Feasibility Study on the Application of Microbial Agent Modified Water-Jet Loom Sludge for the Restoration of Degraded Soil in Mining Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region and Sampling
2.2. Pot Trial and Harvest
2.3. Experimental Methods
2.4. Data and Statistical Analysis
3. Results
3.1. Effects of Sludge and/or Microbial Agents on Physical Properties of the Soil
3.2. Effects of Sludge and/or a Microbial Agent on Chemical Properties of the Soil
3.3. Effects of Sludge and/or Microbes on Biological Characteristics of the Soil
3.4. Correlations between Biological Characteristics and Chemical Properties of the Soil
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bian, Z.; Miao, X.; Lei, S.; Chen, S.E.; Wang, W.; Struthers, S. The challenges of reusing mining and mineral-processing wastes. Science 2012, 337, 702–703. [Google Scholar] [CrossRef]
- Meng, Z.P.; Pan, J.N.; Wang, R. Coal Mining Induced Environmental and Geological Problems in China; Tang, C., Ed.; Rinton Press, Inc.: Princeton, NJ, USA, 2009; pp. 1289–1296. [Google Scholar]
- Huang, J.; Wang, P.; Xu, C.; Zhu, Z. Fly Ash Modified Coalmine Solid Wastes for Stabilization of Trace Metals in Mining Damaged Land Reclamation: A Case Study in Xuzhou Coalmine Area. Int. J. Environ. Res. Public Health 2018, 15, 2317. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Xia, Q. An integrated methodology for monitoring spontaneous combustion of coal waste dumps based on surface temperature detection. Appl. Therm. Eng. 2017, 122, 27–38. [Google Scholar] [CrossRef]
- Yu, H.; Huang, J.; Ji, C.; Li, Z. Construction of a Landscape Ecological Network for a Large-Scale Energy and Chemical Industrial Base: A Case Study of Ningdong, China. Land 2021, 10, 344. [Google Scholar] [CrossRef]
- Hu, Z.; Yang, G.; Xiao, W.; Li, J.; Yang, Y.; Yu, Y. Farmland damage and its impact on the overlapped areas of cropland and coal resources in the eastern plains of China. Resour. Conserv. Recycl. 2014, 86, 1–8. [Google Scholar] [CrossRef]
- Bascetin, A. A decision support system using analytical hierarchy process (AHP) for the optimal environmental reclamation of an open-pit mine. Environ. Geol. 2007, 52, 663–672. [Google Scholar] [CrossRef]
- Su, Y.Z.; Zhao, W.Z.; Su, P.X.; Zhang, Z.H.; Wang, T.; Ram, R. Ecological effects of desertification control and desertified land reclamation in an oasis-desert ecotone in an and region: A case study in Hexi Corridor, northwest China. Ecol. Eng. 2007, 29, 117–124. [Google Scholar] [CrossRef]
- Duan, L.; Liu, T.; Wang, X.; Wang, G.; Ma, L.; Luo, Y. Spatio-temporal variations in soil moisture and physicochemical properties of a typical semiarid sand-meadow-desert landscape as influenced by land use. Hydrol. Earth Syst. Sci. 2011, 15, 1865–1877. [Google Scholar] [CrossRef] [Green Version]
- Bi, Y.; Guo, Y.; Sun, H. Arbuscular mycorrhizal fungal diversity in soils underlying moss biocrusts in coal mining subsidence areas. Environ. Sci. Pollut. Res. 2021, 28, 3484–3493. [Google Scholar] [CrossRef] [PubMed]
- Kolecka, K.; Gajewska, M.; Obarska-Pempkowiak, H.; Rohde, D. Integrated dewatering and stabilization system as an environmentally friendly technology in sewage sludge management in Poland. Ecol. Eng. 2017, 98, 346–353. [Google Scholar] [CrossRef]
- Karim, A.A.; Kumar, M.; Mohapatra, S.; Singh, S.K. Nutrient rich rich biomass and effluent sludge wastes co-utilization for production of biochar fertilizer through different thermal treatments. J. Clean. Prod. 2019, 228, 570–579. [Google Scholar] [CrossRef]
- Ashekuzzaman, S.M.; Forrestal, P.; Richards, K.; Fenton, O. Dairy industry derived wastewater treatment sludge: Generation, type and characterization of nutrients and metals for agricultural reuse. J. Clean. Prod. 2019, 230, 1266–1275. [Google Scholar] [CrossRef]
- Cehui, M.; Qitang, W.; Quanying, C.; Guirong, L.; Chengai, J. Utilization of municipal sludge in agriculture and sustainable develppment. Chin. J. Appl. Ecol. 2000, 11, 157–160. [Google Scholar]
- Hanay, O.; Hasar, H.; Kocer, N.N.; Aslan, S. Evaluation for agricultural usage with speciation of heavy metals in a municipal sewage sludge. Bull. Environ. Contam. Toxicol. 2008, 81, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Qian, Y.; Zhou, Y.; Wu, Q.; Ma, S. An Optimization Design on Water-Jet Looms Activated Carbon Filter; Zhou, H., Ed.; World Scientific Publ. Co. Pte. Ltd.: Singapore, 2016; pp. 270–277. [Google Scholar]
- Soobhany, N. Insight into the recovery of nutrients from organic solid waste through biochemical conversion processes for fertilizer production: A review. J. Clean. Prod. 2019, 241, 118413. [Google Scholar] [CrossRef]
- Selivanovskaya, S.Y.; Latypova, V.Z.; Artamonova, L.A. Use of sewage sludge compost as the restoration agent on the degraded soil of Tatarstan. J. Environ. Sci. Health Part A 2003, 38, 1549–1556. [Google Scholar] [CrossRef]
- Fijalkowski, K.; Rosikon, K.; Grobelak, A.; Hutchison, D.; Kacprzak, M.J. Modification of properties of energy crops under Polish condition as an effect of sewage sludge application onto degraded soil. J. Environ. Manag. 2018, 217, 509–519. [Google Scholar] [CrossRef]
- Bai, Y.; Zuo, W.; Shao, H.; Mei, L.; Tang, B.; Gu, C.; Wang, X.; Guan, Y. Eastern China coastal mudflats: Salt-soil amendment with sewage sludge. Land Degrad. Dev. 2018, 29, 3803–3811. [Google Scholar] [CrossRef]
- Ros, M.; Hernandez, M.T.; Garcia, C. Bioremediation of soil degraded by sewage sludge: Effects on soil properties and erosion losses. Environ. Manag. 2003, 31, 741–747. [Google Scholar] [CrossRef]
- Ciolea, D.I.; Ionel, I.; Mihaiuti, A. Research Concerning the Possibility of Turning Sterile Soil Into a Fruitful One, by Using Sludge. Rev. Chim. Bucharest. 2019, 70, 3236–3241. [Google Scholar] [CrossRef]
- Alvarenga, P.; Rodrigues, D.; Mourinha, C.; Palma, P.; de Varennes, A.; Cruz, N.; Tarelho, L.A.C.; Rodrigues, S. Use of wastes from the pulp and paper industry for the remediation of soils degraded by mining activities: Chemical, biochemical and ecotoxicological effects. Sci. Total Environ. 2019, 686, 1152–1163. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, S.; Bettiol, W.; Cerri, C.C. Effect of sewage sludge on microbial biomass, basal respiration, metabolic quotient and soil enzymatic activity. Appl. Soil Ecol. 2005, 30, 65–77. [Google Scholar] [CrossRef]
- Zerzghi, H.; Brooks, J.P.; Gerba, C.P.; Pepper, I.L. Influence of long-term land application of Class B biosolids on soil bacterial diversity. J. Appl. Microbiol. 2010, 109, 698–706. [Google Scholar] [CrossRef] [PubMed]
- Criquet, S.; Braud, A.; Neble, S. Short-term effects of sewage sludge application on phosphatase activities and available P fractions in Mediterranean soils. Soil Biol. Biochem. 2007, 39, 921–929. [Google Scholar] [CrossRef]
- Hu, Z.; Zhu, Q.; Liu, X.; Li, Y. Preparation of topsoil alternatives for open-pit coal mines in the Hulunbuir grassland area, China. Appl. Soil Ecol. 2020, 147, 103431. [Google Scholar] [CrossRef]
- Anderson, J.D.; Ingram, L.J.; Stahl, P.D. Influence of reclamation management practices on microbial biomass carbon and soil organic carbon accumulation in semiarid mined lands of Wyoming. Appl. Soil Ecol. 2008, 40, 387–397. [Google Scholar] [CrossRef]
- Molnar, M.; Vaszita, E.; Farkas, E.; Ujaczki, E.; Fekete-Kertesz, I.; Kirchkeszner, C.; Gruiz, K.; Uzinger, N.; Feigl, V. Acidic sandy soil improvement with biochar—A microcosm study. Sci. Total Environ. 2016, 563, 855–865. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, C.; Cui, Z.; Qian, W.; Liang, C.; Wang, C. Soil bacterial community restoration along a chronosequence of sand-fixing plantations on moving sand dunes in the Horqin sandy land in northeast China. J. Arid Environ. 2019, 165, 81–87. [Google Scholar] [CrossRef]
- Zhang, Y.; Bi, Y.; Shen, H.; Zhang, L. Arbuscular Mycorrhizal Fungi Enhance Sea Buckthorn Growth in Coal Mining Subsidence Areas in Northwest China. J. Microbiol. Biotechn. 2020, 30, 848–855. [Google Scholar] [CrossRef] [PubMed]
- NRCS Soils. Keys to Soil Taxonomy, 11th ed.; USDA Natural Resources Conservation Service: Washington, DC, USA, 2010.
- Shen, Z.; Xue, C.; Penton, C.R.; Thomashow, L.S.; Zhang, N.; Wang, B.; Ruan, Y.; Li, R.; Shen, Q. Suppression of banana Panama disease induced by soil microbiome reconstruction through an integrated agricultural strategy. Soil Biol. Biochem. 2019, 128, 164–174. [Google Scholar] [CrossRef]
- Dexter, A.R. Advances in characterization of soil structure. Soil Tillage Res. 1988, 11, 199–238. [Google Scholar] [CrossRef]
- Yang, X.M.; Wander, M.M. Temporal changes in dry aggregate size and stability: Tillage and crop effects on as silty loam Mollisol in Illinois. Soil Tillage Res. 1998, 49, 173–183. [Google Scholar] [CrossRef]
- Six, J.; Elliott, E.T.; Paustian, K. Soil structure and soil organic matter: II. A normalized stability index and the effect of mineralogy. Soil Sci. Soc. Am. J. 2000, 64, 1042–1049. [Google Scholar] [CrossRef]
- McArdle, B.H.; Anderson, M.J. Fitting multivariate models to community data: A comment on distance-based redundancy analysis. Ecology 2001, 82, 290–297. [Google Scholar] [CrossRef]
- Clauset, A.; Shalizi, C.R.; Newman, M.E.J. Power-Law Distributions in Empirical Data. Siam. Rev. 2009, 51, 661–703. [Google Scholar] [CrossRef] [Green Version]
- Koroshetz, W.J. Tissue Plasminogen Activator for Acute Ischemic Stroke. N. Engl. J. Med. 1995, 334, 1581–1588. [Google Scholar]
- Inner Mongolia, A.O.Q.S. Inner Mongolia Farmland, Grassland Relative Humidity Level Indicators; DB15/T 510-2012; Inner Mongolia Autonomous Region Bureau of Quality and Technical Supervision: Inner Mongolia, China, 2012. [Google Scholar]
- China, M.O.W.R. Specifications for Soil Moisture Monitoring; SL364-2015; Ministry of Water Resources the People’s Republie of China: Beijing, China, 2015.
- Accoe, F.; Boeckx, P.; Busschaert, J.; Hofman, G.; Van Cleemput, O. Gross N transformation rates and net N mineralisation rates related to the C and N contents of soil organic matter fractions in grassland soils of different age. Soil Biol. Biochem. 2004, 36, 2075–2087. [Google Scholar] [CrossRef]
- Chen, G.; Zhu, H.; Zhang, Y. Soil Microbial Activities and Carbon and Nitrogen Fixation; Elsevier SAS: Paris, France, 2003; Volume 154, pp. 393–398. [Google Scholar]
- R Core Team. R: A language and environment for statistical computing. 2013. Computing 2011, 1, 12–21. [Google Scholar]
- Qian, T.; Bagan, H.; Kinoshita, T.; Yamagata, Y. Spatial-Temporal Analyses of Surface Coal Mining Dominated Land Degradation in Holingol, Inner Mongolia. IEEE J. Stars 2014, 7, 1675–1687. [Google Scholar] [CrossRef]
- Ajayi, A.E.; Horn, R. Comparing the potentials of clay and biochar in improving water retention and mechanical resilience of sandy soil. Int. Agrophys 2016, 30, 391–399. [Google Scholar] [CrossRef] [Green Version]
- Shifeng, W.Z.J. Engineering example of air floatation + bio-contact oxidation process for upgrading treatment of waste water from water jet loom. Environ. Dev. 2019, 14, 27–28. [Google Scholar]
- Ai, X.; Wang, L.; Xu, D.; Rong, J.; Ai, S.; Liu, S.; Li, C.; Ai, Y. Stability of artificial soil aggregates for cut slope restoration: A case study from the subalpine zone of southwest China. Soil Tillage Res. 2021, 209, 104934. [Google Scholar] [CrossRef]
- Menon, M.; Mawodza, T.; Rabbani, A.; Blaud, A.; Lair, G.J.; Babaei, M.; Kercheva, M.; Rousseva, S.; Banwart, S. Pore system characteristics of soil aggregates and their relevance to aggregate stability. Geoderma 2020, 366, 114259. [Google Scholar] [CrossRef]
- Niu, F.; Gao, Z.; Lin, Z.; Luo, J.; Fan, X. Vegetation influence on the soil hydrological regime in permafrost regions of the Qinghai-Tibet Plateau, China. Geoderma 2019, 354, 113892. [Google Scholar] [CrossRef]
- Feng, D.; Bao, W. Review of the temporal and spatial patterns of soil C: N: P stoichiometry and its driving factors. Chin. J. Appl. Environ. Biol. 2017, 23, 400–408. [Google Scholar]
- Zhang, Z.S.; Song, X.L.; Lu, X.G.; Xue, Z.S. Ecological stoichiometry of carbon, nitrogen, and phosphorus in estuarine wetland soils: In fluences of vegetation coverage, plant communities, geomorpgy, and seawallsu. J. Soils Sediments 2013, 13, 1042–1051. [Google Scholar] [CrossRef]
- Zhang, H.; Ouyang, Z.; Zhao, X.; Guo, X.; Ye, Y. Effects of different land use types on soil organic carbon, nitrogen and ratio of carbon to nitrogen in the plow layer of farmland soil in Jiangxi Province. Acta Entiae Circumstantiae 2018. [Google Scholar] [CrossRef]
- Gundersen, P.; Callesen, I.; de Vries, W. Nitrate leaching in forest ecosystems is related to forest floor C/N ratios. Environ. Pollut. 1998, 1021, 403–407. [Google Scholar] [CrossRef]
- Stacey, N.E.; Lewis, R.W.; Davenport, J.R.; Sullivan, T.S. Composted biosolids for golf course turfgrass management: Impacts on the soil microbiome and nutrient cycling. Appl. Soil Ecol. 2019, 144, 31–41. [Google Scholar] [CrossRef]
- Thompson, G.L.; Kao-Kniffin, J. Urban Grassland Management Implications for Soil C and N Dynamics: A Microbial Perspective. Front. Ecol. Evol. 2019, 7, 315. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Chang, Y.; Liu, Q. Fate and distribution of nutrients and heavy metals during hydrothermal carbonization of sewage sludge with implication to land application. J. Clean. Prod. 2019, 225, 972–983. [Google Scholar] [CrossRef]
- Kitz, F.; Gomez-Brandon, M.; Eder, B.; Etemadi, M.; Spielmann, F.M.; Hammerle, A.; Insam, H.; Wohlfahrt, G. Soil carbonyl sulfide exchange in relation to microbial community composition: Insights from a managed grassland soil amendment experiment. Soil Biol. Biochem. 2019, 135, 28–37. [Google Scholar] [CrossRef] [PubMed]
Treatment | Soil (g) | Water-Jet Loom Sludge (g) | Microbial Agents (g) | Number of Setaria viridis Seeds | Number of Repeated Trials |
---|---|---|---|---|---|
CK | 2500.00 | 0.00 | 0.00 | 10 | 5 |
S + M | 2500.00 | 0.00 | 0.25 | 10 | 5 |
S + SL | 1785.00 | 715.00 | 0.00 | 10 | 5 |
S + SL × M | 1785.00 | 715.00 | 0.25 | 10 | 5 |
Treatment | pH | SOC (g/kg) | TN (mg/kg) | TP (mg/kg) | MK (mg/kg) | AN (mg/kg) | AP (mg/kg) | AK (mg/kg) | C/N Ratio |
---|---|---|---|---|---|---|---|---|---|
CK | 9.06 ± 0.02 a | 3.6 ± 0.01 d | 458.0 ± 9.23 d | 344.0 ± 22.0 d | 2.18 ± 0.01 b | 8.72 ± 0.16 b | 1.5 ± 0.00 d | 33.0 ± 2.00 d | 7.90 ± 0.02 a |
S + M | 9.14 ± 0.00 a | 7.25 ± 0.32 b | 893.0 ± 13.92 c | 666.0 ± 1.55 c | 1.99 ± 0.02 c | 10.47 ± 0.28 b | 2.9 ± 0.02 c | 45.6 ± 8.07 c | 8.11 ± 0.05 a |
S + SL | 7.91 ± 0.04 b | 15.83 ± 0.19 c | 2127.7 ± 33.7 b | 998.2 ± 15.2 b | 2.98 ± 0.11 a | 104.64 ± 16.6 a | 27.5 ± 1.9 b | 90.6 ± 0.50 b | 7.40 ± 0.02 b |
S + SL × M | 7.84 ± 0.02 b | 20.65 ± 3.2 a | 2898.9 ± 34.7 a | 1509.2 ± 47.6 a | 1.77 ± 0.04 c | 106.18 ± 12.0 a | 33.2 ± 0.05 a | 99.6 ± 4.80 a | 7.12 ± 0.02 b |
Sample | Chao1 | Shannon’s Index | ||
---|---|---|---|---|
Bacteria/Fungi | Bacteria | Fungi | Bacteria | Fungi |
CK | 160.00 ± 4.37 a | 102.71 ± 0.14 a | 3.84 ± 0.88 a | 2.14 ± 0.03 a |
S + M | 375.63 ± 4.62 b | 355.25 ± 2.07 c | 6.90 ± 0.56 b | 4.47 ± 0.22 b |
S + SL | 190.32 ± 0.42 a | 186.34 ± 1.60 b | 3.78 ± 0.66 a | 2.19 ± 0.14 a |
S + SL × M | 715.40 ± 2.30 d | 554.84 ± 0.32 d | 8.45 ± 0.08 c | 5.34 ± 0.12 c |
SOC | AN | AP | AK | TN | TP | MK | C/N | AGB | MBC | CH | |
---|---|---|---|---|---|---|---|---|---|---|---|
pH | −0.968 * | −0.997 * | −0.991 * | −0.976 * | −0.958 * | −0.871 | −0.285 | 0.966 * | −0.838 | −0.971 * | −0.891 |
SOC | 0.953 * | 0.980 * | 0.989 * | 0.999 * | 0.980 * | 0.367 | −0.927 | 0.954 * | 0.994 * | 0.988 * | |
AN | 0.991 * | 0.984 * | 0.951 * | 0.876 | 0.304 | −0.949 | 0.835 | 0.919 | 0.902 | ||
AP | 0.992 * | 0.981 * | 0.927 | 0.176 | −0.968 * | 0.900 | 0.956 * | 0.911 | |||
AK | 0.985 * | 0.940 | 0.183 | −0.929 | 0.900 | 0.972 * | 0.963 * | ||||
TN | 0.981 * | 0.014 | −0.959 * | 0.961 * | 0.993 * | 0.986 * | |||||
TP | −0.155 | −0.880 | 0.990 * | 0.993 * | 0.993 * | ||||||
MK | −0.092 | −0.260 | −0.040 | −0.059 | |||||||
C/N | −0.883 | −0.894 | −0.869 | ||||||||
AGB | 0.969 * | 0.997 * | |||||||||
MBC | 0.960 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, C.; Huang, J.; Tian, Y.; Liu, Y.; Barvor, J.B.; Shao, X.; Li, Z. Feasibility Study on the Application of Microbial Agent Modified Water-Jet Loom Sludge for the Restoration of Degraded Soil in Mining Areas. Int. J. Environ. Res. Public Health 2021, 18, 6797. https://doi.org/10.3390/ijerph18136797
Ji C, Huang J, Tian Y, Liu Y, Barvor JB, Shao X, Li Z. Feasibility Study on the Application of Microbial Agent Modified Water-Jet Loom Sludge for the Restoration of Degraded Soil in Mining Areas. International Journal of Environmental Research and Public Health. 2021; 18(13):6797. https://doi.org/10.3390/ijerph18136797
Chicago/Turabian StyleJi, Chuning, Jiu Huang, Yu Tian, Ying Liu, Joshua Bosco Barvor, Xintong Shao, and Zi’ao Li. 2021. "Feasibility Study on the Application of Microbial Agent Modified Water-Jet Loom Sludge for the Restoration of Degraded Soil in Mining Areas" International Journal of Environmental Research and Public Health 18, no. 13: 6797. https://doi.org/10.3390/ijerph18136797
APA StyleJi, C., Huang, J., Tian, Y., Liu, Y., Barvor, J. B., Shao, X., & Li, Z. (2021). Feasibility Study on the Application of Microbial Agent Modified Water-Jet Loom Sludge for the Restoration of Degraded Soil in Mining Areas. International Journal of Environmental Research and Public Health, 18(13), 6797. https://doi.org/10.3390/ijerph18136797