Development of an Early Alert System for an Additional Wave of COVID-19 Cases Using a Recurrent Neural Network with Long Short-Term Memory
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Features (Data)
2.1.1. Mobility Indicators
2.1.2. Stringency Indicators
2.1.3. Epidemiological Parameters
2.2. Data Preprocessing
2.3. Research Methodology
2.3.1. Model Outputs
2.3.2. Hyper-Parameter Optimization
2.3.3. Methodology Comparison
2.3.4. Flow Diagram of System
2.4. Province Specific Risk Index Threshold
3. Results
3.1. Example Prediction Result during Non-Peak Period
3.2. Verification of the Alert System Using Second Wave Data
3.3. Third Wave Surveillance
4. Limitations
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Neural Network Architecture
References
- Oishee, M.J.; Ali, T.; Jahan, N.; Khandker, S.S.; Haq, M.A.; Khondoker, M.U.; Sil, B.K.; Lugova, H.; Krishnapillai, A.; Abubakar, A.R.; et al. COVID-19 pandemic: Review of contemporary and forthcoming detection tools. Infect. Drug Resist. 2021, 14, 1049. [Google Scholar] [CrossRef] [PubMed]
- Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): A review. JAMA 2020, 324, 782–793. [Google Scholar] [CrossRef] [PubMed]
- Cutler, D.M.; Summers, L.H. The COVID-19 pandemic and the $16 trillion virus. JAMA 2020, 324, 1495–1496. [Google Scholar] [CrossRef] [PubMed]
- Beretta, A.; Cranage, M.; Zipeto, D. Is Cross-Reactive Immunity Triggering COVID-19 Immunopathogenesis? Front. Immunol. 2020, 11, 2695. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Dai, T.; Wei, Y.; Zhang, L.; Zheng, M.; Zhou, F. A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduct. Target. Ther. 2020, 5, 1–14. [Google Scholar] [CrossRef]
- Leshem, E.; Lopman, B.A. Population immunity and vaccine protection against infection. Lancet 2021, 397, 1685–1687. [Google Scholar] [CrossRef]
- Wouters, O.J.; Shadlen, K.C.; Salcher-Konrad, M.; Pollard, A.J.; Larson, H.J.; Teerawattananon, Y.; Jit, M. Challenges in ensuring global access to COVID-19 vaccines: Production, affordability, allocation, and deployment. Lancet 2021. [Google Scholar] [CrossRef]
- Merow, C.; Urban, M.C. Seasonality and uncertainty in global COVID-19 growth rates. Proc. Natl. Acad. Sci. USA 2020, 117, 27456–27464. [Google Scholar] [CrossRef]
- Kaplin, A.; Junker, C.; Kumar, A.; Ribeiro, M.A.; Yu, E.; Wang, M.; Smith, T.; Rai, S.N.; Bhatnagar, A. Evidence and magnitude of the effects of meteorological changes on SARS-CoV-2 transmission. PLoS ONE 2021, 16, e0246167. [Google Scholar] [CrossRef]
- Lewis, D. Superspreading drives the COVID pandemic-and could help to tame it. Nature 2021, 590, 544–546. [Google Scholar] [CrossRef]
- Soukhovolsky, V.; Kovalev, A.; Pitt, A.; Shulman, K.; Tarasova, O.; Kessel, B. The Cyclicity of coronavirus cases: “Waves” and the “weekend effect”. Chaos Solitons Fractals 2021, 144, 110718. [Google Scholar] [CrossRef]
- Tkachenko, A.V.; Maslov, S.; Elbanna, A.; Wong, G.N.; Weiner, Z.J.; Goldenfeld, N. Time-dependent heterogeneity leads to transient suppression of the COVID-19 epidemic, not herd immunity. Proc. Natl. Acad. Sci. USA 2021, 118, e2015972118. [Google Scholar] [CrossRef] [PubMed]
- Nason, G.P. COVID-19 cycles and rapidly evaluating lockdown strategies using spectral analysis. Sci. Rep. 2020, 10, 22134. [Google Scholar] [CrossRef]
- Murray, C.J.; Piot, P. The potential future of the COVID-19 pandemic: Will SARS-CoV-2 become a recurrent seasonal infection? JAMA 2021, 325, 1249–1250. [Google Scholar] [CrossRef]
- Puleio, A. Recurrent neural network ensemble, a new instrument for the prediction of infectious diseases. Eur. Phys. J. Plus 2021, 136, 1–15. [Google Scholar] [CrossRef]
- Aktay, A. Google COVID-19 Community Mobility Reports: Anonymization Process Description (Version1.0). arXiv 2020, arXiv:2004.04145. [Google Scholar]
- Facebook Data For Good. Facebook Movement Range Maps. (Humanitarian Data Exchange). Available online: https://data.humdata.org/organization/facebook (accessed on 8 July 2021).
- Hale, T.; Angrist, N.; Goldszmidt, R.; Kira, B.; Petherick, A.; Phillips, T.; Webster, S.; Cameron-Blake, E.; Hallas, L.; Majumdar, S.; et al. A Global Panel Database of Pandemic Policies (Oxford COVID-19 Government Response Tracker). Nat. Hum. Behav. 2021, 5, 529–538. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Graves, A. Long Short-Term Memory. In Supervised Sequence Labelling with Recurrent Neural Networks; Springer: Berlin/Heidelberg, Germany, 2012; pp. 37–45. [Google Scholar] [CrossRef]
- Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to forget: Continual prediction with LSTM. In Proceedings of the 1999 Ninth International Conference on Artificial Neural Networks ICANN 99, Edinburgh, UK, 7–10 September 1999; Volume 2, pp. 850–855. [Google Scholar] [CrossRef]
- Vepa, A.; Saleem, A.; Rakhshan, K.; Daneshkhah, A.; Sedighi, T.; Shohaimi, S.; Omar, A.; Salari, N.; Chatrabgoun, O.; Dharmaraj, D.; et al. Using Machine Learning Algorithms to Develop a Clinical Decision-Making Tool for COVID-19 Inpatients. Int. J. Environ. Res. Public Health 2021, 18, 6228. [Google Scholar] [CrossRef]
- Vaid, S.; McAdie, A.; Kremer, R.; Khanduja, V.; Bhandari, M. Risk of a second wave of COVID-19 infections: Using artificial intelligence to investigate stringency of physical distancing policies in North America. Int. Orthop. 2020, 44, 1581–1589. [Google Scholar] [CrossRef]
- Li, Y.; Jia, W.; Wang, J.; Guo, J.; Liu, Q.; Li, X.; Xie, G.; Wang, F. ALeRT-COVID: Attentive lockdown-aware transfer learning for predicting COVID-19 pandemics in different countries. J. Healthc. Inform. Res. 2021, 5, 98–113. [Google Scholar] [CrossRef] [PubMed]
- Hawas, M. Generated time-series prediction data of COVID-19’s daily infections in Brazil by using recurrent neural networks. Data Brief 2020, 32, 106175. [Google Scholar] [CrossRef] [PubMed]
- Shastri, S.; Singh, K.; Kumar, S.; Kour, P.; Mansotra, V. Time series forecasting of COVID-19 using deep learning models: India-USA comparative case study. Chaos Solitons Fractals 2020, 140, 110227. [Google Scholar] [CrossRef]
- Wang, L.; Ben, X.; Adiga, A.; Sadilek, A.; Tendulkar, A.; Venkatramanan, S.; Vullikanti, A.; Aggarwal, G.; Talekar, A.; Chen, J.; et al. Using Mobility Data to Understand and Forecast COVID19 Dynamics. medRxiv 2020. [Google Scholar] [CrossRef]
Description | Indicators |
---|---|
Google Mobility | Retail and Recreation |
Grocery and Pharmacy | |
Parks | |
Transit Stations | |
Workplaces | |
Residential | |
Facebook Mobility | Tiles visited relative change |
Stay in place |
Hyper-Parameter | Value Options |
---|---|
Window size | [1, 3, 5, 7] |
Number of LSTM layers | [1, 2, 3, 4] |
Number of unites in LSTM layers | [5, 10, 15, 20] |
Batch size | [5, 10, 15, 20] |
Prediction Method | RMSE |
---|---|
LSTM RNN model | 76.57 |
Naive Forecast | 89.43 |
Seasonal Naive Forecast | 79.99 |
Province | Threshold |
---|---|
Gauteng | 3.2 |
Western Cape | 4.3 |
Eastern Cape | 1.4 |
KwaZulu-Natal | 13.4 |
Free State | 0.8 |
Mpumalanga | 2.0 |
Limpopo | 3.0 |
Northern Cape | 0.65 |
North West | 1.3 |
Province | 2nd Second Wave Start Date |
---|---|
Gauteng | 2020-12-07 |
Western Cape | 2020-11-11 |
Eastern Cape | 2020-10-21 |
KwaZulu-Natal | 2020-12-01 |
Free State | 2020-12-19 |
Mpumalanga | 2020-12-15 |
Limpopo | 2020-12-01 |
North West | 2020-12-23 |
Northern Cape | 2020-12-23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stevenson, F.; Hayasi, K.; Bragazzi, N.L.; Kong, J.D.; Asgary, A.; Lieberman, B.; Ruan, X.; Mathaha, T.; Dahbi, S.-E.; Choma, J.; et al. Development of an Early Alert System for an Additional Wave of COVID-19 Cases Using a Recurrent Neural Network with Long Short-Term Memory. Int. J. Environ. Res. Public Health 2021, 18, 7376. https://doi.org/10.3390/ijerph18147376
Stevenson F, Hayasi K, Bragazzi NL, Kong JD, Asgary A, Lieberman B, Ruan X, Mathaha T, Dahbi S-E, Choma J, et al. Development of an Early Alert System for an Additional Wave of COVID-19 Cases Using a Recurrent Neural Network with Long Short-Term Memory. International Journal of Environmental Research and Public Health. 2021; 18(14):7376. https://doi.org/10.3390/ijerph18147376
Chicago/Turabian StyleStevenson, Finn, Kentaro Hayasi, Nicola Luigi Bragazzi, Jude Dzevela Kong, Ali Asgary, Benjamin Lieberman, Xifeng Ruan, Thuso Mathaha, Salah-Eddine Dahbi, Joshua Choma, and et al. 2021. "Development of an Early Alert System for an Additional Wave of COVID-19 Cases Using a Recurrent Neural Network with Long Short-Term Memory" International Journal of Environmental Research and Public Health 18, no. 14: 7376. https://doi.org/10.3390/ijerph18147376
APA StyleStevenson, F., Hayasi, K., Bragazzi, N. L., Kong, J. D., Asgary, A., Lieberman, B., Ruan, X., Mathaha, T., Dahbi, S. -E., Choma, J., Kawonga, M., Mbada, M., Tripathi, N., Orbinski, J., Mellado, B., & Wu, J. (2021). Development of an Early Alert System for an Additional Wave of COVID-19 Cases Using a Recurrent Neural Network with Long Short-Term Memory. International Journal of Environmental Research and Public Health, 18(14), 7376. https://doi.org/10.3390/ijerph18147376