Evaluation of the Bioaerosol Inactivation Ability of Chitosan-Coated Antimicrobial Filters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Filter Media
2.2. Tested Bioaerosols
2.3. Tested Non-Biological Aerosols
2.4. Aerosol Experimental Setup
3. Results and Discussion
3.1. Non-Biological Aerosol Removal through CCFs
3.2. Survival Evaluation of Bacterial Bioaerosols through CCFs
3.3. Effect of Face Velocity on Bioaerosol Survival through CCFs
3.4. Effect of Relative Humidity on Survival through the CCFs
3.5. Application of CCFs in Field Indoor Environments
3.6. Evaluating the Effects of Operating Parameters on CCFs’ Bioaerosol Removal Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lance, W. Indoor Particles: A Review. J. Air Waste Manag. Assoc. 1996, 46, 98–126. [Google Scholar]
- Melbostad, E.; Eduard, W.; Skogstad, A.; Sandven, P.; Lassen, J.; Sostrand, P.; Heldal, K. Exposure to bacterial aerosols and work-related symptoms in sewage workers. Am. J. Ind. Med. 1994, 25, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Eduard, W.; Sandven, P.; Levy, F. Serum IgG antibodies to mold spores in two Norwegian sawmill populations: Relationship to respiratory and other work-related symptoms. Am. J. Ind. Med. 1993, 24, 207–222. [Google Scholar] [CrossRef] [PubMed]
- Li, C.S.; Wang, Y.C. Surface germicidal effects of ozone for microorganisms. Am. Ind. Hyg. Assoc. J. 2003, 64, 533–537. [Google Scholar] [CrossRef]
- Lin, C.H.; Li, C.S. Effectiveness of Titanium Dioxide Photocatalyst Filters for Controlling Bioaerosol. Aerosol Sci. Tech. 2003, 37, 162–170. [Google Scholar] [CrossRef]
- Lin, C.Y.; Li, C.S. Control effectiveness of ultraviolet germicidal irradiation on bioaerosols. Aerosol Sci. Tech. 2002, 36, 474–478. [Google Scholar] [CrossRef]
- Yang, S.; Huang, Y.C.; Luo, C.H.; Lin, Y.C.; Huang, J.W.; Chuang, C.P.J.; Chen, C.J.; Fang, W.; Chuang, C.Y. Inactivation efficiency of bioaerosols using carbon nanotube plasma. Clean Soil Air Water 2011, 39, 201–205. [Google Scholar] [CrossRef]
- Chuang, C.Y.; Yang, S.; Chang, M.Y.; Huang, H.C.; Luo, C.H.; Hung, P.C.; Fang, W. Inactivation efficiency to Bacillus subtilis and Escherichia coli bacterial aerosols of spraying neutral electrolyzed water. J. Air Waste Manag. Assoc. 2013, 63, 1447–1456. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.S.; Chen, B.J.; Wang, Y.D. Electret air filter used for getting rid of bacteria. In Proceedings of the 6th International Symposium on Electrets, (ISE 6) Proceedings (IEEE Cat. No.88CH2593-2), Oxford, UK, 1–3 September 1988. [Google Scholar]
- Yang, S.H. Collection Efficiency of Indoor Suspended Particulates by Using the Electrostatic Charged Filters. Ph.D. Thesis, National Taiwan University, Taipei, Taiwan, 2005. [Google Scholar]
- Hirano, S.; Nagano, N. Effects of chitosan, pectic acid, lysozyme and chitinase on the growth of several phytopathogens. Agric. Biol. Chem. 1989, 53, 3065–3066. [Google Scholar]
- Kendra, D.F.; Chiristian, D.; Hadwiger, L.A. Chitosan oligomers from Fusarium solani/pea interactions: Chitinase/beta-glucanase digestion of sporelings and fungal wall chitin actively inhibit fungal growth and enhance disease resistance. Physiol. Mol. Plant Pathol. 1989, 35, 215–230. [Google Scholar] [CrossRef]
- Roller, S.; Covill, N. The antifungal properties of chitosan in laboratory media and apple juice. Int. J. Food Microbiol. 1999, 47, 67–77. [Google Scholar] [CrossRef]
- Ben-Shalom, N.; Ardi, R.; Pinto, R.; Aki, C.; Fallik, E. Controlling gray mould caused by Botytis cinerea in cucumber plants by means of chitosan. Crop Prot. 2003, 22, 285–290. [Google Scholar] [CrossRef]
- Jeon, Y.J.; Kim, S.K. Production of chitooligosaccharides using an ultrafiltration membrane reactor and their antibacterial activity. Carbohydr. Polym. 2000, 41, 133–144. [Google Scholar] [CrossRef]
- Choi, B.K.; Kim, K.Y.; Yoo, Y.J.; Oh, S.J.; Choi, J.H.; Kim, C.Y. In vitro antimicrobial activity of a chitooligosaccharide mixture against Actinobacillus actinomycetemcomitans and Streptococcus mutans. Int. J. Antimicrob. Agents 2001, 18, 553–557. [Google Scholar] [CrossRef]
- Liu, X.F.; Guan, Y.L.; Yang, D.Z.; Li, Z.; Yao, K.D. Antibacterial action of chitosan and carboxymethylated chitosan. J. Appl. Polym. Sci. 2001, 79, 1324–1335. [Google Scholar]
- Chung, Y.C.; Wang, H.L.; Chen, Y.M.; Li, S.L. Effect of abiotic factors on the antibacterial activity of chitosan against waterborne pathogens. Bioresour. Technol. 2003, 88, 179–184. [Google Scholar] [CrossRef]
- Ozden, D.; Basal, G. Polyamide 6/chitosan nanofiber coated HEPA filter for bioaerosol control. Ind. Text. 2017, 68, 427–434. [Google Scholar] [CrossRef]
- Chen, Y.C.; Liao, C.H.; Shen, W.T.; Su, C.; Wu, Y.C.; Tsai, M.H.; Hsiao, S.S.; Yu, K.P.; Tseng, C.H. Effective disinfection of airborne microbial contamination in hospital wards using a zero-valent nano-silver/TiO2-chitosan composite. Indoor Air 2019, 29, 439–449. [Google Scholar] [CrossRef]
- Mishra, D.; Yadav, R.; Singh, R.P.; Taneja, A.; Tiwari, R.; Khare, P. The incorporation of lemongrass oil into chitosan-nanocellulose composite for bioaerosol reduction in indoor air. Environ. Pollut. 2021, 285, 117407. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.U.; Yun, S.H.; Ji, J.H.; Bae, G.N. Inactivation of S. epidermidis, B. subtilis, and E. coli bacteria bioaerosols deposited on a filter utilizing airborne silver nanoparticles. J. Microbiol. Biotechnol. 2008, 18, 176–182. [Google Scholar]
- Lee, Y.H.; Lee, B.U. Inactivation of airborne E. coli and B. subtilis bioaerosols utilizing thermal energy. J. Microbiol. Biotechnol. 2006, 16, 1684–1689. [Google Scholar]
- Sneath, P.H.A. Endospore-forming Gram-positive rods and cocci. In Bergey’s Manual of Determinative Bacteriology; Sneath, P.H.A., Priest, F.G., Goodfellow, M., Todd, G., Eds.; Williams & Wilkins: Baltimore, MD, USA, 1986. [Google Scholar]
- Wang, Z.; Reponen, T.A.; Grinshpun, S.L.; Górny, R.; Willeke, K. Effect of sampling time and air humidity on the bioefficiency of filter samplers for bioaerosol collection. J. Aerosol Sci. 2001, 32, 661–674. [Google Scholar] [CrossRef]
- Burton, N.C.; Grinshpun, S.A.; Reponen, T. Physical collection efficiency of filter materials for bacteria and viruses. Ann. Occup. Hyg. 2007, 51, 143–151. [Google Scholar] [PubMed] [Green Version]
- Wang, Z.; Yan, F.; Pei, H.; Li, J.; Cui, Z.; He, B. Antibacterial and environmentally friendly chitosan/polyvinyl alcohol blend membranes for air filtration. Carbohydr. Polym. 2018, 198, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Park, S.Y.; Park, J.E.; Jung, B.O.; Park, J.E.; Park, J.K.; Hwang, Y.J. Anti-Oxidant Activity and Dust-Proof Effect of Chitosan with Different Molecular Weights. Int. J. Mol. Sci. 2019, 20, 3085. [Google Scholar] [CrossRef] [Green Version]
- Viljoen, J.M.; Steenekamp, J.H.; Marais, A.F.; Kotze, A.F. Effect of moisture content, temperature and exposure time on the physical stability of chitosan powder and tablets. Drug Dev. Ind. Pharm. 2014, 40, 730–742. [Google Scholar] [CrossRef] [PubMed]
- Szymańska, E.; Winnicka, K. Stability of chitosan-a challenge for pharmaceutical and biomedical applications. Mar. Drugs 2015, 13, 1819–1846. [Google Scholar] [CrossRef]
- Yang, S.; Lee, G.W.M. Filtration characteristics of a fibrous filter pretreated with anionic surfactants for monodisperse solid aerosols. J. Aerosol Sci. 2005, 36, 419–437. [Google Scholar] [CrossRef]
Type | Material | Measured Weight of Filter (g/m2) | Measured Mean Fiber Diameter a (μm) | Measured Mean Filter Thickness b (cm) | Pa@10 cm/s |
---|---|---|---|---|---|
Untreated | Polypropylene | 60.5 ± 0.1 | 10.1 ± 0.3 | 0.10 ± 0.01 | 5.1 ± 0.1 |
1.0% CCF | Polypropylene/ Chitosan | 66.3 ± 0.2 | 10.2 ± 0.5 | 0.11 ± 0.00 | 5.1 ± 0.2 |
1.5% CCF | Polypropylene/ Chitosan | 70.2 ± 0.3 | 10.3 ± 0.3 | 0.10 ± 0.01 | 5.1 ± 0.1 |
2.5% CCF | Polypropylene/ Chitosan | 75.3 ± 0.2 | 10.2 ± 0.1 | 0.10 ± 0.01 | 5.1 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, Y.-F.; Chuang, C.-Y.; Yang, S. Evaluation of the Bioaerosol Inactivation Ability of Chitosan-Coated Antimicrobial Filters. Int. J. Environ. Res. Public Health 2021, 18, 7183. https://doi.org/10.3390/ijerph18137183
Hsu Y-F, Chuang C-Y, Yang S. Evaluation of the Bioaerosol Inactivation Ability of Chitosan-Coated Antimicrobial Filters. International Journal of Environmental Research and Public Health. 2021; 18(13):7183. https://doi.org/10.3390/ijerph18137183
Chicago/Turabian StyleHsu, Ying-Fang, Chi-Yu Chuang, and Shinhao Yang. 2021. "Evaluation of the Bioaerosol Inactivation Ability of Chitosan-Coated Antimicrobial Filters" International Journal of Environmental Research and Public Health 18, no. 13: 7183. https://doi.org/10.3390/ijerph18137183
APA StyleHsu, Y. -F., Chuang, C. -Y., & Yang, S. (2021). Evaluation of the Bioaerosol Inactivation Ability of Chitosan-Coated Antimicrobial Filters. International Journal of Environmental Research and Public Health, 18(13), 7183. https://doi.org/10.3390/ijerph18137183