adolescents with internet-related addictive behaviors: Trait differences for gaming addiction and social networking addiction. Addict. Behav. 2015, 42, 32–35. [Google Scholar] [CrossRef] [PubMed]
- Greydanus, D.E.; Greydanus, M.M. Internet use, misuse, and addiction in adolescents: Current issues and challenges. Int. J. Adolesc. Med. Health 2012, 24, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Morrison, C.M.; Gore, H. The Relationship between Excessive Internet Use and Depression: A Questionnaire-Based Study of 1319 Young People and Adults. Psychopathology 2010, 43, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Cheung, L.M.; Wong, W.S. The effects of insomnia and internet addiction on depression in Hong Kong Chinese adolescents: An exploratory cross-sectional analysis. J. Sleep Res. 2010, 20, 311–317. [Google Scholar] [CrossRef]
- Yen, J.-Y.; Ko, C.-H.; Yen, C.-F.; Wu, H.-Y.; Yang, M.-J. The Comorbid Psychiatric Symptoms of Internet Addiction: Attention Deficit and Hyperactivity Disorder (ADHD), Depression, Social Phobia, and Hostility. J. Adolesc. Health 2007, 41, 93–98. [Google Scholar] [CrossRef]
- Ko, C.-H.; Yen, J.-Y.; Yen, C.-F.; Chen, C.-S. The association between Internet addiction and psychiatric disorder: A review of the literature. Eur. Psychiatry 2012, 27, 1–8. [Google Scholar] [CrossRef]
- Carli, V.; Durkee, T.; Wasserman, D.; Hadlaczky, G.; Despalins, R.; Kramarz, E.; Sarchiapone, M.; Hoven, C.; Brunner, R.; Kaess, M. The Association between Pathological Internet Use and Comorbid Psychopathology: A Systematic Review. Psychopathology 2013, 46, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohn, M.A.; Senyak, J. Sample Size Calculators. 2021. Available online: https://www.sample-size.net/ (accessed on 9 June 2021).
- Beck, A.T.; Steer, R.A. Beck Anxiety Inventory Manual; Psychological Corporation: San Antonio, TX, USA, 1993. [Google Scholar]
- Che, H.-H.; Lu, M.-L.; Chen, H.-C.; Chang, S.-W.; Lee, Y.-J. Validation of the Chinese version of the Beck Anxiety Inventory. Formos. J. Med. 2006, 10, 447–454. (In Chinese) [Google Scholar] [CrossRef]
- Beck, A.T.; Steer, R.A.; Brown, G.K. Manual for the Beck Depression Inventory-II; Psychological Corporation: San Antonio, TX, USA, 1996. [Google Scholar]
- Wang, Z.; Yuan, C.M.; Huang, J.; Li, Z.Z.; Chen, J.; Zhang, H.Y.; Fang, Y.R.; Xiao, Z.P. Reliability and validity of the Chinese version of Beck Depression Inventory-Ⅱ among depression patients. Chin. Ment. Health J. 2011, 25, 476–480. (In Chinese) [Google Scholar]
- Rosenberg, M. Society and the Adolescent Self-Image; Princeton University Press: Princeton, NJ, USA, 1965. [Google Scholar]
- Yang, Y.; Wang, D. Retest of the bidimensional model of Rosenberg Self-Esteem Scale. Chin. Ment. Health J. 2007, 21, 603–605, 609. [Google Scholar] [CrossRef]
- Diener, E.; Emmons, R.A.; Larsen, R.J.; Griffin, S. The Satisfaction with Life Scale. J. Pers. Assess. 1985, 49, 71–75. [Google Scholar] [CrossRef]
- Zhou, X. Research on the Relationship among Parenting Style, College Students’ Perfectionism and Mental Health. Ph.D. Thesis, Central South University, Changsha, China, 2012. [Google Scholar] [CrossRef]
- Andreassen, C.S.; Billieux, J.; Griffiths, M.D.; Kuss, D.J.; Demetrovics, Z.; Mazzoni, E.; Pallesen, S. The relationship between addictive use of social media and video games and symptoms of psychiatric disorders: A large-scale cross-sectional study. Psychol. Addict. Behav. 2016, 30, 252–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, A.T.; Ward, C.H.; Mendelson, M.; Mock, J.; Erbaugh, J. An Inventory for Measuring Depression. Arch. Gen. Psychiatry 1961, 4, 561–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar] [CrossRef]
- World Medical Association. World medical association declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sijtsma, K.; Van Der Ark, L.A. A tutorial on how to do a Mokken scale analysis on your test and questionnaire data. Br. J. Math. Stat. Psychol. 2016, 70, 137–158. [Google Scholar] [CrossRef]
- Stochl, J.; Jones, P.B.; Croudace, T.J. Mokken scale analysis of mental health and well-being questionnaire item responses: A non-parametric IRT method in empirical research for applied health researchers. BMC Med. Res. Methodol. 2012, 12, 74. [Google Scholar] [CrossRef] [Green Version]
- Gorgich, E.A.C.; Moftakhar, L.; Barfroshan, S.; Arbabisarjou, A. Evaluation of Internet Addiction and Mental Health among Medical Sciences Students in the Southeast of Iran. Shiraz E-Med. J. 2017, 19, 55561. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Hao, Q. What factors impact on primary school students’ online engagement for learning and entertainment at home. J. Comput. Educ. 2014, 1, 133–150. [Google Scholar] [CrossRef] [Green Version]
- Longstreet, P.; Brooks, S. Life satisfaction: A key to managing internet & social media addiction. Technol. Soc. 2017, 50, 73–77. [Google Scholar] [CrossRef] [Green Version]
- Woods, H.C.; Scott, H. #Sleepyteens: Social media use in adolescence is associated with poor sleep quality, anxiety, depression and low self-esteem. J. Adolesc. 2016, 51, 41–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Age | Mean (SD) | 13.14 (1.00) Years |
---|---|---|
Gender | Boys | 51% |
Girls | 49% | |
Number of Family Members | 2 Members | 2.3% |
3 Members | 45.2% | |
4 Members | 38.1% | |
5 Members | 11.2% | |
6 Members | 2.3% | |
7 Members | 0.6% | |
8 Members | 0.2% | |
9 Members | 1% | |
Grade | VI | 8.2% |
VII | 14.7% | |
VIII | 29.6% | |
IX | 16.4% | |
X | 11.2% | |
XI | 9.3% | |
XII | 10.6% | |
Time Spend on QQ | 0–30 Minutes | 55.7% |
31–60 Minutes | 39.6% | |
61-Above Minutes | 4.7% |
Items | M | SD | Corrected Item-Total Correlation | Factor Loading | Graded Response Model | |||||
---|---|---|---|---|---|---|---|---|---|---|
EFA | CFA | α | b1 | b2 | b3 | b4 | ||||
Item 1 | 2.10 | 1.16 | 0.630 | 0.74 | 0.70 | 2.255 | −0.320 | 0.549 | 1.399 | 2.060 |
Item 2 | 1.83 | 1.15 | 0.754 | 0.84 | 0.85 | 3.638 | 0.146 | 0.814 | 1.326 | 1.872 |
Item 3 | 1.78 | 1.14 | 0.672 | 0.78 | 0.74 | 2.235 | 0.252 | 0.965 | 1.629 | 2.125 |
Item 4 | 1.72 | 1.16 | 0.648 | 0.78 | 0.67 | 2.336 | 0.386 | 1.137 | 1.582 | 1.968 |
Item 5 | 1.48 | .97 | 0.632 | 0.79 | 0.60 | 2.049 | 0.765 | 1.567 | 1.999 | 2.421 |
Item 6 | 1.63 | 1.02 | 0.607 | 0.72 | 0.64 | 1.820 | 0.463 | 1.288 | 2.053 | 2.589 |
Psychometric Properties | Scores | Suggested Cut-Off |
---|---|---|
Mean inter-item correlation | 0.513 | Between 0.15 and 0.50 |
Cronbach’s alpha | 0.863 | ≥0.7 |
McDonald’s Omega | 0.866 | ≥0.7 |
Split-half reliability (odd-even) | 0.874 | ≥0.7 |
Average variance extracted | 0.60 | ≥0.5 |
Composite reliability | 0.90 | ≥0.7 |
Standard error of measurement | 1.885 | Smaller than SD/2 |
Ferguson delta | 0.929 | ≥0.9 |
Loevinger’s H-coefficients | 0.552 | - |
Rho coefficient | 0.867 | ≥0.7 |
Results of exploratory factor analysis | ||
Determinant | 0.076 | >0.0001 |
KMO measure of sample adequacy | 0.872 | 0.50 |
Bartlett’s test of sphericity | 1284.17 (p < 0.001) | significant |
Eigen value | 3.60 | 1 or above |
Variance | 0.601 | |
Model fits of confirmatory factor analysis | ||
χ2 (df, p value), χ2/df | 20.574 (9, 0.015), 2.286 | Nonsignificant, <5 |
CFI | 0.987 | >0.95 |
TLI | 0.979 | >0.95 |
RMSEA [90% CI value] (p value) | 0.051 [0.020, 0.080] (0.439) | <0.08 |
SRMR | 0.068 | <0.08 |
χ2 | Df | Δ | Δdf | p | CFI | Δ | RMSEA | Δ | SRMR | Δ | |
---|---|---|---|---|---|---|---|---|---|---|---|
Configural Model | 22.446 | 18 | 0.997 | 0.022 | 0.053 | ||||||
Metric Model | 24.299 | 23 | 1.853 | 5 | 0.869 | 0.999 | −0.002 | 0.011 | −0.011 | 0.055 | 0.002 |
Scaler Model | 25.812 | 28 | 1.513 | 5 | 0.911 | 1 | −0.001 | 0 | −0.011 | 0.049 | −0.006 |
Strict Model | 26.575 | 34 | 0.763 | 6 | 0.993 | 1 | 0 | 0 | 0 | 0.050 | 0.001 |
QQ Addiction | |
---|---|
QQ usage duration | r = 0.602, p < 0.001, 95% CI [0.547, 0.657] |
Anxiety | r = 0.417, p < 0.001, 95% CI [0.365, 0.467] |
Depression | r = 0.318, p < 0.001, 95% CI [0.261, 0.372] |
Self-esteem | r = −0.333, p < 0.001, 95% CI [−0.386, −0.276] |
Life satisfaction | r = −0.327, p < 0.001, 95% CI [−0.381, −0.270] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Ahmed, M.Z.; Ahmed, O.; Griffiths, M.D.; Chen, L. Development and Psychometric Assessment of the Problematic QQ Use Scale among Adolescents. Int. J. Environ. Res. Public Health 2021, 18, 6744. https://doi.org/10.3390/ijerph18136744
Liu J, Ahmed MZ, Ahmed O, Griffiths MD, Chen L. Development and Psychometric Assessment of the Problematic QQ Use Scale among Adolescents. International Journal of Environmental Research and Public Health. 2021; 18(13):6744. https://doi.org/10.3390/ijerph18136744
Chicago/Turabian StyleLiu, Jintao, Md Zahir Ahmed, Oli Ahmed, Mark D. Griffiths, and Lili Chen. 2021. "Development and Psychometric Assessment of the Problematic QQ Use Scale among Adolescents" International Journal of Environmental Research and Public Health 18, no. 13: 6744. https://doi.org/10.3390/ijerph18136744
APA StyleLiu, J., Ahmed, M. Z., Ahmed, O., Griffiths, M. D., & Chen, L. (2021). Development and Psychometric Assessment of the Problematic QQ Use Scale among Adolescents. International Journal of Environmental Research and Public Health, 18(13), 6744. https://doi.org/10.3390/ijerph18136744