The Impact of the Lockdown Caused by the COVID-19 Pandemic on the Fine Particulate Matter (PM2.5) Air Pollution: The Greek Paradigm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Network Implementation and Data Collection
2.2. Statistical Analyses
3. Results
3.1. Comparison between the Ambient PM2.5 Levels in 2020 and 2019 (7 March 2020 to 16 May 2020)
3.2. Correlations between Meteorological Variables and PM2.5 Air Pollution
3.3. The Impact of Meteorological Variables and Three-Phase Lockdown Approach on PM2.5 Air Pollution
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moustris, K.P.; Proias, G.T.; Larissi, I.K.; Nastos, P.T.; Koukouletsos, K.V.; Paliatsos, A.G. Health impacts due to particulate air pollution in Volos City, Greece. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2016, 51, 15–20. [Google Scholar] [CrossRef] [PubMed]
- The Guardian. Where’s the Worst Air Pollution in Europe and How Much Does It Cost Us? 2016. Available online: https://www.theguardian.com/news/datablog/2011/nov/24/cost-of-environmental-pollution (accessed on 10 June 2021).
- Xing, Y.F.; Xu, Y.-H.; Shi, M.H.; Lian, Y.X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, E69–E74. [Google Scholar]
- Katsouyanni, K. Ambient air pollution and health. Br. Med. Bull. 2003, 68, 143–156. [Google Scholar] [CrossRef] [Green Version]
- Lewis, E.R.; Schwartz, S.E. Sea Salt Aerosol Production: Mechanisms, Methods, Measurements, and Models: A Critical Review; American Geophysical Union: Washington, DC, USA, 2004. [Google Scholar]
- Emmanouil, C.; Drositi, E.; Vasilatou, V.; Diapouli, E.; Krikonis, K.; Eleftheriadis, K.; Kungolos, A. Study on particulate matter air pollution, source origin, and human health risk based of PM10 metal content in Volos City, Greece. Toxicol. Environ. Chem. 2017, 99, 691–709. [Google Scholar] [CrossRef]
- Rahman, A.; Luo, C.; Khan, M.J.R.; Ke, J.; Thilakanayaka, V.; Kumar, S. Influence of atmospheric PM2.5, PM10, O3, CO, NO2, SO2, and meteorological factors on the concentration of airborne pollen in Guangzhou, China. Atmos. Environ. 2019, 212, 290–304. [Google Scholar] [CrossRef]
- Wang, J.; LI, J.; Peng, Y.; Zhang, M.; Che, H.; Zhang, X. The impacts of the meteorology features on PM2.5 levels during a severe haze episode in central-east China. Atmos. Environ. 2019, 197, 177–189. [Google Scholar] [CrossRef]
- Nam, E.; Kishan, S.; Baldauf, R.W.; Fulper, C.R.; Sabisch, M.; Warila, J. Temperature effects on particulate matter emissions from light-duty, gasoline-powered motor vehicles. Environ. Sci. Technol. 2010, 44, 4672–4677. [Google Scholar] [CrossRef]
- Kong, L.; Tan, Q.; Feng, M.; Qu, Y.; An, J.; Liu, X.; Cheng, N.; Deng, Y.; Zhai, R.; Wang, Z. Investigating the characteristics and source analyses of PM2.5 seasonal variations in Chengdu, Southwest China. Chemosphere 2020, 243, 125267. [Google Scholar] [CrossRef]
- Wu, J.; Xu, C.; Wang, Q.Z.; Cheng, W. Potential Sources and Formations of the PM2.5 Pollution in Urban Hangzhou. Atmosphere 2016, 7, 100. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Yan, F.; Xie, Y.; Wang, F.; Wu, J.; Fu, Q. Impact of meteorological conditions on a nine-day particulate matter pollution event observed in December 2013, Shanghai, China. Particuology 2015, 20, 69–79. [Google Scholar] [CrossRef]
- Ouyang, W.; Guo, B.; Cai, G.; Li, Q.; Han, S.; Liu, B.; Liu, X. The washing effect of precipitation on particulate matter and the pollution dynamics of rainwater in downtown Beijing. Sci. Total Environ. 2015, 505, 306–314. [Google Scholar] [CrossRef]
- Papaioannou, A.B.; Viras, L.G.; Nastos, P.T.; Paliatsos, A.G. An analysis of selected air pollutants in the city of Volos, Greece. Environ. Monit. Assess. 2010, 161, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Papanastasiou, D.; Melas, D. Statistical characteristics of ozone and PM10 levels in a medium sized Mediterranean city. Int. J. Environ. Pollut. 2009, 36, 127138. [Google Scholar] [CrossRef]
- Papanastasiou, D.K.; Melas, D. Climatology and impact on air quality of sea breeze in an urban coastal environment. Int. J. Climatol. 2009, 29, 305315. [Google Scholar] [CrossRef]
- Antoine, D.; Nobileau, D. Recent increase of Saharan dust transport over the Mediterranean Sea, as revealed from ocean color satellite (SeaWiFS) observations. JGR 2006, 111, 19. [Google Scholar] [CrossRef] [Green Version]
- Barkan, J.; Alpert, P.; Kutiel, H.; Kishcha, P. Synoptics of dust transportation days from Africa toward Italy and central Europe. JGR 2005, 110, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Meloni, D.; di Sarra, A.; Biavati, G.; DeLuisi, J.J.; Monteleone, F.; Pace, G.; Piacentino, S.; Sferlazzo, D.M. Seasonal behavior of Saharan dust events at the Mediterranean island of Lampedusa in the period 1999–2005. Atmos. Environ. 2007, 41, 3041–3056. [Google Scholar] [CrossRef]
- Rodriguez, S.; Querol, X.; Alastuey, A.; Kallos, G.; Kakaliagou, O. Saharan dust contributions to PM10 and TSP levels in Southern and Eastern Spain. Atmos. Environ. 2001, 35, 2433–2447. [Google Scholar] [CrossRef]
- Alessandrini, E.R.; Stafoggia, M.; Faustini, A.; Gobbi, G.P.; Forastiere, F. Saharan Dust and the Association between Particulate Matter and Daily Hospitalisations in Rome, Italy. Occup. Environ. Med. 2013, 70, 432–434. [Google Scholar] [CrossRef]
- Matassoni, L.; Pratesi, G.; Centioli, D.; Cadoni, F.; Malesani, P.; Caricchia, A.M.; di Bucchianico, A.D. Saharan dust episodes in Italy: Influence on PM10 daily limit value (DLV) exceedances and the related synoptic. J. Environ. Monit. 2009, 11, 1586–1594. [Google Scholar] [CrossRef]
- Losacco, C.; Perillo, A. Particulate matter air pollution and respiratory impact on humans and animals. Environ. Sci. Pollut. Res. Int. 2018, 25, 33901–33910. [Google Scholar] [CrossRef]
- Pope, C.A., 3rd; Bhatnagar, A.; McCracken, J.P.; Abplanalp, W.; Conklin, D.J.; O’Toole, T. Exposure to fine particulate air pollution is associated with endothelial injury and systemic inflammation. Circ. Res. 2016, 119, 1204–1214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y.; Xie, C.; Ma, K.; Shang, K.; Wang, W.; et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin. Infect Dis. 2020, 71, 762–768. [Google Scholar] [CrossRef] [PubMed]
- Radan, M.; Dianat, M.; Badavi, M.; Mard, S.A.; Bayati, V.; Goudarzi, G. Gallic acid protects particulate matter (PM10) triggers cardiac oxidative stress and inflammation causing heart adverse events in rats. Environ. Sci. Pollut. Res. 2019, 26, 18200–18207. [Google Scholar] [CrossRef]
- Tsai, D.H.; Riediker, M.; Berchet, A.; Paccaud, F.; Waeber, G.; Vollenweider, P.; Bochud, M. Effects of short- and long-term exposures to particulate matter on inflammatory marker levels in the general population. Environ. Sci. Pollut. Res. Int. 2019, 26, 19697–19704. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chen, Y.; Yu, Z.; Ding, H.; Ma, Z. The influence of PM2.5 on lung injury and cytokines in mice. Exp. Ther. Med. 2019, 18, 2503–2511. [Google Scholar] [CrossRef] [Green Version]
- Berend, N. Contribution of air pollution to COPD and small airway dysfunction. Respirology 2016, 21, 237–244. [Google Scholar] [CrossRef]
- Croft, D.P.; Zhang, W.; Lin, S.; Thurston, S.W.; Hopke, P.K.; Masiol, M.; Squizzato, S.; van Wijngaarden, E.; Utell, M.J.; Rich, D.Q. The Association between Respiratory Infection and Air Pollution in the Setting of Air Quality Policy and Economic Change. Ann. Am. Thorac. Soc. 2019, 16, 321–330. [Google Scholar] [CrossRef]
- Horne, B.D.; Joy, E.A.; Hofmann, M.G.; Gesteland, P.H.; Cannon, J.B.; Lefler, J.S.; Blagev, D.P.; Korgenski, E.K.; Torosyan, N.; Hansen, G.I.; et al. Short-term elevation of fine particulate matter air pollution and acute lower respiratory infection. Am. J. Respir. Crit. Care Med. 2018, 198, 759–766. [Google Scholar] [CrossRef]
- Conticini, E.; Frediani, B.; Caro, D. Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy? Environ. Pollut. 2020, 261, 114465. [Google Scholar] [CrossRef]
- Kotsiou, O.S.; Kotsios, V.; Lampropoulos, I.; Zidros, T.; Zarogiannis, S.G.; Gourgoulianis, K.I. PM2.5 pollution strongly predicted COVID-19 incidence in four high-polluted urbanized Italian cities during the pre-lockdown and lockdown periods. Int. J. Environ. Res. Public Health 2021, 18, 5088. [Google Scholar] [CrossRef]
- Brandt, E.B.; Beck, A.F.; Mersha, T.B. Air pollution, racial disparities, and COVID-19 mortality. J. Allergy Clin. Immunol. 2020, 146, 61–63. [Google Scholar] [CrossRef]
- Chen, K.; Wang, M.; Huang, C.; Kinney, P.L.; Anastas, P.T. Air pollution reduction and mortality benefit during the COVID-19 outbreak in China. Lancet Planet. Health 2020, 4, e210–e212. [Google Scholar] [CrossRef]
- World Health Organization. Ambient (Outdoor) Air Pollution. 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 7 May 2021).
- Saharidis, G.; Kalantzis, G. Monitoring Network for PM2.5. In Proceedings of the 6th International Conference on “Energy, Sustainability and Climate Change”, ESCC 2019, Chania, Greece, 3–7 June 2019; University of Thessaly: Volos, Greece, 2019; p. 11. [Google Scholar]
- Antoniadis, V.; Golia, E.E.; Liu, Y.T.; Wang, S.L.; Shaheen, S.M.; Rinklebe, J. Soil and maize contamination by trace elements and associated health risk assessment in the industrial area of Volos, Greece. Environ. Int. 2019, 124, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Taxydromos Newspaper Reporter. 21 May 2021. Available online: https://www.taxydromos.gr/Topika/403457-meiwsh-80-ths-epivatikhs-kinhshs-sto-astiko-ktel-voloy.html?fbclid=IwAR1dUJIRAqVtSogIA0p8gS3caT4FENUZgy3V3wEY-oyHuvMR8N9MRs51ozw (accessed on 2 June 2021). (In Greek).
- TomTom Traffic Index. Greece Traffic. Available online: https://www.tomtom.com/en_gb/traffic-index/greece-country-traffic/ (accessed on 2 June 2021).
- Papaioannou, A.B.; Viras, L.G.; Nastos, P.T.; Paliatsos, A.G. Temporal evolution of sulfur dioxide and nitrogen oxides in the city of Volos, Greece. Environ. Monit. Assess. 2010, 161, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Karandinos-Riga, A.N.; Saitanis, C.; Arapis, G. Study of the weekday–weekend variation of air pollutants in a typical Mediterranean coastal town. Int. J. Environ. Pollut. 2006, 27, 300–312. [Google Scholar] [CrossRef]
- Papamanolis, N. On the seasonal dependence of the air pollution in the city of Volos, Greece. Fresenius Environ. Bull. 2001, 10, 749–754. [Google Scholar]
Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | Collinearity Statistics | ||
---|---|---|---|---|---|---|---|
B | Std. Error | Beta | Tolerance | VIF | |||
(Constant) | 21.343 | 11.088 | 1.925 | 0.061 | |||
Mean daily temperature (°C) | −0.058 | 0.451 | −0.025 | −0.128 | 0.899 | 0.364 | 2.749 |
Mean daily humidity (%) | 0.158 | 0.151 | 0.187 | 1.052 | 0.299 | 0.438 | 2.281 |
Mean daily rainfall (inches) | 0.251 | 0.314 | 0.132 | 0.799 | 0.429 | 0.506 | 1.975 |
Phase 2 | −7.694 | 2.966 | −0.415 | −2.594 | 0.013 | 0.539 | 1.857 |
Phase 3 | −14.453 | 4.780 | −0.625 | −3.024 | 0.004 | 0.323 | 3.100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotsiou, O.S.; Saharidis, G.K.D.; Kalantzis, G.; Fradelos, E.C.; Gourgoulianis, K.I. The Impact of the Lockdown Caused by the COVID-19 Pandemic on the Fine Particulate Matter (PM2.5) Air Pollution: The Greek Paradigm. Int. J. Environ. Res. Public Health 2021, 18, 6748. https://doi.org/10.3390/ijerph18136748
Kotsiou OS, Saharidis GKD, Kalantzis G, Fradelos EC, Gourgoulianis KI. The Impact of the Lockdown Caused by the COVID-19 Pandemic on the Fine Particulate Matter (PM2.5) Air Pollution: The Greek Paradigm. International Journal of Environmental Research and Public Health. 2021; 18(13):6748. https://doi.org/10.3390/ijerph18136748
Chicago/Turabian StyleKotsiou, Ourania S., Georgios K. D. Saharidis, Georgios Kalantzis, Evangelos C. Fradelos, and Konstantinos I. Gourgoulianis. 2021. "The Impact of the Lockdown Caused by the COVID-19 Pandemic on the Fine Particulate Matter (PM2.5) Air Pollution: The Greek Paradigm" International Journal of Environmental Research and Public Health 18, no. 13: 6748. https://doi.org/10.3390/ijerph18136748
APA StyleKotsiou, O. S., Saharidis, G. K. D., Kalantzis, G., Fradelos, E. C., & Gourgoulianis, K. I. (2021). The Impact of the Lockdown Caused by the COVID-19 Pandemic on the Fine Particulate Matter (PM2.5) Air Pollution: The Greek Paradigm. International Journal of Environmental Research and Public Health, 18(13), 6748. https://doi.org/10.3390/ijerph18136748