Allostatic Load and Exposure Histories of Disadvantage
Abstract
:1. Introduction
Background
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guthman, J.; Mansfield, B. The implications of environmental epigenetics: A new direction for geographic inquiry on health, space, and nature-society relations. Prog. Hum. Geogr. 2012, 37, 486–504. [Google Scholar] [CrossRef]
- Krieger, N. Epidemiology and the web of causation: Has anyone seen the spider? Soc. Sci. Med. 1994, 39, 887–903. [Google Scholar] [CrossRef]
- Prior, L.; Manley, D.; Sabel, C.E. Biosocial health geography: New “exposomic” geographies of health and place. Prog. Hum. Geogr. 2018, 43, 531–552. [Google Scholar] [CrossRef]
- Taylor, S.E.; Repetti, R.L.; Seeman, T. Health psychology: What is an unhealthy environment and how does it get under the skin? Annu. Rev. Psychol. 1997, 48, 411–447. [Google Scholar] [CrossRef] [Green Version]
- Delpierre, C.; Barbosa-Solis, C.; Torrisani, J.; Darnaudery, M.; Bartley, M.; Blane, D.; Kelly-Irving, M.; Getz, L.; Tomasdottir, M.O.; Roberston, T.; et al. Origins of heath inequalities: The case for Allostatic Load. Longit. Life Course Stud. 2016, 7, 79–103. [Google Scholar] [CrossRef] [Green Version]
- Boardman, J.D. Stress and physical health: The role of neighborhoods as mediating and moderating mechanisms. Soc. Sci. Med. 2004, 58, 2473–2483. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S. Allostasis and the epigenetics of brain and body health over the life course: The brain on stress. JAMA Psychiatry 2017, 74, 551–552. [Google Scholar] [CrossRef]
- Dulin-Keita, A.; Casazza, K.; Fernandez, J.R.; Goran, M.I.; Gower, B. Do neighbourhoods matter? Neighbourhood disorder and long-term trends in serum cortisol levels. J. Epidemiol. Community Health 2012, 66, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Robinette, J.W.; Charles, S.T.; Gruenewald, T.L. Neighborhood cohesion, neighborhood disorder, and cardiometabolic risk. Soc. Sci. Med. 2018, 198, 70–76. [Google Scholar] [CrossRef]
- Ross, C.E.; Mirowsky, J. Neighbourhood disadvantage, disorder, and health. J. Health Soc. Behav. 2001, 42, 258–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McEwen, B.S. Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators. Eur. J. Pharmacol. 2008, 583, 174–185. [Google Scholar] [CrossRef] [Green Version]
- McEwen, B.S.; Seeman, T. Protective and damaging effects of mediators of stress: Elaborating and testing the concepts of allostasis and allostatic load. Ann. N. Y. Acad. Sci. 1999, 896, 30–47. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S.; Stellar, E. Stress and the individual: Mechanisms leading to disease. Arch. Intern. Med. 1993, 153, 2093–2101. [Google Scholar] [CrossRef] [PubMed]
- De Vries, S.; Van Dillen, S.M.E.; Groenewegen, P.P.; Spreeuwenberg, P. Streetscape greenery and health: Stress, social cohesion and physical activity as mediators. Soc. Sci. Med. 2013, 94, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Finlay, J.; Franke, T.; McKay, H.; Sims-Gould, J. Therapeutic landscapes and wellbeing in later life: Impacts of blue and green spaces for older adults. Health Place 2015, 34, 97–106. [Google Scholar] [CrossRef]
- Hordyk, S.R.; Hanley, J.; Richard, É. “Nature is there; its free”: Urban greenspace and the social determinants of health of immigrant families. Health Place 2015, 34, 74–82. [Google Scholar] [CrossRef]
- Kawachi, I.; Berkman, L.F. Social ties and mental health. J. Urban Health 2001, 78, 458–467. [Google Scholar] [CrossRef] [Green Version]
- Uphoff, E.P.; Pickett, K.E.; Cabieses, B.; Small, N.; Wright, J. A systematic review of the relationships between social capital and socioeconomic inequalities in health: A contribution to understanding the psychosocial pathway of health inequalities. Int. J. Equity Health 2013, 12, 54. [Google Scholar] [CrossRef] [Green Version]
- Wild, C.P. The exposome: From concept to utility. Int. J. Epidemiol. 2012, 41, 24–32. [Google Scholar] [CrossRef]
- Wild, C.P. Complementing the genome with an “exposome”: The outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol. Biomark. Prev. 2005, 14, 1847–1850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacquez, G.M.; Sabel, C.E.; Shi, C. Genetic GIScience: Toward a place-based synthesis of the genome, exposome, and behavome. Ann. Assoc. Am. Geogr. 2015, 105, 454–472. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Harford, J.; Schuch, H.S.; Watt, R.G.; Peres, M.A. Theoretical basis and explanation for the relationship between area-level social inequalities and population oral health outcomes—A scoping review. SSM Popul. Health 2016, 2, 451–462. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, R.G.; Pickett, K.E. The problems of relative deprivation: Why some societies do better than others. Soc. Sci. Med. 2007, 65, 1965–1978. [Google Scholar] [CrossRef]
- Barrington, W.E.; Stafford, M.; Hamer, M.; Beresford, S.A.A.; Koepsell, T.; Steptoe, A. Neighborhood socioeconomic deprivation, perceived neighborhood factors, and cortisol responses to induced stress among healthy adults. Health Place 2014, 27, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Hajat, A.; Moore, K.; Phuong Do, D.; Stein Merkin, S.; Punjabi, N.M.; Sáñchez, B.N.; Seeman, T.; Diez-Roux, A.V. Examining the cross-sectional and longitudinal association between diurnal cortisol and neighborhood characteristics: Evidence from the multi-ethnic study of atherosclerosis. Health Place 2015, 34, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Rudolph, K.E.; Wand, G.S.; Stuart, E.A.; Glass, T.A.; Marques, A.H.; Duncko, R.; Merikangas, K.R. The association between cortisol and neighborhood disadvantage in a U.S. population-based sample of adolescents. Health Place 2014, 25, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Dowd, J.B.; Simanek, A.M.; Aiello, A.E. Socio-economic status, cortisol and allostatic load: A review of the literature. Int. J. Epidemiol. 2009, 38, 1297–1309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geronimus, A.T. The weathering hypothesis and the health of African-American women and infants: Evidence and speculations. Ethn. Dis. 1992, 2, 207–221. [Google Scholar] [PubMed]
- Geronimus, A.T.; Pearson, J.A.; Linnenbringer, E.; Schulz, A.J.; Reyes, A.G.; Epel, E.S.; Lin, J.; Blackburn, E.H. Race-ethnicity, poverty, urban stressors, and telomere length in a Detroit community-based sample. J. Health Soc. Behav. 2015, 56, 199–224. [Google Scholar] [CrossRef] [Green Version]
- Geronimus, A.T.; Hicken, M.T.; Pearson, J.A.; Seashols, S.J.; Brown, K.L.; Cruz, T.D. Do US black women experience stress-related accelerated biological aging? A novel theory and first population-based test of black-white differences in telomere length. Hum. Nat. 2010, 21, 19–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juster, R.-P.; McEwen, B.S.; Lupien, S.J. Allostatic load biomarkers of chronic stress and impact on health and cognition. Neurosci. Biobehav. Rev. 2010, 35, 2–16. [Google Scholar] [CrossRef]
- Mattei, J.; Demissie, S.; Falcon, L.M.; Ordovas, J.M.; Tucker, K. Allostatic load is associated with chronic conditions in the Boston Puerto Rican Health Study. Soc. Sci. Med. 2010, 70, 1988–1996. [Google Scholar] [CrossRef] [Green Version]
- Seeman, T.E.; McEwen, B.S.; Rowe, J.W.; Singer, B.H. Allostatic load as a marker of cumulative biological risk: MacArthur studies of successful aging. Proc. Natl. Acad. Sci. USA 2001, 98, 4770–4775. [Google Scholar] [CrossRef] [Green Version]
- Seeman, T.E.; Singer, B.H.; Rowe, J.W.; Horwitz, R.I.; McEwen, B.S. Price of adaptation—Allostatic load and it’s health consequences: MacArthur Studies of Successful Aging. Arch. Intern. Med. 1997, 157, 2259–2268. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.C.; Cavallaro, F.L.; Leon, D.A. A systematic review of allostatic load in relation to socioeconomic position: Poor fidelity and major inconsistencies in biomarkers employed. Soc. Sci. Med. 2017, 192, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Van Ham, M.; Manley, D.; Bailey, N.; Simpson, L.; Maclennan, D. Neighborhood Effects Research: New Perspectives; Springer: Dordrecht, The Netherlands, 2012; Volume 91, ISBN 9789400723085. [Google Scholar]
- Bellatorre, A.; Finch, B.K.; Phuong Do, D.; Bird, C.E.; Beck, A.N. Contextual predictors of cumulative biological risk: Segregation and allostatic load. Soc. Sci. Quaterly 2011, 92, 1338–1362. [Google Scholar] [CrossRef]
- Bird, C.E.; Seeman, T.; Escarce, J.J.; Basurto-Dávila, R.; Finch, B.K.; Dubowitz, T.; Heron, M.; Hale, L.; Stein Merkin, S.; Weden, M.; et al. Neighbourhood socioeconomic status and biological “wear and tear” in a nationally representative sample of US adults. J. Epidemiol. Community Health 2010, 64, 860–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mair, C.A.; Cutchin, M.P.; Kristen Peek, M. Allostatic load in an environmental riskscape: The role of stressors and gender. Health Place 2011, 17, 978–987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulz, A.J.; Mentz, G.; Lachance, L.; Zenk, S.N.; Johnson, J.; Stokes, C.; Mandell, R. Do observed or perceived characteristics of the neighborhood environment mediate associations between neighborhood poverty and cumulative biological risk? Health Place 2013, 24, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Schulz, A.J.; Mentz, G.; Lachance, L.; Johnson, J.; Gaines, C.; Israel, B.A. Associations between socioeconomic status and allostatic load: Effects of neighborhood poverty and tests of mediating pathways. Am. J. Public Health 2012, 102, 1706–1714. [Google Scholar] [CrossRef] [PubMed]
- Seeman, M.; Stein Merkin, S.; Karlamangla, A.; Koretz, B.; Seeman, T. Social status and biological dysregulation: The “status syndrome” and allostatic load. Soc. Sci. Med. 2014, 118, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Stein Merkin, S.; Basurto-Dávila, R.; Karlamangla, A.; Bird, C.E.; Lurie, N.; Escarce, J.; Seeman, T. Neighborhoods and cumulative biological risk profiles by Race/Ethnicity in a national sample of U.S. adults: NHANES III. Ann. Epidemiol. 2009, 19, 194–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theall, K.P.; Drury, S.S.; Shirtcliff, E.A. Cumulative neighborhood risk of psychosocial stress and allostatic load in adolescents. Am. J. Epidemiol. 2012, 176 (Suppl. 7), S164–S174. [Google Scholar] [CrossRef] [Green Version]
- Prior, L.; Manley, D.; Jones, K. Stressed out? An investigation of whether allostatic load mediates associations between neighbourhood deprivation and health. Health Place 2018, 52, 25–33. [Google Scholar] [CrossRef]
- Ribeiro, A.I.; Amaro, J.; Lisi, C.; Fraga, S. Neighborhood socioeconomic deprivation and allostatic load: A scoping review. Int. J. Environ. Res. Public Health 2018, 15, 1092. [Google Scholar] [CrossRef] [Green Version]
- Xu, H. Multilevel socioeconomic differentials in allostatic load among Chinese adults. Health Place 2018, 53, 182–192. [Google Scholar] [CrossRef]
- Jiménez, M.P.; Osypuk, T.L.; Arevalo, S.; Tucker, K.L.; Falcon, L.M. Neighborhood socioeconomic context and change in allostatic load among older Puerto Ricans: The Boston Puerto Rican health study. Health Place 2015, 33, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barker, D.J.P. Fetal origins of coronary heart disease. Br. Med. J. 1995, 311, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.J.P.; Eriksson, J.G.; Forsen, T.; Osmond, C. Fetal origins of adult disease: Strength of effects and biological basis. Int. J. Epidemiol. 2002, 31, 1235–1239. [Google Scholar] [CrossRef] [Green Version]
- Barboza Solís, C.; Kelly-Irving, M.; Fantin, R.; Darnaudéry, M.; Torrisani, J.; Lang, T.; Delpierre, C. Adverse childhood experiences and physiological wear-and-tear in midlife: Findings from the 1958 British birth cohort. Proc. Natl. Acad. Sci. USA 2015, 112, E738–E746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barboza Solís, C.; Fantin, R.; Castagné, R.; Lang, T.; Delpierre, C.; Kelly-Irving, M. Mediating pathways between parental socio-economic position and allostatic load in mid-life: Findings from the 1958 British birth cohort. Soc. Sci. Med. 2016, 165, 19–27. [Google Scholar] [CrossRef]
- Friedman, E.M.; Karlamangla, A.S.; Gruenewald, T.L.; Koretz, B.; Seeman, T.E. Early life adversity and adult biological risk profiles. Psychosom. Med. 2015, 77, 176–185. [Google Scholar] [CrossRef] [Green Version]
- Cerin, E. Ways of unraveling how and why physical activity influences mental health through statistical mediation analyses. Ment. Health Phys. Act. 2010, 3, 51–60. [Google Scholar] [CrossRef]
- Walsemann, K.M.; Goosby, B.J.; Farr, D. Life course SES and cardiovascular risk: Heterogeneity across race/ethnicity and gender. Soc. Sci. Med. 2016, 152, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.C.; Gerken, K.; Schorpp, K.; Boen, C.; Harris, K.M. Early-life socioeconomic status and adult physiological functioning: A life course examination of biosocial mechanisms. Biodemography Soc. Biol. 2017, 63, 87–103. [Google Scholar] [CrossRef]
- Gustafsson, P.E.; Janlert, U.; Theorell, T.; Westerlund, H.; Hammarström, A. Social and material adversity from adolescence to adulthood and allostatic load in middle-aged women and men: Results from the Northern Swedish Cohort. Ann. Behav. Med. 2012, 43, 117–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemelin, E.T.; Diez Roux, A.V.; Franklin, T.G.; Carnethon, M.; Lutsey, P.L.; Ni, H.; O’Meara, E.; Shrager, S. Life-course socioeconomic positions and subclinical atherosclerosis in the multi-ethnic study of atherosclerosis. Soc. Sci. Med. 2009, 68, 444–451. [Google Scholar] [CrossRef]
- Gustafsson, P.E.; Sebastian, M.S.; Janlert, U.; Theorell, T.; Westerlund, H.; Hammarström, A. Life-course accumulation of neighborhood disadvantage and allostatic load: Empirical integration of three social determinants of health frameworks. Am. J. Public Health 2014, 104, 904–910. [Google Scholar] [CrossRef] [PubMed]
- Stafford, M.; Gardner, M.; Kumari, M.; Kuh, D.; Ben-Shlomo, Y. Social isolation and diurnal cortisol patterns in an ageing cohort. Psychoneuroendocrinology 2013, 38, 2737–2745. [Google Scholar] [CrossRef] [Green Version]
- Horan, J.M.; Widom, C.S. From childhood maltreatment to allostatic load in adulthood: The role of social support. Child Maltreat. 2015, 20, 229–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruenewald, T.L.; Karlamangla, A.S.; Hu, P.; Stein Merkin, S.; Crandall, C.; Koretz, B.; Seeman, T.E. History of socioeconomic disadvantage and allostatic load in later life. Soc. Sci. Med. 2012, 74, 75–83. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-H.; Jen, M.-H.; Chien, K.-L. Association between life-course socioeconomic position and inflammatory biomarkers in older age: A nationally representative cohort study in Taiwan. BMC Geriatr. 2017, 17, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- University of Essex; Institute for Social and Economic Research; NatCen Social Research; Kantar Public. Understanding Society: Waves 1–7, 2009–2016 and Harmonised BHPS: Waves 1–18, 1991–2009, [Data Collection], 10th ed.; UK Data Service. SN: 6614; 2018. [Google Scholar] [CrossRef]
- Benzeval, M.; Davillas, A.; Kumari, M.; Lynn, P. Understanding Society: The UK Household Longitudinal Study Biomarker User Guide and Glossary; University of Essex: Colchester, UK, 2014. [Google Scholar]
- McFall, S.; Petersen, J.; Kaminska, O.; Lynn, P. Understanding Society: The UK Household Longitudinal Study Waves 2 and 3 Nurse Health Assessment, 2010–2012 Guide to Nurse Health Assessment; University of Essex: Colchester, UK, 2014. [Google Scholar]
- University of Essex; Institute for Social and Economic Research; NatCen Social Research. Understanding Society: Waves 2 and 3 Nurse Health Assessment, 2010–2012, [data collection], 3rd ed.; UK Data Service. SN: 7251; 2014. [Google Scholar] [CrossRef]
- Townsend, P. Deprivation. J. Soc. Policy 1987, 16, 125–146. [Google Scholar] [CrossRef]
- Norman, P. The changing geography of deprivation in Britain: 1971 to 2011 and beyond. In Population Change in the United Kingdom; Champion, T., Falkingham, J., Eds.; Rowman & Littlefield: London, UK, 2016; pp. 193–214. [Google Scholar]
- Norman, P. Identifying change over time in small area socio-economic deprivation. Appl. Spat. Anal. Policy 2010, 3, 107–138. [Google Scholar] [CrossRef] [Green Version]
- Norman, P.; Darlington-Pollock, F. The changing geography of deprivation in Great Britain: Exploiting small area Census data, 1971 to 2011. In The Routledge Handbook of Census Resources, Methods and Applications: Unlocking the UK 2011 Census; Stillwell, J., Ed.; Routledge: London, UK, 2017; pp. 404–420. [Google Scholar]
- University of Essex; Institute for Social and Economic Research; NatCen Social Research; Kantar Public. Understanding Society: Waves 1–7, 2009–2016: Special Licence Access, Census 2011 Lower Layer Super Output Areas, [Data Collection], 7th ed.; UK Data Service. SN: 7248; 2018. [Google Scholar] [CrossRef]
- University of Essex; Institute for Social and Economic Research. British Household Panel Survey, Waves 1–18, 1991–2009: Special Licence Access, Lower Layer Super Output Areas and Scottish Data Zones, [Data Collection], 3rd ed.; UK Data Service. SN: 6136; 2014. [Google Scholar] [CrossRef]
- Office for National Statistics Lower Layer Super Output Area (2001) to Lower Layer Super Output Area (2011) to Local Authority District (2011) Lookup in England and Wales. Available online: http://geoportal.statistics.gov.uk/datasets/lower-layer-super-output-area-2001-to-lower-layer-super-output-area-2011-to-local-authority-district-2011-lookup-in-england-and-wales (accessed on 1 February 2019).
- Scottish Government Data Zone Centroids. 2001. Available online: https://data.gov.uk/dataset/d9e9b1c9-aa77-4fa6-b8a7-65621a463fa0/data-zone-centroids-2001 (accessed on 25 February 2019).
- Scottish Government Data Zone Boundaries. 2011. Available online: https://data.gov.uk/dataset/ab9f1f20-3b7f-4efa-9bd2-239acf63b540/data-zone-boundaries-2011 (accessed on 25 February 2019).
- Jung, T.; Wickrama, K.A.S. An introduction to latent class growth analysis and growth mixture modeling. Soc. Personal. Psychol. Compass 2008, 2, 302–317. [Google Scholar] [CrossRef]
- Bakk, Z.; Vermunt, J.K. Robustness of stepwise latent class modeling with continuous distal outcomes. Struct. Equ. Model. A Multidiscip. J. 2016, 23, 20–31. [Google Scholar] [CrossRef] [Green Version]
- Dziak, J.J.; Bray, B.C.; Zhang, J.; Zhang, M.; Lanza, S.T. Comparing the performance of improved classify-analyze approaches for distal outcomes in latent profile analysis. Methodology 2016, 12, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Vermunt, J.K. Latent class modeling with covariates: Two improved three-step approaches. Polit. Anal. 2010, 18, 450–469. [Google Scholar] [CrossRef] [Green Version]
- Bolck, A.; Croon, M.A.; Hagenaars, J.A. Estimating latent structure models with categorical variables: One-step versus three-step estimators. Polit. Anal. 2004, 12, 3–27. [Google Scholar] [CrossRef]
- Asparouhov, T.; Muthén, B. Auxiliary variables in mixture modeling: Using the BCH Method in Mplus to estimate a distal outcome model and an arbitrary secondary model. Mplus Web Notes 2018, 21, 1–23. [Google Scholar]
- StataCorp. Stata Statistical Software: Release 15; StataCorp LLC.: College Station, TX, USA, 2017. [Google Scholar]
- Muthén, L.K.; Muthén, B.O. Mplus User’s Guide, 7th ed.; Muthén & Muthén: Los Angeles, CA, USA, 2015. [Google Scholar]
- Lo, Y.; Mendell, N.R.; Rubin, D.B. Testing the number of components in a normal mixture. Biometrika 2001, 88, 767–778. [Google Scholar] [CrossRef]
- Norman, P. The Changing Geography of Deprivation in Britain: Exploiting Small Area Census Data 1971 to 2011. In Proceedings of the 23rd GIS Research UK Conference (GISRUK 2015), Leeds, UK, 5–17 April 2015; pp. 465–474. [Google Scholar]
- Blair, A.; Gariépy, G.; Schmitz, N. The longitudinal effects of neighbourhood social and material deprivation change on psychological distress in urban, community-dwelling Canadian adults. Public Health 2015, 129, 932–940. [Google Scholar] [CrossRef]
- Van Ham, M.; Hedman, L.; Manley, D.; Coulter, R.; Östh, J. Intergenerational transmission of neighbourhood poverty: An analysis of neighbourhood histories of individuals. Trans. Inst. Br. Geogr. 2014, 39, 402–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kontopantelis, E.; Mamas, M.A.; Van Marwijk, H.; Ryan, A.M.; Buchan, I.E.; Ashcroft, D.M.; Doran, T. Geographical epidemiology of health and overall deprivation in England, its changes and persistence from 2004 to 2015: A longitudinal spatial population study. J. Epidemiol. Community Health 2018, 72, 140–147. [Google Scholar] [CrossRef]
- Meen, G.; Nygaard, C.; Meen, J. The causes of long-term neighbourhood change. In Understanding Neighbourhood Dynamics: New Insights for Neighbourhood Effects Research; Van Ham, M., Manley, D., Bailey, N., Simpson, L., Maclennan, D., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 43–62. ISBN 9789400748538. [Google Scholar]
- Clark, W.A.V.; Van Ham, M.; Coulter, R. Spatial mobility and social outcomes. J. Hous. Built Environ. 2014, 29, 699–727. [Google Scholar] [CrossRef] [Green Version]
- Sharkey, P. Stuck in Place: Urban Neighborhoods and the End of Progress toward Racial Equality; University of Chicago Press: Chicago, IL, USA, 2013. [Google Scholar]
- Glass, T.A.; Bilal, U. Are neighborhoods causal? Complications arising from the ‘stickiness’ of ZNA. Soc. Sci. Med. 2016, 166, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Marmot, M. Fair Society, Healthy Lives: The Marmot Review Executive Summary; The Marmot Review: London, UK, 2010. [Google Scholar]
- Prior, L.; Manley, D. Poverty and health: Thirty years of progress? In Poverty and Social Exclusion in the UK: Volume 2—The Dimensions of Disadvantage; Bramley, G., Bailey, N., Eds.; Policy Press: Bristol, UK, 2018; pp. 203–223. [Google Scholar]
- Smith, K.E.; Hill, S.; Bambra, C. Health Inequalities: Critical Perspectives; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- The National Council for Voluntary Organisations UK Civil Society Almanac 2018: Volunteer Profiles. Available online: https://data.ncvo.org.uk/a/almanac18/volunteer-profiles-2015-16-2/ (accessed on 7 December 2018).
- Giordano, G.N.; Lindstrom, M. The impact of changes in different aspects of social capital and material conditions on self-rated health over time: A longitudinal cohort study. Soc. Sci. Med. 2010, 70, 700–710. [Google Scholar] [CrossRef]
- Yip, W.; Subramanian, S.V.; Mitchell, A.D.; Lee, D.T.S.; Wang, J.; Kawachi, I. Does social capital enhance health and well-being? Evidence from rural China. Soc. Sci. Med. 2007, 64, 35–49. [Google Scholar] [CrossRef]
- Fujiwara, T.; Kawachi, I. A prospective study of individual-level social capital and major depression in the United States. J. Epidemiol. Community Health 2008, 62, 627–633. [Google Scholar] [CrossRef]
- Fone, D.; Dunstan, F.; Lloyd, K.; Williams, G.; Watkins, J.; Palmer, S. Does social cohesion modify the association between area income deprivation and mental health? A multilevel analysis. Int. J. Epidemiol. 2007, 36, 338–345. [Google Scholar] [CrossRef] [Green Version]
- Riumallo-Herl, C.J.; Kawachi, I.; Avendano, M. Social capital, mental health and biomarkers in Chile: Assessing the effects of social capital in a middle-income country. Soc. Sci. Med. 2014, 105, 47–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwan, M.-P. From place-based to people-based exposure measures. Soc. Sci. Med. 2009, 69, 1311–1313. [Google Scholar] [CrossRef] [PubMed]
- Montello, D.R. Scale in geography. In International Encyclopedia of the Social and Behavioral Sciences; Smelser, N.J., Baltes, B., Eds.; Elsevier Science Ltd.: Oxford, UK, 2001; pp. 13501–13504. [Google Scholar]
- Perchoux, C.; Chaix, B.; Cummins, S.; Kestens, Y. Conceptualization and measurement of environmental exposure in epidemiology: Accounting for activity space related to daily mobility. Health Place 2013, 21, 86–93. [Google Scholar] [CrossRef] [PubMed]
System | Biomarker | N | Mean (SD) | High Risk Cut-Off Values |
---|---|---|---|---|
Cardiovascular | Systolic Blood Pressure | 2628 | 126.44 (16.64) | ≥136.5 mmhg |
Diastolic Blood Pressure | 2628 | 73.01 (10.84) | ≥80 mmhg | |
Pulse Rate | 2628 | 68.79 (10.93) | ≥75.5 bpm | |
Lipid Metabolism | HDL Cholesterol | 3138 | 1.53 (0.45) | <1.2 mmol/L |
Total: HDL Cholesterol | 3137 | 3.75 (1.35) | ≥4.42 | |
Triglycerides | 3144 | 1.79 (1.27) | ≥2.2 mmol/L | |
BMI | 3112 | 28.02 (5.52) | ≥30.9 kg/m2 | |
Waist Circumference | 3161 | 93.70 (14.52) | ≥103.1 cm | |
Glucose Metabolism | HbA1c | 2969 | 37.30 (8.67) | ≥39 mmol/molhb |
Inflammatory | C-Reactive Protein | 3019 | 3.24 (6.60) | ≥3.2 mg/L |
Fibrinogen | 3121 | 2.81 (0.62) | ≥3.2 g/L | |
Albumin | 3139 | 46.62 (2.94) | <45 g/L | |
HPA-axis | DHEAs | 3137 | 4.74 (3.36) | <2.2 mol/L |
Factor | Mean (SD) | N | |
---|---|---|---|
Allostatic load | 3.07 (2.45) | 3210 | |
Age | 51.53 (17.58) | 3210 | |
% | |||
Sex | Female * | 54.83 | 3210 |
Male | 45.17 | ||
Education level | Higher * | 31.29 | 3186 |
Middle | 46.39 | ||
Lower | 22.32 | ||
Employment status | Employed * | 56.07 | 3210 |
Retired | 29.16 | ||
Unemployed/Inactive | 14.77 | ||
Tenure | Owned * | 79.25 | 3206 |
Privately rented | 8.86 | ||
Socially rented | 11.79 | ||
Marital status | Married * | 69.31 | 3210 |
Single/SDW | 30.69 | ||
Subjective financial situation | Comfortable/Alright * | 66.06 | 3209 |
Just getting by | 25.62 | ||
Finding it difficult | 8.32 |
Classes | SSABIC | Smallest Class Size | Entropy | LMR-LRT | ||
---|---|---|---|---|---|---|
% | Count | |||||
Townsend deprivation | 2 | 93,780.35 | 0.33 | 1019 | 0.907 | 0.000 |
3 | 88,670.63 | 0.14 | 425 | 0.892 | 0.000 | |
4 | 86,475.98 | 0.08 | 246 | 0.879 | 0.002 | |
5 | 85,530.94 | 0.05 | 147 | 0.844 | 0.276 | |
6 | 84,555.45 | 0.05 | 143 | 0.854 | 0.129 | |
Social capital | 2 | 58,948.61 | 0.18 | 543 | 0.898 | 0.000 |
3 | 57,478.44 | 0.07 | 203 | 0.826 | 0.092 | |
4 | 56,809.16 | 0.02 | 48 | 0.808 | 0.021 | |
5 | 56,435.34 | 0.01 | 45 | 0.773 | 0.099 | |
6 | 56,189.13 | 0.01 | 46 | 0.761 | 0.362 |
Model 1: No Covariates | Model 2: Age and Sex | Model 3: Sociodemographics | |||||
---|---|---|---|---|---|---|---|
N | 3095 | 3095 | 3067 | ||||
Allostatic load | Mean | S.E. | Mean | S.E. | Mean | S.E. | |
Deprivation Exposure History | Low | 2.953 | 0.072 | 2.700 | 0.081 | 2.458 | 0.108 |
Medium | 3.123 | 0.087 | 3.018 | 0.092 | 2.642 | 0.122 | |
High | 3.234 | 0.109 | 3.261 | 0.108 | 2.783 | 0.140 | |
Very high | 3.516 | 0.177 | 3.474 | 0.170 | 2.810 | 0.206 | |
Overall test p-value | 0.015 | 0.000 | 0.050 | ||||
Beta | S.E. | Beta | S.E. | Beta | S.E. | ||
Age | 0.053 | 0.002 | 0.052 | 0.004 | |||
Sex | Female * | ||||||
Male | 0.292 | 0.079 | 0.302 | 0.080 | |||
Education Level | Higher * | ||||||
Middle | 0.238 | 0.096 | |||||
Lower | 0.463 | 0.123 | |||||
Employment Status | Employed * | ||||||
Retired | −0.054 | 0.140 | |||||
Unemployed/Inactive | −0.005 | 0.126 | |||||
Subjective Financial Situation | Comfortable/Alright * | ||||||
Just getting by | 0.268 | 0.098 | |||||
Finding it difficult | 0.478 | 0.170 | |||||
Tenure | Owned * | ||||||
Privately rented | 0.265 | 0.150 | |||||
Socially rented | 0.699 | 0.160 | |||||
Marital Status | Married * | ||||||
Single/SDW | −0.163 | 0.090 |
Model 1: No Covariates | Model 2: Age and Sex | Model 3: Sociodemographics | |||||
---|---|---|---|---|---|---|---|
N | 3096 | 3096 | 3068 | ||||
Allostatic load | Mean | S.E. | Mean | S.E. | Mean | S.E. | |
Social Capital Class | Low | 3.026 | 0.060 | 3.057 | 0.066 | 2.571 | 0.114 |
Medium | 3.260 | 0.105 | 2.880 | 0.108 | 2.582 | 0.121 | |
High | 3.321 | 0.177 | 2.708 | 0.180 | 2.518 | 0.189 | |
Overall test p-value | 0.072 | 0.087 | 0.950 | ||||
Beta | S.E. | Beta | S.E. | Beta | S.E. | ||
Age | 0.053 | 0.002 | 0.051 | 0.004 | |||
Sex | Female * | ||||||
Male | 0.277 | 0.079 | 0.300 | 0.080 | |||
Education Level | Higher * | ||||||
Middle | 0.244 | 0.100 | |||||
Lower | 0.501 | 0.129 | |||||
Employment Status | Employed * | ||||||
Retired | −0.051 | 0.140 | |||||
Unemployed/Inactive | −0.003 | 0.126 | |||||
Subjective Financial Situation | Comfortable/Alright * | ||||||
Just getting by | 0.293 | 0.098 | |||||
Finding it difficult | 0.518 | 0.170 | |||||
Tenure | Owned * | ||||||
Privately rented | 0.280 | 0.149 | |||||
Socially rented | 0.803 | 0.156 | |||||
Marital Status | Married * | ||||||
Single/SDW | −0.143 | 0.090 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prior, L. Allostatic Load and Exposure Histories of Disadvantage. Int. J. Environ. Res. Public Health 2021, 18, 7222. https://doi.org/10.3390/ijerph18147222
Prior L. Allostatic Load and Exposure Histories of Disadvantage. International Journal of Environmental Research and Public Health. 2021; 18(14):7222. https://doi.org/10.3390/ijerph18147222
Chicago/Turabian StylePrior, Lucy. 2021. "Allostatic Load and Exposure Histories of Disadvantage" International Journal of Environmental Research and Public Health 18, no. 14: 7222. https://doi.org/10.3390/ijerph18147222
APA StylePrior, L. (2021). Allostatic Load and Exposure Histories of Disadvantage. International Journal of Environmental Research and Public Health, 18(14), 7222. https://doi.org/10.3390/ijerph18147222