Infant Nasopharyngeal Microbiota Subphenotypes and Early Childhood Lung Function: Evidence from a Rural Ghanaian Pregnancy Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Nasopharyngeal Microbiota Sampling and PCR
2.3. Impulse Oscillometry (IOS) Lung Function Testing
2.4. Covariates
2.5. Statistical Analysis
2.6. Internal Review Board Approval
3. Results
3.1. Latent Class Analysis
3.2. Linear Regression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations Inter-agency Group for Child Mortality Estimation (UN IGME). Levels & Trends in Child Mortality: Report 2019, Estimates Developed by the United Nations Inter-Agency Group for Child Mortality Estimation; United Nations Children’s Fund: New York, NY, USA, 2019. [Google Scholar]
- Lee, A.G.; Kaali, S.; Quinn, A.; Delimini, R.; Burkart, K.; Opoku-Mensah, J.; Wylie, B.J.; Yawson, A.K.; Kinney, P.L.; Ae-Ngibise, K.A.; et al. Prenatal Household Air Pollution Is Associated with Impaired Infant Lung Function with Sex-Specific Effects. Evidence from GRAPHS, a Cluster Randomized Cookstove Intervention Trial. Am. J. Respir. Crit. Care Med. 2019, 199, 738–746. [Google Scholar] [CrossRef]
- Gray, D.M.; Turkovic, L.; Willemse, L.; Visagie, A.; Vanker, A.; Stein, D.J.; Sly, P.D.; Hall, G.L.; Zar, H.J. Lung Function in African Infants in the Drakenstein Child Health Study. Impact of Lower Respiratory Tract Illness. Am. J. Respir. Crit. Care Med. 2017, 195, 212–220. [Google Scholar] [CrossRef]
- Grad, R.; Morgan, W.J. Long-term outcomes of early-onset wheeze and asthma. J. Allergy Clin. Immunol. 2012, 130, 299–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, W.J.; Stern, D.A.; Sherrill, D.L.; Guerra, S.; Holberg, C.J.; Guilbert, T.W.; Taussig, L.M.; Wright, A.L.; Martinez, F.D. Outcome of asthma and wheezing in the first 6 years of life: Follow-up through adolescence. Am. J. Respir. Crit. Care Med. 2005, 172, 1253–1258. [Google Scholar] [CrossRef] [Green Version]
- Sears, M.R.; Greene, J.M.; Willan, A.R.; Wiecek, E.M.; Taylor, D.R.; Flannery, E.M.; Cowan, J.O.; Herbison, G.P.; Silva, P.A.; Poulton, R. A longitudinal, population-based, cohort study of childhood asthma followed to adulthood. N. Engl. J. Med. 2003, 349, 1414–1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phelan, P.D.; Robertson, C.F.; Olinsky, A. The Melbourne Asthma Study: 1964–1999. J. Allergy Clin. Immunol. 2002, 109, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Lowe, L.A.; Simpson, A.; Woodcock, A.; Morris, J.; Murray, C.S.; Custovic, A. Wheeze phenotypes and lung function in preschool children. Am. J. Respir. Crit. Care Med. 2005, 171, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Lowe, L.; Murray, C.S.; Custovic, A.; Simpson, B.M.; Kissen, P.M.; Woodcock, A. Specific airway resistance in 3-year-old children: A prospective cohort study. Lancet 2002, 359, 1904–1908. [Google Scholar] [CrossRef]
- Illi, S.; von Mutius, E.; Lau, S.; Niggemann, B.; Gruber, C.; Wahn, U. Perennial allergen sensitisation early in life and chronic asthma in children: A birth cohort study. Lancet 2006, 368, 763–770. [Google Scholar] [CrossRef]
- Henderson, J.; Granell, R.; Heron, J.; Sherriff, A.; Simpson, A.; Woodcock, A.; Strachan, D.P.; Shaheen, S.O.; Sterne, J.A. Associations of wheezing phenotypes in the first 6 years of life with atopy, lung function and airway responsiveness in mid-childhood. Thorax 2008, 63, 974–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickson, R.P.; Martinez, F.J.; Huffnagle, G.B. The role of the microbiome in exacerbations of chronic lung diseases. Lancet 2014, 384, 691–702. [Google Scholar] [CrossRef] [Green Version]
- O'Dwyer, D.N.; Dickson, R.P.; Moore, B.B. The Lung Microbiome, Immunity, and the Pathogenesis of Chronic Lung Disease. J. Immunol. 2016, 196, 4839–4847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salter, S.; Turner, C.; Watthanaworawit, W.; de Goffau, M.C.; Wagner, J.; Parkhill, J.; Bentley, S.D.; Goldblatt, D.; Nosten, F.; Turner, P. A longitudinal study of the infant nasopharyngeal microbiota: The effects of age, illness and antibiotic use in a cohort of South East Asian children. PLoS Negl. Trop. Dis. 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosch, A.; de Steenhuijsen Piters, W.A.A.; van Houten, M.A.; Chu, M.; Biesbroek, G.; Kool, J.; Pernet, P.; de Groot, P.C.M.; Eijkemans, M.J.C.; Keijser, B.J.F.; et al. Maturation of the Infant Respiratory Microbiota, Environmental Drivers, and Health Consequences. A Prospective Cohort Study. Am. J. Respir. Crit. Care Med. 2017, 196, 1582–1590. [Google Scholar] [CrossRef] [PubMed]
- Ta, L.D.H.; Yap, G.C.; Tay, C.J.X.; Lim, A.S.M.; Huang, C.-H.; Chu, C.W.; De Sessions, P.F.; Shek, L.P.; Goh, A.; Van Bever, H.P.S.; et al. Establishment of the nasal microbiota in the first 18 months of life: Correlation with early-onset rhinitis and wheezing. J. Allergy Clin. Immunol. 2018, 142, 86–95. [Google Scholar] [CrossRef] [Green Version]
- Al Alam, D.; Danopoulos, S.; Grubbs, B.; Ali, N.; MacAogain, M.; Chotirmall, S.H.; Warburton, D.; Gaggar, A.; Ambalavanan, N.; Lal, C.V. Human Fetal Lungs Harbor a Microbiome Signature. Am. J. Respir. Crit. Care Med. 2020, 201, 1002–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosch, A.; Levin, E.; van Houten, M.A.; Hasrat, R.; Kalkman, G.; Biesbroek, G.; de Steenhuijsen Piters, W.A.A.; de Groot, P.C.M.; Pernet, P.; Keijser, B.J.F.; et al. Development of Upper Respiratory Tract Microbiota in Infancy is Affected by Mode of Delivery. EBioMedicine 2016, 9, 336–345. [Google Scholar] [CrossRef] [Green Version]
- Biesbroek, G.; Tsivtsivadze, E.; Sanders, E.A.; Montijn, R.; Veenhoven, R.H.; Keijser, B.J.; Bogaert, D. Early respiratory microbiota composition determines bacterial succession patterns and respiratory health in children. Am. J. Respir. Crit. Care Med. 2014, 190, 1283–1292. [Google Scholar] [CrossRef]
- Teo, S.M.; Mok, D.; Pham, K.; Kusel, M.; Serralha, M.; Troy, N.; Holt, B.J.; Hales, B.J.; Walker, M.L.; Hollams, E.; et al. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe 2015, 17, 704–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Man, W.H.; van Houten, M.A.; Mérelle, M.E.; Vlieger, A.M.; Chu, M.L.J.N.; Jansen, N.J.G.; Sanders, E.A.M.; Bogaert, D. Bacterial and viral respiratory tract microbiota and host characteristics in children with lower respiratory tract infections: A matched case-control study. Lancet Respir. Med. 2019, 7, 417–426. [Google Scholar] [CrossRef]
- Folsgaard, N.V.; Schjorring, S.; Chawes, B.L.; Rasmussen, M.A.; Krogfelt, K.A.; Brix, S.; Bisgaard, H. Pathogenic bacteria colonizing the airways in asymptomatic neonates stimulates topical inflammatory mediator release. Am. J. Respir. Crit. Care Med. 2013, 187, 589–595. [Google Scholar] [CrossRef]
- Hilty, M.; Burke, C.; Pedro, H.; Cardenas, P.; Bush, A.; Bossley, C.; Davies, J.; Ervine, A.; Poulter, L.; Pachter, L.; et al. Disordered microbial communities in asthmatic airways. PLoS ONE 2010, 5, e8578. [Google Scholar] [CrossRef] [Green Version]
- Bisgaard, H.; Hermansen, M.N.; Buchvald, F.; Loland, L.; Halkjaer, L.B.; Bonnelykke, K.; Brasholt, M.; Heltberg, A.; Vissing, N.H.; Thorsen, S.V.; et al. Childhood asthma after bacterial colonization of the airway in neonates. N. Engl. J. Med. 2007, 357, 1487–1495. [Google Scholar] [CrossRef] [PubMed]
- Ederveen, T.H.A.; Ferwerda, G.; Ahout, I.M.; Vissers, M.; de Groot, R.; Boekhorst, J.; Timmerman, H.M.; Huynen, M.A.; van Hijum, S.; de Jonge, M.I. Haemophilus is overrepresented in the nasopharynx of infants hospitalized with RSV infection and associated with increased viral load and enhanced mucosal CXCL8 responses. Microbiome 2018, 6, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Steenhuijsen Piters, W.A.; Heinonen, S.; Hasrat, R.; Bunsow, E.; Smith, B.; Suarez-Arrabal, M.C.; Chaussabel, D.; Cohen, D.M.; Sanders, E.A.; Ramilo, O.; et al. Nasopharyngeal Microbiota, Host Transcriptome, and Disease Severity in Children with Respiratory Syncytial Virus Infection. Am. J. Respir. Crit. Care Med. 2016, 194, 1104–1115. [Google Scholar] [CrossRef]
- Carrión, D.; Kaali, S.; Kinney, P.L.; Owusu-Agyei, S.; Chillrud, S.; Yawson, A.K.; Quinn, A.; Wylie, B.; Ae-Ngibise, K.; Lee, A.G.; et al. Examining the relationship between household air pollution and infant microbial nasal carriage in a Ghanaian cohort. Environ. Int. 2019, 133, 105150. [Google Scholar] [CrossRef] [PubMed]
- Faner, R.; Sibila, O.; Agusti, A.; Bernasconi, E.; Chalmers, J.D.; Huffnagle, G.B.; Manichanh, C.; Molyneaux, P.L.; Paredes, R.; Perez Brocal, V.; et al. The microbiome in respiratory medicine: Current challenges and future perspectives. Eur. Respir. J. 2017, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Depner, M.; Ege, M.J.; Cox, M.J.; Dwyer, S.; Walker, A.W.; Birzele, L.T.; Genuneit, J.; Horak, E.; Braun-Fahrlander, C.; Danielewicz, H.; et al. Bacterial microbiota of the upper respiratory tract and childhood asthma. J. Allergy Clin. Immunol. 2017, 139, 826–834.E13. [Google Scholar] [CrossRef] [Green Version]
- Wostmann, B.S. The germfree animal in nutritional studies. Annu. Rev. Nutr. 1981, 1, 257–279. [Google Scholar] [CrossRef] [PubMed]
- Yun, Y.; Srinivas, G.; Kuenzel, S.; Linnenbrink, M.; Alnahas, S.; Bruce, K.D.; Steinhoff, U.; Baines, J.F.; Schaible, U.E. Environmentally determined differences in the murine lung microbiota and their relation to alveolar architecture. PLoS ONE 2014, 9, e113466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carney, S.M.; Clemente, J.C.; Cox, M.J.; Dickson, R.P.; Huang, Y.J.; Kitsios, G.D.; Kloepfer, K.M.; Leung, J.M.; LeVan, T.D.; Molyneaux, P.L.; et al. Methods in Lung Microbiome Research. Am. J. Respir. Cell Mol. Biol. 2020, 62, 283–299. [Google Scholar] [CrossRef]
- Morgan, X.C.; Huttenhower, C. Chapter 12: Human microbiome analysis. PLoS Comput. Biol. 2012, 8, e1002808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchesi, J.R.; Ravel, J. The vocabulary of microbiome research: A proposal. Microbiome 2015, 3, 31. [Google Scholar] [CrossRef] [Green Version]
- Jack, D.W.; Asante, K.P.; Wylie, B.J.; Chillrud, S.N.; Whyatt, R.M.; Ae-Ngibise, K.A.; Quinn, A.K.; Yawson, A.K.; Boamah, E.A.; Agyei, O.; et al. Ghana randomized air pollution and health study (GRAPHS): Study protocol for a randomized controlled trial. Trials 2015, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Briese, T.; Palacios, G.; Kokoris, M.; Jabado, O.; Liu, Z.; Renwick, N.; Kapoor, V.; Casas, I.; Pozo, F.; Limberger, R.; et al. Diagnostic system for rapid and sensitive differential detection of pathogens. Emerg. Infect. Dis. 2005, 11, 310–313. [Google Scholar] [CrossRef]
- Beydon, N.; Davis, S.D.; Lombardi, E.; Allen, J.L.; Arets, H.G.; Aurora, P.; Bisgaard, H.; Davis, G.M.; Ducharme, F.M.; Eigen, H.; et al. An official American Thoracic Society/European Respiratory Society statement: Pulmonary function testing in preschool children. Am. J. Respir. Crit. Care Med. 2007, 175, 1304–1345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komarow, H.D.; Skinner, J.; Young, M.; Gaskins, D.; Nelson, C.; Gergen, P.J.; Metcalfe, D.D. A study of the use of impulse oscillometry in the evaluation of children with asthma: Analysis of lung parameters, order effect, and utility compared with spirometry. Pediatric Pulmonol. 2012, 47, 18–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duenas-Meza, E.; Correa, E.; Lopez, E.; Morales, J.C.; Aguirre-Franco, C.E.; Morantes-Ariza, C.F.; Granados, C.E.; Gonzalez-Garcia, M. Impulse oscillometry reference values and bronchodilator response in three- to five-year old children living at high altitude. J. Asthma Allergy 2019, 12, 263–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muthén, B. Latent variable analysis. In The Sage Handbook of Quantitative Methodology for the Social Sciences; Kaplan, D., Ed.; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2004; pp. 346–369. [Google Scholar]
- Van der Zalm, M.; Van Ewijk, B.E.; Wilbrink, B.; Uiterwaal, C.S.P.M.; Wolfs, T.F.W.; Van der Ent, C.K. Respiratory Pathogens in Children with and without Respiratory Symptoms. J. Pediatrics 2009, 154, 396–400. [Google Scholar] [CrossRef]
- McCauley, K.; Durack, J.; Valladares, R.; Fadrosh, D.W.; Lin, D.L.; Calatroni, A.; Lebeau, P.K.; Tran, H.T.; Fujimura, K.E.; Lamere, B.; et al. Distinct Nasal Airway Bacterial Microbiota Differentially Relate to Exacerbation in Pediatric Asthma. J. Allergy Clin. Immunol. 2019. [Google Scholar] [CrossRef]
- Shukla, S.D.; Budden, K.F.; Neal, R.; Hansbro, P.M. Microbiome effects on immunity, health and disease in the lung. Clin. Transl. Immunol. 2017, 6, e133. [Google Scholar] [CrossRef] [PubMed]
- Brashier, B.; Salvi, S. Measuring lung function using sound waves: Role of the forced oscillation technique and impulse oscillometry system. Breathe 2015, 11, 57–65. [Google Scholar] [CrossRef]
- Schulze, J.; Biedebach, S.; Christmann, M.; Herrmann, E.; Voss, S.; Zielen, S. Impulse Oscillometry as a Predictor of Asthma Exacerbations in Young Children. Respiration 2016, 91, 107–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Y.; Aledia, A.S.; Tatavoosian, A.V.; Vijayalakshmi, S.; Galant, S.P.; George, S.C. Relating small airways to asthma control by using impulse oscillometry in children. J. Allergy Clin. Immunol. 2012, 129, 671–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hakansson, A.P.; Orihuela, C.J.; Bogaert, D. Bacterial-Host Interactions: Physiology and Pathophysiology of Respiratory Infection. Physiol. Rev. 2018, 98, 781–811. [Google Scholar] [CrossRef]
- Man, W.H.; de Steenhuijsen Piters, W.A.; Bogaert, D. The microbiota of the respiratory tract: Gatekeeper to respiratory health. Nat. Rev. Microbiol. 2017, 15, 259–270. [Google Scholar] [CrossRef]
Number | Percent | |
---|---|---|
Child sex, Male | 57 | 50.9 |
Secondhand smoke exposure, Yes | 11 | 9.8 |
Median | IQR | |
Height (m) | 0.98 | 0.95, 1.01 |
Number of people in household | 6 | 5, 8 |
Parity | 3 | 1, 5 |
Age at nasal swab (months) | 4.27 | 2.86, 7.11 |
Number of pathogens detected on PCR | ||
Bacteria | 2 | 1, 3 |
Viruses | 1 | 0, 1 |
Age 4 Impulse Oscillometry (IOS) | ||
R5Hz [cmH2O/(L/s)] | 1.40 | 1.19, 1.65 |
R20Hz [cmH2O/(L/s)] | 0.83 | 0.72, 0.97 |
R5-20 (%) | 66.4 | 50.1, 96.9 |
X5 [cmH2O/(L/s)] | −0.32 | −0.41, −0.20 |
Fres (1/s) | 27.8 | 23.9, 34.5 |
AX (cmH2O/L) | 5.60 | 4.37, 7.27 |
CO20Hz | 0.94 | 0.90, 0.95 |
Time from nasal swab to IOS (Years) | 3.57 | 3.37, 3.70 |
Number of Classes | AIC | BIC | Entropy | Number of Individuals in Each Class | ||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||||
Nasal PCR | ||||||||
Number of Classes | ||||||||
1 | 873 | 905 | 3.7 | 112 | ||||
2 | 841 | 908 | 3.6 | 38 | 74 | |||
3 | 878 | 982 | 3.6 | 44 | 52 | 16 | ||
4 | 900 | 1039 | 3.6 | 42 | 27 | 41 | 2 | |
5 | 889 | 1061 | 3.5 | 11 | 25 | 32 | 42 | 2 |
IOS Parameters | Unadjusted Model | Adjusted Model * | ||
---|---|---|---|---|
(95% CI) | p | (95% CI) | p | |
R5Hz [cmH2O/(L/s)] | 0.02 (−0.16, 0.20) | 0.82 | 0.03 (−0.16, 0.21) | 0.76 |
X5Hz [cmH2O/(L/s)] | 0.02 (−0.08, 0.11) | 0.76 | −0.01 (−0.10, 0.09) | 0.91 |
R20Hz [cmH2O/(L/s)] | 0.10 (0.01, 0.19) | 0.03 | 0.11 (0.02, 0.20) | 0.02 |
R5-R20 (%) | −18.1 (−34.9, −1.26) | 0.04 | −17.9 (−35.6, −0.23) | 0.047 |
Fres (1/s) | 1.48 (−1.86, 4.83) | 0.38 | 1.32 (−2.10, 4.74) | 0.45 |
AX (cmH2O/L) | 0.57 (−0.44, 1.57) | 0.27 | 0.65 (−0.39, 1.70) | 0.22 |
IOS Parameters | Streptococcus pneumoniae | Enterovirus/Rhinovirus | ||
---|---|---|---|---|
(95% CI) | p | (95% CI) | p | |
R5Hz [cmH2O/(L/s)] | −0.14 (−0.34, 0.06) | 0.16 | −0.02 (−0.21, 0.16) | 0.83 |
X5Hz [cmH2O/(L/s)] | 0.01 (−0.10, 0.11) | 0.90 | 0.04 (−0.06, 0.13) | 0.43 |
R20Hz [cmH2O/(L/s)] | −0.01 (−0.12, 0.09) | 0.80 | 0.08 (−0.01, 0.18) | 0.08 |
R5-R20 (%) | −11.5 (−31, 7.95) | 0.24 | −16.1 (−33.9, 1.7) | 0.07 |
Fres (1/s) | 0.11 (−3.62, 3.84) | 0.95 | 1.76 (−1.67, 5.20) | 0.31 |
AX (cmH2O/L) | 0.21 (−0.94, 1.36) | 0.72 | 0.06 (−0.99, 1.12) | 0.91 |
Moraxellacatarrhalis | Haemophilusinfluenzae | |||
(95% CI) | p | (95% CI) | p | |
R5Hz [cmH2O/(L/s)] | −0.02 (−0.19, 0.15) | 0.81 | 0.02 (−0.16, 0.20) | 0.84 |
X5Hz [cmH2O/(L/s)] | 0.02 (−0.07, 0.11) | 0.65 | −0.07 (−0.16, 0.02) | 0.12 |
R20Hz [cmH2O/(L/s)] | 0.06 (−0.03, 0.15) | 0.21 | 0.06 (−0.04, 0.15) | 0.24 |
R5-R20 (%) | −15.3 (−32.1, 1.5) | 0.07 | −1.79 (−19.6, 16.0) | 0.84 |
Fres (1/s) | 3.63 (0.46, 6.79) | 0.03 | 0.92 (−2.46, 4.30) | 0.59 |
AX (cmH2O/L) | 0.48 (−0.50, 1.46) | 0.33 | 1.16 (0.16, 2.16) | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubowski, K.; Kaali, S.; Jack, D.; Prah, R.K.D.; Clemente, J.C.; Tawiah, T.; Mujtaba, M.; Iddrisu, L.; Carrión, D.; Konadu, D.G.; et al. Infant Nasopharyngeal Microbiota Subphenotypes and Early Childhood Lung Function: Evidence from a Rural Ghanaian Pregnancy Cohort. Int. J. Environ. Res. Public Health 2021, 18, 7276. https://doi.org/10.3390/ijerph18147276
Dubowski K, Kaali S, Jack D, Prah RKD, Clemente JC, Tawiah T, Mujtaba M, Iddrisu L, Carrión D, Konadu DG, et al. Infant Nasopharyngeal Microbiota Subphenotypes and Early Childhood Lung Function: Evidence from a Rural Ghanaian Pregnancy Cohort. International Journal of Environmental Research and Public Health. 2021; 18(14):7276. https://doi.org/10.3390/ijerph18147276
Chicago/Turabian StyleDubowski, Kathryn, Seyram Kaali, Darby Jack, Rebecca Kyerewaa Dwommoh Prah, Jose C. Clemente, Theresa Tawiah, Mohammed Mujtaba, Louisa Iddrisu, Daniel Carrión, Dennis Gyasi Konadu, and et al. 2021. "Infant Nasopharyngeal Microbiota Subphenotypes and Early Childhood Lung Function: Evidence from a Rural Ghanaian Pregnancy Cohort" International Journal of Environmental Research and Public Health 18, no. 14: 7276. https://doi.org/10.3390/ijerph18147276
APA StyleDubowski, K., Kaali, S., Jack, D., Prah, R. K. D., Clemente, J. C., Tawiah, T., Mujtaba, M., Iddrisu, L., Carrión, D., Konadu, D. G., Agyei, O., Kornu, F. M., Osei-Owusu, S., Lee, A. G., & Asante, K. P. (2021). Infant Nasopharyngeal Microbiota Subphenotypes and Early Childhood Lung Function: Evidence from a Rural Ghanaian Pregnancy Cohort. International Journal of Environmental Research and Public Health, 18(14), 7276. https://doi.org/10.3390/ijerph18147276