Associations between Biomarkers of Exposure and Lung Cancer Risk among Exclusive Cigarette Smokers in the Golestan Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Doll, R.; Peto, R. Mortality in relation to smoking: 20 years’ observations on male British doctors. Br. Med. J. 1976, 2, 1525–1536. [Google Scholar] [CrossRef] [Green Version]
- US Department of Health and Human Services. The Health Consequences of Smoking: A Report of the Surgeon General; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2004.
- US Department of Health and Human Services. The Health Consequences of Smoking-50 Years of Progress: A Report of the Surgeon General, 2014; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2014.
- International Agency for Research on Cancer. Personal Habits and Indoor Combustions: Volume 100E A Review of Human Carcinogens; IARC: Lyon, France, 2012. [Google Scholar]
- Hecht, S.S. Tobacco smoke carcinogens and lung cancer. J. Natl. Cancer Inst. 1999, 91, 1194–1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balbo, S.; James-Yi, S.; O’Sullivan, M.G.; Stepanov, I.; Wang, M.Y.; Zhang, S.Y.; Kassie, F.; Carmell, S.; Wettlaufer, C.; Hohol, K.; et al. (S)-N’-nitrosonornicotine, a constituent of smokeless tobacco, is a potent oral tumorigen in rats. Cancer Res. 2012, 72. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. Tobacco Smoke and Involuntary Smoking; IARC: Lyon, France, 2004; Volume 83. [Google Scholar]
- Church, T.R.; Anderson, K.E.; Caporaso, N.E.; Geisser, M.S.; Le, C.T.; Zhang, Y.; Benoit, A.R.; Carmella, S.G.; Hecht, S.S. A prospectively measured serum biomarker for a tobacco-specific carcinogen and lung cancer in smokers. Cancer Epidemiol. Biomark. Prev. 2009, 18, 260–266. [Google Scholar] [CrossRef] [Green Version]
- Hecht, S.S.; Murphy, S.E.; Stepanov, I.; Nelson, H.H.; Yuan, J.M. Tobacco smoke biomarkers and cancer risk among male smokers in the Shanghai cohort study. Cancer Lett. 2013, 334, 34–38. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.M.; Gao, Y.T.; Murphy, S.E.; Carmella, S.G.; Wang, R.; Zhong, Y.; Moy, K.A.; Davis, A.B.; Tao, L.; Chen, M.; et al. Urinary levels of cigarette smoke constituent metabolites are prospectively associated with lung cancer development in smokers. Cancer Res. 2011, 71, 6749–6757. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.M.; Knezevich, A.D.; Wang, R.; Gao, Y.T.; Hecht, S.S.; Stepanov, I. Urinary levels of the tobacco-specific carcinogen N’-nitrosonornicotine and its glucuronide are strongly associated with esophageal cancer risk in smokers. Carcinogenesis 2011, 32, 1366–1371. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.M.; Gao, Y.T.; Wang, R.; Chen, M.; Carmella, S.G.; Hecht, S.S. Urinary levels of volatile organic carcinogen and toxicant biomarkers in relation to lung cancer development in smokers. Carcinogenesis 2012, 33, 804–809. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.M.; Koh, W.P.; Murphy, S.E.; Fan, Y.; Wang, R.; Carmella, S.G.; Han, S.; Wickham, K.; Gao, Y.T.; Yu, M.C.; et al. Urinary levels of tobacco-specific nitrosamine metabolites in relation to lung cancer development in two prospective cohorts of cigarette smokers. Cancer Res. 2009, 69, 2990–2995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, J.M.; Butler, L.M.; Gao, Y.T.; Murphy, S.E.; Carmella, S.G.; Wang, R.; Nelson, H.H.; Hecht, S.S. Urinary metabolites of a polycyclic aromatic hydrocarbon and volatile organic compounds in relation to lung cancer development in lifelong never smokers in the Shanghai Cohort Study. Carcinogenesis 2014, 35, 339–345. [Google Scholar] [CrossRef]
- Pourshams, A.; Khademi, H.; Malekshah, A.F.; Islami, F.; Nouraei, M.; Sadjadi, A.R.; Jafari, E.; Rakhshani, N.; Salahi, R.; Semnani, S.; et al. Cohort Profile: The Golestan Cohort Study--a prospective study of oesophageal cancer in northern Iran. Int. J. Epidemiol. 2010, 39, 52–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Etemadi, A.; Poustchi, H.; Chang, C.M.; Blount, B.C.; Calafat, A.M.; Wang, L.; De Jesus, V.R.; Pourshams, A.; Shakeri, R.; Shiels, M.S.; et al. Urinary biomarkers of carcinogenic exposure among cigarette, waterpipe, and smokeless tobacco users and never users of tobacco in the Golestan Cohort Study. Cancer Epidemiol. Biomark. Prev. 2019, 28, 337–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Etemadi, A.; Poustchi, H.; Calafat, A.M.; Blount, B.C.; De Jesus, V.R.; Wang, L.; Pourshams, A.; Shakeri, R.; Inoue-Choi, M.; Shiels, M.S.; et al. Opiate and tobacco use and exposure to carcinogens and toxicants in the Golestan Cohort Study. Cancer Epidemiol. Biomark. Prev. 2020, 29, 650–658. [Google Scholar] [CrossRef] [Green Version]
- Sheikh, M.; Shakeri, R.; Poustchi, H.; Pourshams, A.; Etemadi, A.; Islami, F.; Khoshnia, M.; Gharavi, A.; Roshandel, G.; Khademi, H.; et al. Opium use and subsequent incidence of cancer: Results from the Golestan Cohort Study. Lancet Glob. Health 2020, 8, e649–e660. [Google Scholar] [CrossRef]
- Roshandel, G.; Semnani, S.; Fazel, A.; Honarvar, M.; Taziki, M.; Sedaghat, S.; Abdolahi, N.; Ashaari, M.; Poorabbasi, M.; Hasanpour, S.; et al. Building cancer registries in a lower resource setting: The 10-year experience of Golestan, Northern Iran. Cancer Epidemiol. 2018, 52, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Etemadi, A.; Khademi, H.; Kamangar, F.; Freedman, N.D.; Abnet, C.C.; Brennan, P.; Malekzadeh, R.; Golestan Cohort Study Team. Hazards of cigarettes, smokeless tobacco and waterpipe in a Middle Eastern population: A cohort study of 50,000 individuals from Iran. Tob. Control 2017, 26, 674–682. [Google Scholar] [CrossRef] [PubMed]
- Xia, B.; Blount, B.C.; Guillot, T.; Brosius, C.; Li, Y.; Van Bemmel, D.M.; Kimmel, H.L.; Chang, C.M.; Borek, N.; Edwards, K.C.; et al. Tobacco-Specific nitrosamines (NNAL, NNN, NAT, and NAB) exposures in the US Population Assessment of Tobacco and Health (PATH) Study Wave 1 (2013-2014). Nicotine Tob. Res. 2021, 23, 573–583. [Google Scholar] [CrossRef]
- Fowles, J.; Dybing, E. Application of toxicological risk assessment principles to the chemical constituents of cigarette smoke. Tob. Control 2003, 12, 424–430. [Google Scholar] [CrossRef] [Green Version]
- Sanner, T.; Grimsrud, T.K. Nicotine: Carcinogenicity and effects on response to cancer treatment—A review. Front. Oncol. 2015, 5, 196. [Google Scholar] [CrossRef] [Green Version]
- Benowitz, N.L. Cotinine as a biomarker of environmental tobacco smoke exposure. Epidemiol. Rev. 1996, 18, 188–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, K.C.; Naz, T.; Stanton, C.A.; Goniewicz, M.L.; Hatsukami, D.K.; Smith, D.M.; Wang, L.; Villanti, A.; Pearson, J.; Blount, B.C.; et al. Urinary cotinine and cotinine + trans-3’-hydroxycotinine (TNE-2) cut-points for distinguishing tobacco use from non-use in the United States: PATH Study (2013-2014). Cancer Epidemiol. Biomark. Prev. 2021, 30, 1175–1184. [Google Scholar] [CrossRef] [PubMed]
- Islami, F.; Kamangar, F.; Nasrollahzadeh, D.; Aghcheli, K.; Sotoudeh, M.; Abedi-Ardekani, B.; Merat, S.; Nasseri-Moghaddam, S.; Semnani, S.; Sepehr, A.; et al. Socio-economic status and oesophageal cancer: Results from a population-based case-control study in a high-risk area. Int. J. Epidemiol. 2009, 38, 978–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hornung, R.W.; Reed, L.D. Estimation of average concentration in the presence of nondetectable values. Appl. Occup. Environ. Hyg. 1990, 5, 46–51. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Pazo, D.Y.; Moliere, F.; Sampson, M.M.; Reese, C.M.; Agnew-Heard, K.A.; Walters, M.J.; Holman, M.R.; Blount, B.C.; Watson, C.H.; Chambers, D.M. Mainstream smoke levels of volatile organic compounds in 50 U.S. domestic cigarette brands smoked with the ISO and Canadian Intense protocols. Nicotine Tob. Res. 2016, 18, 1886–1894. [Google Scholar] [CrossRef] [Green Version]
- IARC Monograph Volume 126 Working Group. Carcinogenicity of opium consumption. Lancet Oncol. 2020, 21, 1407–1408. [Google Scholar] [CrossRef]
- Murphy, S.E. Nicotine metabolism and smoking: Ethnic differences in the role of P450 2A6. Chem. Res. Toxicol. 2017, 30, 410–419. [Google Scholar] [CrossRef]
- Batmanghelidj, E.; Heydari, G. Sanctions, smuggling, and the cigarette: The granting of Iran Office of Foreign Asset Control’s licenses to big tobacco. Int. J. Prev. Med. 2014, 5, 138–144. [Google Scholar]
- Taghavi, S.; Khashyarmanesh, Z.; Moalemzadeh-Haghighi, H.; Nassirli, H.; Eshraghi, P.; Jalali, N.; Hassanzadeh-Khayyat, M. Nicotine content of domestic cigarettes, imported cigarettes and pipe tobacco in Iran. Addict. Health 2012, 4, 28–35. [Google Scholar]
- Barrington-Trimis, J.L.; Braymiller, J.L.; Unger, J.B.; McConnell, R.; Stokes, A.; Leventhal, A.M.; Sargent, J.D.; Samet, J.M.; Goodwin, R.D. Trends in the age of cigarette smoking initiation among young adults in the US from 2002 to 2018. JAMA Netw. Open 2020, 3, e2019022. [Google Scholar] [CrossRef] [PubMed]
Cases (n = 28) | Controls (n = 52) | p-Value | |
---|---|---|---|
# (%) | |||
Sex | |||
Males | 28 (100) | 52 (100) | |
Residence | |||
Urban | 7 (25) | 12 (23) | |
Rural | 21 (75) | 40 (77) | 0.847 |
Age (years) | |||
40–49 | 11 (39) | 20 (38) | |
50–59 | 11 (39) | 21 (40) | |
60+ | 6 (21) | 11 (21) | 0.995 |
Education | |||
None | 15 (54) | 29 (56) | |
1–8 years | 11 (39) | 20 (38) | |
9+ years | 2 (7) | 3 (6) | 1.000 |
Ethnicity | |||
Turkmen | 18 (64) | 39 (75) | |
Non-Turkmen | 10 (36) | 13 (25) | 0.313 |
Wealth score | |||
1st quartile (lowest) | 11 (39) | 15 (29) | |
2nd quartile | 2 (7) | 9 (17) | |
3rd quartile | 7 (25) | 13 (25) | |
4th quartile (highest) | 8 (29) | 15 (29) | 0.577 |
Body mass index (kg/m2) | |||
<25 | 18 (64) | 32 (62) | |
25–29 | 7 (25) | 16 (31) | |
30+ | 3 (11) | 4 (8) | 0.766 |
Opium regular use | |||
Never used | 9 (32) | 35 (67) | |
Ever used | 19 (68) | 17 (33) | 0.003 |
Alcohol regular use | |||
Never used | 18 (64) | 39 (75) | |
Ever used | 10 (36) | 13 (25) | 0.313 |
Mean age at first cigarette use (SD) | 25.9 (12.3) | 29.5 (12.9) | 0.233 |
Mean number of cigarettes smoked per day (SD) | 16.6 (7.0) | 12.6 (9.2) | 0.045 |
Cases (n = 28) | Controls (n = 52) | p-Value | Adjusted p-Value (2) | False Discovery Rate < 0.05 (3) | |
---|---|---|---|---|---|
Geometric Mean (95% CI) (1) | Geometric Mean (95% CI) | ||||
TNE-2 | 57.3 (46.0, 71.3) | 13.5 (6.9, 26.3) | 0.000 | 0.006 | yes |
NNAL | 0.280 (0.213, 0.368) | 0.140 (0.099, 0.199) | 0.002 | 0.025 | yes |
NNN | 0.012 (0.009, 0.015) | 0.005 (0.004, 0.007) | 0.000 | 0.009 | yes |
3-FLU | 1.88 (1.45, 2.44) | 1.04 (0.73, 1.48) | 0.008 | 0.031 | yes |
1-PYR | 1.05 (0.81, 1.36) | 0.66 (0.52, 0.84) | 0.016 | 0.038 | yes |
2CAEMA | 223.6 (166.0, 301.3) | 148.0 (113.5, 193.1) | 0.053 | 0.044 | no |
2CYEMA | 171.2 (138.1, 212.3) | 55.6 (34.8, 88.7) | 0.000 | 0.003 | yes |
2COEMA | 272.3 (223.8, 331.4) | 195.4 (161.5, 236.5) | 0.027 | 0.041 | yes |
3HPMA | 1426.9 (1103.5, 1845.1) | 765.7 (610.3, 960.7) | 0.001 | 0.016 | yes |
MADA | 534.7 (437.7, 653.2) | 349.6 (298.1, 409.9) | 0.002 | 0.022 | yes |
PHGA | 113.8 (72.8, 177.6) | 93.2 (70.1, 124.0) | 0.430 | 0.047 | no |
2HPMA | 74.0 (61.3, 89.4) | 43.7 (35.5, 53.7) | 0.000 | 0.013 | yes |
t4HBEMA | 38.0 (30.3, 47.7) | 21.6 (16.8, 27.7) | 0.001 | 0.019 | yes |
3HMPMA | 2189.6 (1718.4, 2790.1) | 1271.3 (1002.7, 1611.9) | 0.004 | 0.028 | yes |
4HMBEMA | 41.5 (29.8, 57.6) | 21.9 (15.8, 30.4) | 0.014 | 0.034 | yes |
TNE-2 | NNAL | NNN | 3-FLU | 1-PYR | 2CAEMA | 2CYEMA | 2COEMA | 3HPMA | MADA | PHGA | 2HPMA | t4HBEMA | 3HMPMA | 4HMBEMA | |
TNE-2 | 1.000 | ||||||||||||||
NNAL | 0.907 | 1.000 | |||||||||||||
NNN | 0.704 | 0.757 | 1.000 | ||||||||||||
3-FLU | 0.639 | 0.575 | 0.497 | 1.000 | |||||||||||
1-PYR | 0.360 | 0.449 | 0.332 | 0.688 | 1.000 | ||||||||||
2CAEMA | 0.483 | 0.317 | 0.188 | 0.579 | 0.537 | 1.000 | |||||||||
2CYEMA | 0.926 | 0.864 | 0.713 | 0.733 | 0.473 | 0.597 | 1.000 | ||||||||
2COEMA | 0.571 | 0.587 | 0.569 | 0.514 | 0.287 | 0.337 | 0.723 | 1.000 | |||||||
3HPMA | 0.742 | 0.759 | 0.739 | 0.607 | 0.361 | 0.460 | 0.832 | 0.762 | 1.000 | ||||||
MADA | 0.577 | 0.621 | 0.597 | 0.791 | 0.614 | 0.454 | 0.716 | 0.571 | 0.681 | 1.000 | |||||
PHGA | -0.119 | -0.032 | -0.002 | 0.038 | 0.010 | 0.203 | 0.008 | 0.142 | 0.144 | 0.095 | 1.000 | ||||
2HPMA | 0.675 | 0.492 | 0.526 | 0.561 | 0.390 | 0.477 | 0.759 | 0.689 | 0.750 | 0.612 | 0.107 | 1.000 | |||
t4HBEMA | 0.806 | 0.802 | 0.704 | 0.644 | 0.392 | 0.388 | 0.880 | 0.793 | 0.906 | 0.679 | 0.050 | 0.721 | 1.000 | ||
3HMPMA | 0.745 | 0.765 | 0.724 | 0.575 | 0.327 | 0.318 | 0.797 | 0.766 | 0.937 | 0.642 | 0.071 | 0.714 | 0.943 | 1.000 | |
4HMBEMA | 0.780 | 0.769 | 0.709 | 0.646 | 0.396 | 0.265 | 0.829 | 0.743 | 0.843 | 0.655 | 0.012 | 0.673 | 0.919 | 0.905 | 1.000 |
Abbrev. | Compound | Parent Compound | Abbrev. | Compound | Parent Compound | ||||||||||
TNE-2 | cotinine + trans-3′-hydroxycotinine | nicotine | 3HPMA | N-Acetyl-S-(3-hydroxypropyl)-L-cysteine | acrolein | ||||||||||
NNAL | 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol | NNK | MADA | Mandelic acid | styrene | ||||||||||
NNN | N’-nitrosonornicotine | NNN | PHGA | Phenylglyoxylic acid | ethylbenzene and styrene | ||||||||||
3-FLU | 3-hydroxyfluorene | fluorene | 2HPMA | N-Acetyl-S-(2-hydroxypropyl)-L-cysteine | propylene oxide | ||||||||||
1-PYR | 1-hydroxypyrene | pyrene | t4HBEMA | N-Acetyl-S-(4-hydroxy-2-buten-1-yl)-L-cysteine | 1,3-butadiene | ||||||||||
2CAEMA | N-Acetyl-S-(2-carbamoylethyl)-L-cysteine | acrylamide | 3HMPMA | N-Acetyl-S-(3-hydroxypropyl-1-methyl)-L-cysteine | crotonaldehyde | ||||||||||
2CYEMA | N-Acetyl-S-(2-cyanoethyl)-L-cysteine | Acrylonitrile | 4HMBEMA | N-Acetyl-S-(4-hydroxy-2-methyl-2-buten-1-yl)-L-cysteine | isoprene | ||||||||||
2COEMA | N-Acetyl-S-(2-carboxyethyl)-L-cysteine | Acrolein |
Matched Odds Ratio (95% CI) (1) | Matched Odds Ratio (95% CI) Adjusted for Demographics (2) | Matched Odds Ratio (95% CI) Adjusted for Demographics and Opium (3) | Matched Odds Ratio (95% CI) Adjusted for Demographics and Smoking (4) | Matched Odds Ratio (95% CI) Adjusted for Demographics, Opium, and Smoking (5) | |
---|---|---|---|---|---|
TNE-2 | 2.22 (1.03, 4.78) | 2.20 (1.01, 4.83) | 1.70 (0.79, 3.65) | 2.06 (0.96, 4.42) | 1.68 (0.89, 3.17) |
NNAL | 1.46 (0.75, 2.82) | 1.44 (0.75, 2.78) | 1.01 (0.47, 2.16) | 1.35 (0.59, 3.07) | 0.72 (0.23, 2.24) |
NNN | 2.44 (1.13, 5.27) | 2.28 (1.04, 5.00) | 1.91 (0.85, 4.28) | 2.14 (0.81, 5.60) | 1.90 (0.63, 5.69) |
3-FLU | 1.57 (0.90, 2.71) | 1.62 (0.92, 2.84) | 1.12 (0.58, 2.17) | 1.53 (0.87, 2.69) | 1.03 (0.53, 2.02) |
1-PYR | 1.94 (0.93, 4.07) | 2.47 (1.06, 5.77) | 1.87 (0.71, 4.89) | 2.34 (0.99, 5.52) | 1.64 (0.60, 4.49) |
2CAEMA | 2.00 (1.03, 3.88) | 2.17 (1.06, 4.44) | 1.35 (0.57, 3.22) | 2.14 (1.01, 4.55) | 1.34 (0.55, 3.28) |
2CYEMA | 2.17 (1.03, 4.58) | 2.10 (1.04, 4.22) | 1.66 (0.82, 3.34) | 2.17 (1.03, 4.55) | 1.79 (0.88, 3.65) |
2COEMA | 2.16 (0.85, 5.48) | 2.20 (0.82, 5.92) | 1.86 (0.65, 5.34) | 2.02 (0.69, 5.89) | 2.83 (0.62, 12.84) |
3HPMA | 2.19 (1.03, 4.66) | 2.34 (1.03, 5.34) | 1.72 (0.73, 4.03) | 2.27 (0.91, 5.68) | 1.94 (0.68, 5.60) |
MADA | 3.63 (1.00, 13.18) | 4.77 (1.13, 20.11) | 2.55 (0.54, 12.04) | 3.97 (0.77, 20.37) | 2.03 (0.33, 12.57) |
PHGA | 1.41 (0.82, 2.43) | 1.52 (0.85, 2.72) | 1.22 (0.65, 2.30) | 1.45 (0.77, 2.70) | 1.14 (0.55, 2.34) |
2HPMA | 2.72 (1.16, 6.36) | 2.79 (1.16, 6.73) | 1.88 (0.73, 4.82) | 2.85 (1.04, 7.81) | 2.08 (0.73, 5.89) |
t4HBEMA | 1.85 (0.94, 3.62) | 1.97 (0.95, 4.10) | 1.54 (0.72, 3.29) | 1.82 (0.84, 3.93) | 1.58 (0.66, 3.79) |
3HMPMA | 1.70 (0.85, 3.37) | 1.81 (0.85, 3.90) | 1.40 (0.63, 3.14) | 1.73 (0.76, 3.93) | 1.47 (0.57, 3.75) |
4HMBEMA | 1.43 (0.87, 2.34) | 1.47 (0.87, 2.47) | 1.25 (0.71, 2.19) | 1.39 (0.81, 2.36) | 1.23 (0.67, 2.25) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rostron, B.L.; Wang, J.; Etemadi, A.; Thakur, S.; Chang, J.T.; Bhandari, D.; Botelho, J.C.; De Jesús, V.R.; Feng, J.; Gail, M.H.; et al. Associations between Biomarkers of Exposure and Lung Cancer Risk among Exclusive Cigarette Smokers in the Golestan Cohort Study. Int. J. Environ. Res. Public Health 2021, 18, 7349. https://doi.org/10.3390/ijerph18147349
Rostron BL, Wang J, Etemadi A, Thakur S, Chang JT, Bhandari D, Botelho JC, De Jesús VR, Feng J, Gail MH, et al. Associations between Biomarkers of Exposure and Lung Cancer Risk among Exclusive Cigarette Smokers in the Golestan Cohort Study. International Journal of Environmental Research and Public Health. 2021; 18(14):7349. https://doi.org/10.3390/ijerph18147349
Chicago/Turabian StyleRostron, Brian L., Jia Wang, Arash Etemadi, Sapna Thakur, Joanne T. Chang, Deepak Bhandari, Julianne Cook Botelho, Víctor R. De Jesús, Jun Feng, Mitchell H. Gail, and et al. 2021. "Associations between Biomarkers of Exposure and Lung Cancer Risk among Exclusive Cigarette Smokers in the Golestan Cohort Study" International Journal of Environmental Research and Public Health 18, no. 14: 7349. https://doi.org/10.3390/ijerph18147349
APA StyleRostron, B. L., Wang, J., Etemadi, A., Thakur, S., Chang, J. T., Bhandari, D., Botelho, J. C., De Jesús, V. R., Feng, J., Gail, M. H., Inoue-Choi, M., Malekzadeh, R., Pourshams, A., Poustchi, H., Roshandel, G., Shiels, M. S., Wang, Q., Wang, Y., Xia, B., ... Chang, C. M. (2021). Associations between Biomarkers of Exposure and Lung Cancer Risk among Exclusive Cigarette Smokers in the Golestan Cohort Study. International Journal of Environmental Research and Public Health, 18(14), 7349. https://doi.org/10.3390/ijerph18147349