Effects of Acute Hypoxia on Lactate Thresholds and High-Intensity Endurance Performance—A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Tests and Measurements
2.2.1. Maximal Incremental Tests
2.2.2. Maximal 30-min Time Trials
2.3. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Millet, G.P.; Roels, B.; Schmitt, L.; Woorons, X.; Richalet, J.P. Combining Hypoxic Methods for Peak Performance. Sports Med. 2010, 40, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Campo, D.J.; Girard, O.; Pérez, A.; Rubio-Arias, J.Á. Additive stress of normobaric hypoxic conditioning to improve body mass loss and cardiometabolic markers in individuals with overweight or obesity: A systematic review and meta-analysis. Physiol. Behav. 2019, 207, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-Y.; Kim, J.; Park, M.-Y.; Chung, N.; Hwang, H.; Nam, S.-S.; Lim, K. Exposure and Exercise Training in Hypoxic Conditions as a New Obesity Therapeutic Modality: A Mini Review. J. Obes. Metab. Syndr. 2018, 27, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Gatterer, H.; Haacke, S.; Burtscher, M.; Faulhaber, M.; Melmer, A.; Ebenbichler, C.; Strohl, K.P.; Högel, J.; Netzer, N.C. Normobaric Intermittent Hypoxia over 8 Months Does Not Reduce Body Weight and Metabolic Risk Factors--a Randomized, Single Blind, Placebo-Controlled Study in Normobaric Hypoxia and Normobaric Sham Hypoxia. Obes. Facts 2015, 8, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Siebenmann, C.; Dempsey, J.A. Hypoxic Training Is Not Beneficial in Elite Athletes. Med. Sci. Sports Exerc. 2020, 52, 519–522. [Google Scholar] [CrossRef] [PubMed]
- Ozcelik, O.; Kelestimur, H. Effects of acute hypoxia on the estimation of lactate threshold from ventilatory gas exchange indices during an incremental exercise test. Physiol. Res. 2004, 53, 653–659. [Google Scholar] [PubMed]
- Weckbach, L.T.; Kassem, S.; Maier, F.; Hamm, W.; Schüttler, D.; Kellnar, A.; Lackermair, K.; Brunner, S. Impact of Acute Altitude Exposure on Lactate Threshold. High Alt. Med. Biol. 2019, 20, 322–323. [Google Scholar] [CrossRef] [PubMed]
- Burtscher, M.; Faulhaber, M.; Flatz, M.; Likar, R.; Nachbauer, W. Effects of Short-Term Acclimatization to Altitude (3200 m) on Aerobic and Anaerobic Exercise Performance. Int. J. Sports Med. 2005, 27, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Gatterer, H.; Philippe, M.; Menz, V.; Mosbach, F.; Faulhaber, M.; Burtscher, M. Shuttle-Run Sprint Training in Hypoxia for Youth Elite Soccer Players: A Pilot Study. J. Sports Sci. Med. 2014, 13, 731–735. [Google Scholar] [PubMed]
- Faulhaber, M.; Pocecco, E.; Gatterer, H.; Niedermeier, M.; Huth, M.; Dünnwald, T.; Menz, V.; Bernardi, L.; Burtscher, M. Seven Passive 1-h Hypoxia Exposures Do Not Prevent AMS in Susceptible Individuals. Med. Sci. Sports Exerc. 2016, 48, 2563–2570. [Google Scholar] [CrossRef] [PubMed]
- Morawetz, D.; Dünnwald, T.; Faulhaber, M.; Gatterer, H.; Schobersberger, W. Impact of Hyperoxic Preconditioning in Normobaric Hypoxia (3500 m) on Balance Ability in Highly Skilled Skiers: A Randomized, Crossover Study. Int. J. Sports Physiol. Perform. 2019, 14, 934–940. [Google Scholar] [CrossRef] [PubMed]
- Stepto, N.K.; Hawley, J.A.; Dennis, S.C.; Hopkins, W.G. Effects of different interval-training programs on cycling time-trial performance. Med. Sci. Sports Exerc. 1999, 31, 736–741. [Google Scholar] [CrossRef] [PubMed]
- Mader, A.; Liesen, H.; Heck, H.; Philippi, H.; Rost, R.; Schuerch, P.; Hollmann, W. Zur Beurteilung der sportartspezifischen Ausdauerleistungsfähigkeit im Labor. Sportarzt. Sportmed. 1976, 27, 80–88. [Google Scholar]
- Dickhuth, H.H.; Yin, L.; Niess, A.; Röcker, K.; Mayer, F.; Heitkamp, H.C.; Horstmann, T. Ventilatory, lactate-derived and catecholamine thresholds during incremental treadmill running: Relationship and reproducibility. Int. J. Sports Med. 1999, 20, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.; Kuipers, H.; Snyder, A.; Keizer, H.; Jeukendrup, A.; Hesselink, M. A New Approach for the Determination of Ventilatory and Lactate Thresholds. Int. J. Sports Med. 1992, 13, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Faulhaber, M.; Gatterer, H.; Haider, T.; Patterson, C.; Burtscher, M. Intermittent hypoxia does not affect endurance performance at moderate altitude in well-trained athletes. J. Sports Sci. 2010, 28, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Faude, O.; Kindermann, W.; Meyer, T. Lactate Threshold Concepts. Sports Med. 2009, 39, 469–490. [Google Scholar] [CrossRef] [PubMed]
- Friedmann, B.; Bauer, T.; Menold, E.; Bärtsch, P. Exercise with the Intensity of the Individual Anaerobic Threshold in Acute Hypoxia. Med. Sci. Sports Exerc. 2004, 36, 1737–1742. [Google Scholar] [CrossRef] [PubMed]
- McLellan, T.; Jacobs, I.; Lewis, W. Acute altitude exposure and altered acid-base states. Graefe’s Arch. Clin. Exp. Ophthalmol. 1988, 57, 445–451. [Google Scholar] [CrossRef]
- Stegmann, H.; Kindermann, W.; Schnabel, A. Lactate Kinetics and Individual Anaerobic Threshold. Int. J. Sports Med. 1981, 2, 160–165. [Google Scholar] [CrossRef] [PubMed]
Normoxia | Hypoxia | Difference (%) | p-Value | |
---|---|---|---|---|
Lactate thresholds based on stepwise maximal cycle ergometries | ||||
PMader (W) | 194 ± 26 | 158 ± 33 | −18.9 ± 9.6 | 0.004 |
HRMader (bpm) | 167 ± 8 | 160 ± 12 | −4.5 ± 6.8 | 0.154 |
PDickhuth (W) | 179 ± 24 | 146 ± 22 | −18.4 ± 7.3 | 0.001 |
HRDickhuth (bpm) | 161 ± 8 | 153 ± 16 | −5.1 ± 7.0 | 0.140 |
PCheng (W) | 194 ± 30 | 172 ± 28 | −11.5 ± 6.0 | 0.005 |
HRCheng (bpm) | 167 ± 9 | 167 ± 11 | +0.3 ± 8.0 | 0.977 |
Maximal 30-min time trials | ||||
Pmean (W) | 195 ± 34 | 179 ± 32 | −8.3 ± 1.6 | <0.001 |
HRmean (bpm) | 175 ± 12 | 170 ± 8 | −2.7 ± 4.4 | 0.203 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faulhaber, M.; Gröbner, K.; Rausch, L.; Gatterer, H.; Menz, V. Effects of Acute Hypoxia on Lactate Thresholds and High-Intensity Endurance Performance—A Pilot Study. Int. J. Environ. Res. Public Health 2021, 18, 7573. https://doi.org/10.3390/ijerph18147573
Faulhaber M, Gröbner K, Rausch L, Gatterer H, Menz V. Effects of Acute Hypoxia on Lactate Thresholds and High-Intensity Endurance Performance—A Pilot Study. International Journal of Environmental Research and Public Health. 2021; 18(14):7573. https://doi.org/10.3390/ijerph18147573
Chicago/Turabian StyleFaulhaber, Martin, Katharina Gröbner, Linda Rausch, Hannes Gatterer, and Verena Menz. 2021. "Effects of Acute Hypoxia on Lactate Thresholds and High-Intensity Endurance Performance—A Pilot Study" International Journal of Environmental Research and Public Health 18, no. 14: 7573. https://doi.org/10.3390/ijerph18147573
APA StyleFaulhaber, M., Gröbner, K., Rausch, L., Gatterer, H., & Menz, V. (2021). Effects of Acute Hypoxia on Lactate Thresholds and High-Intensity Endurance Performance—A Pilot Study. International Journal of Environmental Research and Public Health, 18(14), 7573. https://doi.org/10.3390/ijerph18147573