Investigating the Antioxidant and Cytocompatibility of Mimusops elengi Linn Extract over Human Gingival Fibroblast Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Protocol
2.2. Collection of Plant Material and Processing of the Extract
2.3. Phytochemical Screening
2.4. Evaluation of Total Flavanoid Content
2.5. Quantification of Antioxidant Activities
2.5.1. DPPH Free Radical Scavenging Assay
2.5.2. Nitric Oxide Radical Scavenging Activity
2.6. Cytotoxic Activity
2.6.1. Materials
2.6.2. Cell Culture
2.6.3. MTT Assay
2.6.4. Neutral Red Uptake Assay
2.6.5. Trypan Blue Assay
2.7. Statistical Analysis
3. Results
3.1. Phytochemical Analysis
3.2. Total Flavanoid Content
3.3. Antioxidant Activities
3.4. Cytotoxicity Assay’s
3.4.1. MTT Assay
3.4.2. Neutral Red Uptake Assay
3.4.3. Trypan Blue Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marsh, P.D. Dental plaque as a biofilm and a microbial community-Implications for health and disease. BMC Oral Health 2006, 6, S1–S14. [Google Scholar] [CrossRef] [Green Version]
- Chandki, R.; Banthia, P.; Banthia, R. Biofilms: A microbial home. J. Indian Soc. Periodontol. 2011, 15, 111–114. [Google Scholar] [PubMed]
- Figuero, E.; Nóbrega, D.F.; García-Gargallo, M.; Tenuta, L.M.A.; Herrera, D.; Carvalho, J.C. Mechanical and chemical plaque control in the simultaneous management of gingivitis and caries: A systematic review. J. Clin. Periodontol. 2017, 44, S116–S134. [Google Scholar] [CrossRef] [Green Version]
- Battino, M.; Bullon, P.; Wilson, M.; Newman, H. Oxidative injury and inflammatory periodontal diseases: The challenge of antioxidants to free radicals and reactive oxygen species. Crit. Rev. Oral Biol. Med. 1999, 10, 458–476. [Google Scholar] [CrossRef] [PubMed]
- Chapple, I.L.C. Reactive oxygen species and antioxidants in inflammatory diseases. J. Clin. Periodontol. 1997, 24, 287–296. [Google Scholar] [CrossRef]
- Waddington, R.J.; Moseley, R.; Embery, G. Reactive oxygen species: A potential role in the pathogenesis of periodontal diseases. Oral Dis. 2000, 6, 138–151. [Google Scholar] [CrossRef]
- Bagchi, S.; Saha, S.; Jagannath, G.; Reddy, V.K.; Sinha, P. Evaluation of efficacy of a commercially available herbal mouthwash on dental plaque and gingivitis: A double-blinded parallel randomized controlled trial. J. Indian Assoc. Public Heal. Dent. 2015, 13, 222–227. [Google Scholar] [CrossRef]
- Panpaliya, N.P.; Dahake, P.T.; Kale, Y.J.; Dadpe, M.V.; Kendre, S.B.; Siddiqi, A.G.; Maggavi, U.R. In vitro evaluation of antimicrobial property of silver nanoparticles and chlorhexidine against five different oral pathogenic bacteria. Saudi Dental J. 2019, 31, 76–83. [Google Scholar] [CrossRef]
- Mathur, A.; Gopalakrishnan, D.; Mehta, V.; Rizwan, S.; Shetiya, S.; Bagwe, S. Efficacy of green tea-based mouthwashes on dental plaque and gingival inflammation: A systematic review and meta-analysis. Indian J. Dent. Res. 2018, 29, 225–232. [Google Scholar]
- Polizzi, E.; Tetè, G.; Bova, F.; Pantaleo, G.; Gastaldi, G.; Capparè, P.; Gherlone, E. Anti-bacterial properties and side effects of chlorhexidinebased mouthwashes. A prospective, randomized clinical study. J. Osseointegration 2020, 12, 2–7. [Google Scholar]
- Coelho, A.S.; Laranjo, M.; Gonçalves, A.C.; Paula, A.; Paulo, S.; Abrantes, A.M.; Caramelo, F.; Ferreira, M.M.; Silva, M.J.; Carrilho, E.; et al. Cytotoxic effects of a chlorhexidine mouthwash and of an enzymatic mouthwash on human gingival fibroblasts. Odontology 2020, 108, 260–270. [Google Scholar] [CrossRef]
- Bhagwat, D.A.; Kolekar, V.R.; Nadaf, S.J.; Choudhari, P.B.; More, H.N.; Killedar, S.G. Acrylamide grafted neem (Azadirachta indica) gum polymer: Screening and exploration as a drug release retardant for tablet formulation. Carbohydr. Polym. 2020, 229, 115357. [Google Scholar] [CrossRef]
- Nadaf, S.; Nnamani, P.; Jadhav, N. Evaluation of Prosopis africana Seed Gum as an Extended Release Polymer for Tablet Formulation. AAPS PharmSciTech 2015, 16, 716–729. [Google Scholar] [CrossRef]
- Parveen, A. Challenges and guidelines for clinical trial of herbal drugs. J. Pharm. Bioallied Sci. 2015, 7, 329–333. [Google Scholar]
- Mahesh, G.; Gopal, V. Mimusops elengi Linn. (Sapotaceae); A Promising Dental Care Plant. World J. Pharm. Res. 2018, 7, 269–274. [Google Scholar]
- Kumar, H.; Savaliya, M.; Biswas, S.; Nayak, P.G.; Maliyakkal, N.; Setty, M.M.; Gourishetti, K.; Pai, K.S.R. Assessment of the in vitro cytotoxicity and in vivo anti-tumor activity of the alcoholic stem bark extract/fractions of Mimusops elengi Linn. Cytotechnology 2016, 68, 861–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhavikatti, S.K.; Alqahtani, N.A.; Bhat, K.G.; Aggarwal, V.P.; Karobari, M.I. Evaluation of the anti-inflammatory activity of a mimusops elengi (Linn)-incorporated herbal product: A zymographic analysis. J. Biol. Regul. Homeost. Agents 2020, 34, 157–162. [Google Scholar]
- Gami, B.; Pathak, S.; Parabia, M. Ethnobotanical, phytochemical and pharmacological review of Mimusops elengi Linn. Asian Pac. J. Trop. Biomed. 2012, 2, 743–748. [Google Scholar] [CrossRef] [Green Version]
- Gami, B. Evaluation of Pharmacognostic and Anti Hemorrhoidal Properties of M. Elengi Lin. Ph.D. Thesis, Veer Narmad South Gujarat University, Gujarat, India, 2007. [Google Scholar]
- Singh, K.L.; Srivastava, P.; Kumar, S.; Singh, D.; Singh, V. Mimusops elengi lin (maulsari); A potential medicinal plant. Arch. Biomed. Sci. 2014, 2, 18–29. [Google Scholar]
- Choudhary, A.; Smitha, C.N.; Suresh, D.K.; Basu, S.K. Clinival evaluation efficacy of quercus infectoria and Mimusops elengi linn. Herbal preparation in inhibition of gingivitis. Adv. Hum. Biol. 2015, 5, 68–76. [Google Scholar]
- Murudkar, A.; Mundhada, S.S.; Tatke, P. Antibacterial activity of Mimusops elengi l. bark against dental pathogens. Ind. J. Pharm. Educ. Res. 2007, 41, 114–120. [Google Scholar]
- Nistane, N.T.; Chauriya, C.B.; Gajbhiy, V.R. A comparative pharmacognostic and antimicrobial evaluation of different parts of Mimusops elengi for dental associated problems. J. Pharmacogn. Phytochem. 2019, 8, 772–779. [Google Scholar]
- Zhou, P.; Chrepa, V.; Karoussis, I.; Pikos, M.A.; Kotsakis, G.A. Cytocompatibility Properties of an Herbal Compound Solution Support In Vitro Wound Healing. Front. Physiol. 2021, 12, 653661. [Google Scholar] [CrossRef] [PubMed]
- Kotsakis, G.A.; Lan, C.; Barbosa, J.; Lill, K.; Chen, R.; Rudney, J.; Aparicio, C. Antimicrobial agents used in the treatment of peri-implantitis alter the physicochemistry and cytocompatibility of titanium surfaces. J. Periodontol. 2016, 87, 809–819. [Google Scholar] [CrossRef]
- Muller, H.D.; Eick, S.; Moritz, A.; Lussi, A.; Gruber, R. Cytotoxicity and antimicrobial activity of oral rinses In Vitro. Biomed. Res. Int. 2017, 40, 19723. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, S.K. Antimicrobial and Antioxidant Activities of Careya arborea Roxb. Stem Bark 2006, 5, 35–41. [Google Scholar]
- Manzocco, L.; Anese, M.; Nicoli, M.C. Antioxidant properties of tea extracts as affected by processing. LWT Food Sci. Technol. 1998, 31, 694–698. [Google Scholar] [CrossRef]
- Virginia, H.; Sarah, L.E.; Rachel, J.S.; Nathaniel, T.; Joseph, S.; Adam, E.; Cecilia, G. Mitochondrial nitric-oxide synthase: Role in pathophysiology. IUBMB Life 2003, 55, 599–603. [Google Scholar]
- Marcocci, I.; Marguire, J.J.; Droy-lefaiz, M.T.; Packer, L. The nitric oxide scavenging properties of Ginkgo biloba extract, Biochem. Biophys. Res. Ommun. 1994, 201, 748–755. [Google Scholar] [CrossRef] [PubMed]
- Nadaf, S.J.; Killedar, S.G. Curcumin nanocochleates: Use of design of experiments, solid state characterization, In Vitro apoptosis and cytotoxicity against breast cancer MCF-7 cells. J. Drug Deliv. Sci. Technol. 2018, 47, 337–350. [Google Scholar] [CrossRef]
- Van Meerloo, J.; Kaspers, G.J.L.; Cloos, J. Cell sensitivity assays: The MTT assay. Methods Mol. Biol. 2011, 731, 237–245. [Google Scholar]
- Repetto, G.; del Peso, A.; Zurita, J.L. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat. Protoc. 2008, 3, 1125–1131. [Google Scholar] [CrossRef]
- Strober, W. Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol. 2001, 21, A.3B.1–A.3B.2. [Google Scholar]
- Kakimoto, M.; Inoguchi, T.; Sonta, T.; Yu, H.Y.; Imamura, M.; Etoh, T.; Hashimoto, T.; Nawata, H. Accumulation of 8-hydroxy-2’-deoxyguanosine and mitochondrial DNA deletion in kidney of diabetic rats. Diabetes 2002, 51, 1588–1595. [Google Scholar] [CrossRef] [Green Version]
- Anusuya, S.; Mlv, P.; Lazarus, F.; Bhavikatti, S.K.; Babrawala, I.S. Estimation of 8-Hydroxy-deoxyguanosine (8-OHdG) in Saliva as a Marker of Oxidative Stress in Patients with Chronic Periodontitis: Preliminary Data. J. Int. Acad Periodontol. 2017, 19, 95–100. [Google Scholar] [PubMed]
- Bhavikatti, S.K.; Alqahtani, N.A. Antimicrobial efficacy of a new Mimusops elengi (Linn.) incorporated herbal product on selected oral and periodontal pathogens: An In-Vitro microbiological study. J. Biol. Regul. Homeost. Agents 2020, 34, 635–641. [Google Scholar] [PubMed]
- Najafi, M.H.; Taheri, M.; Mokhtari, M.R.; Forouzanfar, A.; Farazi, F.; Mirzaee, M.; Ebrahiminik, Z.; Mehrara, R. Comparative study of 0.2% and 0.12% digluconate chlorhexidine mouth rinses on the level of dental staining and gingival indices. Dent. Res. J. 2012, 9, 305–308. [Google Scholar]
- Tetè, G.; Capparè, P.; Gherlone, E. New application of osteogenic differentiation from HiPS stem cells for evaluating the osteogenic potential of nanomaterials in dentistry. Int. J. Environ. Res. Public Health 2020, 17, 1947. [Google Scholar] [CrossRef] [Green Version]
- Assiry, A.A.; Karobari, M.I.; Bhavikatti, S.K.; Marya, A. Crossover Analysis of the Astringent, Antimicrobial, and Anti-inflammatory Effects of Illicium verum/Star Anise in the Oral Cavity. BioMed Res. Int. 2020, 6, 2021. [Google Scholar]
- Leung, K.C.F.; Seneviratne, C.J.; Li, X.; Leung, P.C.; Lau, C.B.S.; Wong, C.H.; Pang, K.Y.; Wong, C.W.; Wat, E.; Jin, L. Synergistic anti-bacterial effects of nanoparticles encapsulated with Scutellariabaicalensis and pure chlorhexidine on oral bacterial biofilms. Nanomaterials 2016, 6, 61. [Google Scholar] [CrossRef] [Green Version]
- Catão, R.M.; Antunes, R.M.; Arruda, T.A.; Pereira, M.S.; Higino, J.S.; Alves, J.A. Antimicrobial activity "In Vitro" of the ethanol extract Punicagranatum against of Staphylococcus aureus strains. Rev. Bras. Anal. Clin. 2006, 38, 111–114. [Google Scholar]
- Mandal, S.; Sircar, B. Anti-bacterial Activity of Mimusops Elengi Leaf, Seed and Bark Extracts Alone and in Combination with Antibiotics against Human Pathogenic Bacteria. Transl. Med. 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- Tolosa, L.; Donato, M.T.; Gómez-Lechón, M.J. General cytotoxicity assessment by means of the MTT assay. Methods Mol. Biol. 2015, 1250, 333–348. [Google Scholar]
- De-Deus, G.; Canabarro, A.; Alves, G.; Linhares, A.; Senne, M.I.; Granjeiro, J.M. Optimal Cytocompatibility of a Bioceramic Nanoparticulate Cement in Primary Human Mesenchymal Cells. J. Endod. 2009, 35, 1387–1390. [Google Scholar] [CrossRef] [PubMed]
- Schweikl, H.; Schmalz, G. Toxicity parameters for cytotoxicity testing of dental materials in two different mammalian cell lines. Eur. J. Oral Sci. 1996, 104, 292–299. [Google Scholar] [CrossRef]
- Nunes, Y.R.F.; Fagundes, M.; Almeida, H.D.S.; Veloso, M.D.D.M. Ecological aspects of Aroeira (MyracrodruonurundeuvaAllemão-Anacardiaceae): Phenology and seed germination. Rev. Arvore 2008, 32, 233–243. [Google Scholar] [CrossRef]
- Machado, A.C.; Sartori, P.F.; Damante, C.A.; Dokkedal, A.L.; Oliveira, R.C. Viability of human gingival fibroblast (FGH) treated with ethanolic “aroeira” extract (Myracrodruon urundeuva allemao). Braz. Arch. Biol. Technol. 2016, 59, e16150335. [Google Scholar] [CrossRef] [Green Version]
- Queires, L.C.S.; Fauvel-Lafève, F.; Terry, S.; De La Taille, A.; Kouyoumdjian, J.C.; Chopin, D.K.; Vacherot, F.; Rodrigues, L.E.A.; Crépin, M. Polyphenols purified from the Brazilian aroeira plant (Schinus terebinthifolius, Raddi) induce apoptotic and autophagic cell death of DU145 cells. Anticancer Res. 2006, 26, 379–387. [Google Scholar] [PubMed]
- Bhujbal, S.S.; Deshmukh, R.P.; Subhashchandra, J.; Bidkar Thatte, V.A.; Awasare, S.S.; Garg, P.P. Evaluation of cytotoxic activity of barks of Mimusops elengi. EurAsian J. Biosci. 2011, 5, 73–79. [Google Scholar] [CrossRef]
- Verma, U.P.; Gupta, A.; Yadav, R.K.; Tiwari, R.; Sharma, R.; Balapure, A.K. Cytotoxicity of chlorhexidine and neem extract on cultured human gingival fibroblasts through fluorescence-activated cell sorting analysis: An In-Vitro study. Eur. J. Dent. 2018, 12, 344–349. [Google Scholar] [CrossRef]
Chemical Constituents | Name of Test | Observed Changes | Result |
---|---|---|---|
Alkaloids | Mayer’s Reagent | White-colored turbidity | + |
Wagner’s Reagent | Reddish Brown Precipitate | + | |
Hager’s Reagent | Yellow Precipitate floating | + | |
Ehrlich’s Reagent | Two separate yellow and brown colored layers | + | |
Sterols &Triterpenoids | Salkowaski test | The lower layer turns red | + |
Sulphur test | Sinks in it | + | |
Glycosides | Baljet’s test | Yellow to orange color. | + |
Keller killani test | No Separation between two layers, lower layer reddish-brown and upper layer turns bluish-green | + | |
Anthraquinone glycosides | Borntrager’s test | The ammonical layer turns pink or red. | + |
Saponins | Foam test | Formation of foam | + |
Carbohydrates | Molisch’s test: | ND | |
Barfoed’s test | ND | ||
Benedict’s test | Reddish-brown precipitate | + | |
Flavonoids | Shinoda test | Pink to magenta-red color | + |
Alkaline reagent test | Yellow color becomes a color lesson addition of few drops of dilute acid | + | |
Lead acetate solution test | Yellow precipitate | + | |
Tannins | Ferric-chloride test | Dark color | + |
Proteins | Millon’s test | ND | |
Xanthoproteic test | No Yellow precipitate | _ | |
Biuret test | No Blue color | _ | |
Ninhydrin test | No Blue color. | _ |
DPPH ASSAY | ||
Sample | Absorbance at 517 nm | % inhibition |
Control | 0.34 | |
Standard Ascorbic acid (1 mg/mL) | 0.04 | 88.23 |
200 µg/mL | 0.14 | 58.82 |
400 µg/mL | 0.10 | 70.58 |
600 µg/mL | 0.08 | 76.47 |
800 µg/mL | 0.07 | 79.41 |
1000 µg/mL | 0.05 | 85.29 |
NO ASSAY | ||
Sample | Absorbance at 546 nm | % inhibition |
Control | 1.64 | |
Standard Ascorbic acid (1 mg/mL) | 0.28 | 82.92 |
200 µg/mL | 1.49 | 08.87 |
400 µg/mL | 1.25 | 23.78 |
600 µg/mL | 1.00 | 39.02 |
800 µg/mL | 0.77 | 53.04 |
1000 µg/mL | 0.74 | 54.87 |
Mean Cell Viability % (Primary Gingival Fibroblast) | ||||||
---|---|---|---|---|---|---|
Concentration (µg/mL) | MTT Assay | Neutral Red Assay | Trypan Blue Assay | |||
CHX | ME | CHX | ME | CHX | ME | |
10 | 1.07 | 56.02 | 2.24 | 57.45 | 2.18 | 47.36 |
5 | 5.94 | 65.40 | 6.31 | 66.00 | 4.58 | 58.46 |
2.5 | 11.11 | 75.87 | 12.63 | 76.54 | 13.01 | 73.08 |
1.25 | 17.12 | 84.94 | 18.24 | 87.42 | 18.60 | 80.45 |
0.625 | 24.69 | 92.94 | 30.50 | 93.68 | 21.21 | 86.99 |
0.3125 | 29.71 | 96.12 | 33.64 | 97.46 | 25.58 | 92.64 |
Negative Control | 100 | 100 | 100 |
Source | Sum of Squares ss | Degrees of Freedom | Mean Squarems | F Statistic | p-Value |
---|---|---|---|---|---|
MTT assay | |||||
Treatment | 12,138.0602 | 1 | 12,138.0602 | 65.5995 | ** 0.000011 |
Error | 1850.3285 | 10 | 185.0328 | ||
Total | 13,988.3887 | 11 | |||
Neutral red assay | |||||
Treatment | 11,718.1250 | 1 | 11,718.1250 | 56.4817 | ** 0.00002 |
Error | 2074.6763 | 10 | 207.4676 | ||
Total | 13,792.8013 | 11 | |||
Trypan blue assay | |||||
Treatment | 1941.7979 | 1 | 10,432.4244 | 53.7256 | ** 0.000025 |
Error | 12,374.2223 | 10 | 194.1798 | ||
Total | 1941.7979 | 11 |
Post-hoc Tukey HSD Test | ||||||
---|---|---|---|---|---|---|
Assay | Treatments pair | Tukey HSD Q statistic | Tukey HSD p-value | Tukey HSD inference | ||
MTT | CHX vs. ME | 11.4542 | 0.0010053 | ** p < 0.01 | ||
NR | 10.6284 | 0.0010053 | ** p < 0.01 | |||
TB | 10.3659 | 0.0010053 | ** p < 0.01 | |||
Scheffé Multiple Comparison | ||||||
Assay | Treatments pair | Scheffé TT-statistic | Scheffé p-value | Scheffé inference | ||
MTT | CHX vs. ME | 8.0994 | 1.0567 × 10−5 | ** p < 0.01 | ||
NR | 7.5154 | 2.0266 × 10−5 | ** p < 0.01 | |||
TB | 7.3298 | 2.5123 × 10−5 | ** p < 0.01 | |||
Bonferroni and Holm Multiple Comparisons | ||||||
Assay | Treatments pair | Bonferroni and Holm TT-statistic | Bonferroni p-value | Bonferroni inference | Holm p-value | Holm inference |
MTT | CHX vs. ME | 8.0994 | 1.0567 × 10−5 | ** p < 0.01 | 1.0567 × 10−5 | ** p < 0.01 |
NR | 7.5154 | 2.0266 × 10−5 | ** p < 0.01 | 2.0266 × 10−5 | ** p < 0.01 | |
TB | 7.3298 | 2.5123 × 10−5 | ** p < 0.01 | 2.5123 × 10−5 | ** p < 0.01 |
Description | Source | Sum of Squares ss | Degrees of Freedom | Mean Squarems | F Statistic | p-Value |
---|---|---|---|---|---|---|
ME treated cells | treatment | 147.9926 | 2 | 73.9963 | 0.2766 | * 0.7622 |
error | 4013.1105 | 15 | 267.5407 | |||
total | 4161.1030 | 17 | ||||
CHX treated cells | treatment | 30.6475 | 2 | 15.3237 | 0.1240 | * 0.8843 |
error | 1853.8300 | 15 | 123.5887 | |||
total | 1884.4775 | 17 |
Post-hoc Tukey HSD Test | |||||
---|---|---|---|---|---|
Treatment pairs | Tukey HSD Q statistic | Tukey HSD p-value | Tukey HSD inference | ||
ME treated cells | |||||
A vs. B | 0.1812 | 0.8999947 | insignificant | ||
A vs. C | 0.8067 | 0.8266214 | insignificant | ||
B vs. C | 0.9879 | 0.7545422 | insignificant | ||
CHX treated cells | |||||
A vs. B | 0.5112 | 0.8999947 | insignificant | ||
A vs. C | 0.1639 | 0.8999947 | insignificant | ||
B vs. C | 0.6751 | 0.8789620 | insignificant | ||
Scheffé Multiple Comparisons | |||||
Treatments pair | Scheffé TT-statistic | Scheffé p-value | Scheffé inference | ||
ME treated cells | |||||
A vs. B | 0.1281 | 0.9918294 | insignificant | ||
A vs. C | 0.5704 | 0.8513402 | insignificant | ||
B vs. C | 0.6985 | 0.7865543 | insignificant | ||
CHX treated cells | |||||
A vs. B | 0.3615 | 0.9370267 | insignificant | ||
A vs. C | 0.1159 | 0.9933079 | insignificant | ||
B vs. C | 0.4774 | 0.8930757 | insignificant | ||
Bonferroni and Holm Multiple Comparisons | |||||
Treatments pair | Bonferroni and Holm TT-statistic | Bonferroni p-value | Bonferroni inference | Holm p-value | Holm inference |
ME treated cells | |||||
A vs. B | 0.1281 | 2.6992443 | insignificant | 0.8997481 | insignificant |
A vs. C | 0.5704 | 1.7305385 | insignificant | 1.1536923 | insignificant |
B vs. C | 0.6985 | 1.4865869 | insignificant | 1.4865869 | insignificant |
CHK treated cells | |||||
A vs. B | 0.3615 | 2.1683911 | insignificant | 1.4455941 | insignificant |
A vs. C | 0.1159 | 2.7277837 | insignificant | 0.9092612 | insignificant |
B vs. C | 0.4774 | 1.9199406 | insignificant | 1.9199406 | insignificant |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhavikatti, S.K.; Karobari, M.I.; Zainuddin, S.L.A.; Marya, A.; Nadaf, S.J.; Sawant, V.J.; Patil, S.B.; Venugopal, A.; Messina, P.; Scardina, G.A. Investigating the Antioxidant and Cytocompatibility of Mimusops elengi Linn Extract over Human Gingival Fibroblast Cells. Int. J. Environ. Res. Public Health 2021, 18, 7162. https://doi.org/10.3390/ijerph18137162
Bhavikatti SK, Karobari MI, Zainuddin SLA, Marya A, Nadaf SJ, Sawant VJ, Patil SB, Venugopal A, Messina P, Scardina GA. Investigating the Antioxidant and Cytocompatibility of Mimusops elengi Linn Extract over Human Gingival Fibroblast Cells. International Journal of Environmental Research and Public Health. 2021; 18(13):7162. https://doi.org/10.3390/ijerph18137162
Chicago/Turabian StyleBhavikatti, Shaeesta Khaleelahmed, Mohmed Isaqali Karobari, Siti Lailatul Akmar Zainuddin, Anand Marya, Sameer J. Nadaf, Vijay J. Sawant, Sandeep B. Patil, Adith Venugopal, Pietro Messina, and Giuseppe Alessandro Scardina. 2021. "Investigating the Antioxidant and Cytocompatibility of Mimusops elengi Linn Extract over Human Gingival Fibroblast Cells" International Journal of Environmental Research and Public Health 18, no. 13: 7162. https://doi.org/10.3390/ijerph18137162
APA StyleBhavikatti, S. K., Karobari, M. I., Zainuddin, S. L. A., Marya, A., Nadaf, S. J., Sawant, V. J., Patil, S. B., Venugopal, A., Messina, P., & Scardina, G. A. (2021). Investigating the Antioxidant and Cytocompatibility of Mimusops elengi Linn Extract over Human Gingival Fibroblast Cells. International Journal of Environmental Research and Public Health, 18(13), 7162. https://doi.org/10.3390/ijerph18137162