The Cumulative Risk of Prenatal Exposures to Chemical and Non-Chemical Stressors on Birth Outcomes in Suriname
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Study Population
2.3. Data Collection
2.4. Exposures and Covariates
2.5. Data Analysis
2.6. Ethical Considerations
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hameed, E.R.A.; Sherif, L.; Awad, A.H.; El Ashry, H.H.; Ahmed, H.H.; Sallam, M.M.; Fahmy, R.F.; Kamhawy, A.H. Arsenic and Cadmium Levels in Maternal and Umbilical Cord Blood and their Associations with Birth Outcomes. Biomed. Pharmacol. J. 2020, 13, 61–69. [Google Scholar] [CrossRef]
- Vigeh, M.; Nishioka, E.; Ohtani, K.; Omori, Y.; Matsukawa, T.; Koda, S.; Yokoyama, K. Prenatal mercury exposure and birth weight. Reprod. Toxicol. 2018, 76, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Gustin, K.; Barman, M.; Stråvik, M.; Levi, M.; Englund-Ögge, L.; Murray, F.; Jacobsson, B.; Sandberg, A.-S.; Sandin, A.; Wold, A.E.; et al. Low-level maternal exposure to cadmium, lead, and mercury and birth outcomes in a Swedish prospective birth-cohort. Environ. Pollut. 2020, 265, 114986. [Google Scholar] [CrossRef]
- Shishehgar, S.; Dolatian, M.; Majd, H.A.; Teimouri, Z.; Alavi, S.T.; Halvaei, P. Social support and maternal stress during pregnancy: A PATH model. Int. J. Healthc. 2015, 2, 44. [Google Scholar] [CrossRef]
- Mirabzadeh, A.; Dolatian, M.; Forouzan, A.S.; Sajjadi, H.; Majd, H.A.; Mahmoodi, Z. Path Analysis Associations Between Perceived Social Support, Stressful Life Events and Other Psychosocial Risk Factors During Pregnancy and Preterm Delivery. Iran. Red Crescent Med. J. 2013, 15, 507–514. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Yu, P.; Zhu, J.; Yang, S.; Yu, J.; Deng, Y.; Li, N.; Liu, Z. High maternal selenium levels are associated with increased risk of congenital heart defects in the offspring. Prenat. Diagn. 2019, 39, 1107–1114. [Google Scholar] [CrossRef]
- Ralston, N.V.C.; Ralston, C.R.; Raymond, L.J. Selenium Health Benefit Values: Updated Criteria for Mercury Risk Assessments. Biol. Trace Elem. Res. 2015, 171, 262–269. [Google Scholar] [CrossRef] [Green Version]
- Ralston, N.V.; Raymond, L.J. Dietary selenium’s protective effects against methylmercury toxicity. Toxicology 2010, 278, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Ralston, N.; Ralston, C.R.; Blackwell, J.L.; Raymond, L.J. Dietary and tissue selenium in relation to methylmercury toxicity. Neuro Toxicol. 2008, 29, 802–811. [Google Scholar] [CrossRef] [Green Version]
- Jelliffe-Pawlowski, L.L.; Miles, S.Q.; Courtney, J.G.; Materna, B.; Charlton, V. Effect of magnitude and timing of maternal pregnancy blood lead (Pb) levels on birth outcomes. J. Perinatol. 2006, 26, 154–162. [Google Scholar] [CrossRef] [Green Version]
- Pao, L.Z.; Harville, E.W.; Wickliffe, J.K.; Shankar, A.; Buekens, P. The Cumulative Risk of Chemical and Nonchemical Exposures on Birth Outcomes in Healthy Women: The Fetal Growth Study. Int. J. Environ. Res. Public Health 2019, 16, 3700. [Google Scholar] [CrossRef] [Green Version]
- Padula, A.M.; Monk, C.; Brennan, P.A.; Borders, A.; Barrett, E.S.; McEvoy, C.T.; Foss, S.; Desai, P.; Alshawabkeh, A.; Wurth, R.; et al. A review of maternal prenatal exposures to environmental chemicals and psychosocial stressors—implications for research on perinatal outcomes in the ECHO program. J. Perinatol. 2019, 40, 10–24. [Google Scholar] [CrossRef] [PubMed]
- Hetherington, E.; Doktorchik, C.; Premji, S.S.; McDonald, S.W.; Tough, S.C.; Sauve, R.S. Preterm Birth and Social Support during Pregnancy: A Systematic Review and Meta-Analysis. Paediatr. Périnat. Epidemiol. 2015, 29, 523–535. [Google Scholar] [CrossRef]
- Accortt, E.E.; Cheadle, A.C.D.; Schetter, C.D. Prenatal Depression and Adverse Birth Outcomes: An Updated Systematic Review. Matern. Child Health J. 2014, 19, 1306–1337. [Google Scholar] [CrossRef]
- Bloom, M.S.; Louis, G.B.; Sundaram, R.; Maisog, J.M.; Steuerwald, A.J.; Parsons, P. Birth outcomes and background exposures to select elements, the Longitudinal Investigation of Fertility and the Environment (LIFE). Environ. Res. 2015, 138, 118–129. [Google Scholar] [CrossRef] [Green Version]
- General Bureau of Statistics (GBS). Eighth (8th) Population and Housing Census in Suriname: Demographic and Social Characteristics; GBS: Paramaribo, Suriname, 2013.
- UNICEF. Health Equity Report 2016: Analysis of Reproductive, Maternal, Newborn, Child and Adolescent Health Inequities in Latin America and the Caribbean to Inform Policymaking. 2016. Available online: https://www.unicef.org/lac/media/386/file/Publication.pdf (accessed on 1 June 2021).
- Verschueren, K.J.C.; Prüst, Z.D.; Paidin, R.R.; Kodan, L.R.; Bloemenkamp, K.W.M.; Rijken, M.; Browne, J.L. Childbirth outcomes and ethnic disparities in Suriname: A nationwide registry-based study in a middle-income country. Reprod. Health 2020, 17, 1–14. [Google Scholar] [CrossRef]
- UNICEF. Levels and Trends in Child Mortality. 2020. Available online: file:///C:/Users/agokoel/Downloads/Levels-and-trends-in-child-mortality-IGME-English_2020.pdf (accessed on 1 June 2021).
- Gokoel, A.R.; Zijlmans, W.C.W.R.; Covert, H.H.; Wahid, F.A.; Shankar, A.; MacDonald-Ottevanger, M.S.; Hindori-Mohangoo, A.D.; Wickliffe, J.K.; Lichtveld, M.Y.; Harville, E.W. Influence of Prenatal Exposure to Mercury, Perceived Stress, and Depression on Birth Outcomes in Suriname: Results from the MeKiTamara Study. Int. J. Environ. Res. Public Health 2020, 17, 4444. [Google Scholar] [CrossRef]
- Beck, S.; Wojdyla, D.; Say, L.; Bertran, A.P.; Merialdi, M.; Requejo, J.H.; Rubens, C.; Menon, R.; A Van Look, P.F. The worldwide incidence of preterm birth: A systematic review of maternal mortality and morbidity. Bull. World Health Organ. 2010, 88, 31–38. [Google Scholar] [CrossRef]
- UNICEF. Preterm Birth and Low Birth Weight|Health at a Glance: Latin America and the Caribbean 2020|OECD iLibrary. 2019. Available online: https://www.oecd-ilibrary.org/sites/53620b68-en/index.html?itemId=/content/component/53620b68-en (accessed on 24 May 2021).
- Zijlmans, W.; Wickliffe, J.; Hindori-Mohangoo, A.; MacDonald-Ottevanger, S.; Ouboter, P.; Landburg, G.; Codrington, J.; Roosblad, J.; Baldewsingh, G.; Ramjatan, R.; et al. Caribbean Consortium for Research in Environmental and Occupational Health (CCREOH) Cohort Study: Influences of complex environmental exposures on maternal and child health in Suriname. BMJ Open 2020, 10, e034702. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef] [Green Version]
- Cohen, S.; Kamarck, T.; Mermelstein, R. A Global Measure of Perceived Stress. J. Health Soc. Behav. 1983, 24, 385. [Google Scholar] [CrossRef]
- Solivan, A.E.; Xiong, X.; Harville, E.; Buekens, P. Measurement of Perceived Stress among Pregnant Women: A Comparison of Two Different Instruments. Matern. Child Health J. 2015, 19, 1910–1915. [Google Scholar] [CrossRef] [PubMed]
- Grobman, W.A.; Wing, D.A.; Albert, P.; Kim, S.; Grewal, J.; Guille, C.; Newman, R.; Chien, E.K.; Owen, J.; D’Alton, M.E.; et al. Maternal Depressive Symptoms, Perceived Stress, and Fetal Growth. J. Ultrasound Med. 2017, 36, 1639–1648. [Google Scholar] [CrossRef] [Green Version]
- Tanpradit, K.; Kaewkiattikun, K. The Effect of Perceived Stress During Pregnancy on Preterm Birth. Int. J. Women’s Health 2020, ume 12, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Cox, J.L.; Chapman, G.; Murray, D.; Jones, P. Validation of the Edinburgh postnatal depression scale (EPDS) in non-postnatal women. J. Affect. Disord. 1996, 39, 185–189. [Google Scholar] [CrossRef]
- Thomas, S.; Arbuckle, T.E.; Fisher, M.; Fraser, W.D.; Ettinger, A.; King, W. Metals exposure and risk of small-for-gestational age birth in a Canadian birth cohort: The MIREC study. Environ. Res. 2015, 140, 430–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vesterinen, H.M.; Morello-Frosch, R.; Sen, S.; Zeise, L.; Woodruff, T.J. Cumulative effects of prenatal-exposure to exogenous chemicals and psychosocial stress on fetal growth: Systematic-review of the human and animal evidence. PLoS ONE 2017, 12, e0176331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padula, A.M.; Rivera-Núñez, Z.; Barrett, E.S. Combined Impacts of Prenatal Environmental Exposures and Psychosocial Stress on Offspring Health: Air Pollution and Metals. Curr. Environ. Health Rep. 2020, 7, 89–100. [Google Scholar] [CrossRef]
- Feldman, P.J.; Dunkel-Schetter, C.; Sandman, C.A.; Wadhwa, P. Maternal social support predicts birthweight and fetal growth in human pregnancy. Psychosom. Med. 2000, 62, 715–725. [Google Scholar] [CrossRef] [Green Version]
- Lobel, M.; Cannella, D.L.; Graham, J.E.; DeVincent, C.; Schneider, J.; Meyer, B.A. Pregnancy-specific stress, prenatal health behaviors, and birth outcomes. Health Psychol. 2008, 27, 604–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gokoel, A.R.; Wahid, F.A.; Zijlmans, W.C.W.R.; Shankar, A.; Hindori-Mohangoo, A.D.; Covert, H.H.; MacDonald-Ottevanger, M.-S.; Lichtveld, M.Y.; Harville, E.W. Influence of perceived stress on prenatal depression in Surinamese women enrolled in the CCREOH study. Reprod. Health 2021, 18, 1–10. [Google Scholar] [CrossRef]
- Liu, L.; Ma, Y.; Wang, N.; Lin, W.; Liu, Y.; Wen, D. Maternal body mass index and risk of neonatal adverse outcomes in China: A systematic review and meta-analysis. BMC Pregnancy Childbirth 2019, 19, 1–12. [Google Scholar] [CrossRef]
- Hutcheon, J.A.; Stephansson, O.; Cnattingius, S.; Bodnar, L.M.; Johansson, K. Is the Association Between Pregnancy Weight Gain and Fetal Size Causal?: A Re-examination Using a Sibling Comparison Design. Epidemiology 2019, 30, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Gaudet, L.; Ferraro, Z.M.; Wen, S.W.; Walker, M. Maternal Obesity and Occurrence of Fetal Macrosomia: A Systematic Review and Meta-Analysis. BioMed Res. Int. 2014, 2014, 1–22. [Google Scholar] [CrossRef]
- Alfadhli, E.M. Maternal obesity influences birth weight more than gestational diabetes. BMC Pregnancy Childbirth 2021, 21, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Heslehurst, N.; Vieira, R.; Akhter, Z.; Bailey, H.; Slack, E.; Ngongalah, L.; Pemu, A.; Rankin, J. The association between maternal body mass index and child obesity: A systematic review and meta-analysis. PLoS Med. 2019, 16, e1002817. [Google Scholar] [CrossRef]
- Kong, L.; Chen, X.; Gissler, M.; Lavebratt, C. Relationship of prenatal maternal obesity and diabetes to offspring neurodevelopmental and psychiatric disorders: A narrative review. Int. J. Obes. 2020, 44, 1981–2000. [Google Scholar] [CrossRef]
- Voerman, E.; Santos, S.; Golab, B.P.; Amiano, P.; Ballester, F.; Barros, H.; Bergström, A.; Charles, M.-A.; Chatzi, L.; Chevrier, C.; et al. Maternal body mass index, gestational weight gain, and the risk of overweight and obesity across childhood: An individual participant data meta-analysis. PLoS Med. 2019, 16, e1002744. [Google Scholar] [CrossRef] [PubMed]
- Cnattingius, S.; Villamor, E.; Johansson, S.; Bonamy, A.E.; Persson, M.; Wikstrom, A.; Granath, F. Maternal obesity and Risk of Preterm Delicery. Am. Med. Assoc. 2013, 309, 2362–2370. [Google Scholar] [CrossRef] [Green Version]
- Ratnasiri, A.W.G.; Lee, H.C.; Lakshminrusimha, S.; Parry, S.S.; Arief, V.N.; DeLacy, I.H.; Yang, J.-S.; Dilibero, R.J.; Logan, J.; Basford, K.E. Trends in maternal prepregnancy body mass index (BMI) and its association with birth and maternal outcomes in California, 2007–2016: A retrospective cohort study. PLoS ONE 2019, 14, e0222458. [Google Scholar] [CrossRef] [Green Version]
- Chia, A.-R.; Chen, L.-W.; Lai, J.S.; Wong, C.H.; Neelakantan, N.; Van Dam, R.M.; Chong, M.F.-F. Maternal Dietary Patterns and Birth Outcomes: A Systematic Review and Meta-Analysis. Adv. Nutr. 2019, 10, 685–695. [Google Scholar] [CrossRef] [Green Version]
- Duedahl-Olesen, L.; Cederberg, T.L.; Christensen, T.; Fagt, S.; Fromberg, A.; Granby, K.; Hansen, M.; Boberg, J.; Sloth, J.J.; Petersen, A. Dietary exposure to selected chemical contaminants in fish for the Danish population. Food Addit. Contam. Part A 2020, 37, 1027–1039. [Google Scholar] [CrossRef]
- Oken, E.; Radesky, J.S.; Wright, R.O.; Bellinger, D.C.; Amarasiriwardena, C.J.; Kleinman, K.; Hu, H.; Gillman, M.W. Maternal Fish Intake during Pregnancy, Blood Mercury Levels, and Child Cognition at Age 3 Years in a US Cohort. Am. J. Epidemiol. 2008, 167, 1171–1181. [Google Scholar] [CrossRef]
- Wickliffe, J.K.; Lichtveld, M.Y.; Zijlmans, C.W.; MacDonald-Ottevanger, S.; Shafer, M.; Dahman, C.; Harville, E.W.; Drury, S.; Landburg, G.; Ouboter, P. Exposure to total and methylmercury among pregnant women in Suriname: Sources and public health implications. J. Expo. Sci. Environ. Epidemiol. 2020, 31, 117–125. [Google Scholar] [CrossRef]
EFA Results | CFA Results | ||
---|---|---|---|
Factor Pattern | Factor Loadings | Fit Indices | |
Mercury (ln) | 0.77 | Goodness of Fit Index (GFI) | 0.98 |
Lead (ln) Selenium (ln) Tin (ln) Eigenvalue Variance explained | 0.64 0.61 0.35 1.50 15.04% | Adjusted Goodness of Fit Index (AGFI) Parsimony Goodness of Fit Index | 0.99 0.83 |
Characteristic | Total n (%) |
---|---|
Total | 384 (100) |
Non-chemical stressors | |
Perceived stress (median, IQR) | 17.0 (13.0–20.0) |
Probable depression (median, IQR) | 7.0 (4.0–11.0) |
Community engagement (median, IQR) | 4.0 (4.0–6.0) |
Individual resilience (median, IQR) | 25.0 (21.0–28.0) |
Age (years) | |
Median (IQR) | 28.19 (24.2–32.7) |
16–19 | 37 (9.6) |
20–34 | 291 (75.8) |
35+ | 56 (14.6) |
Ethnicity (self-reported) | |
African descent | 192 (50.0) |
Asian descent | 114 (29.7) |
Other/mixed | 77 (20.1) |
Missing | 1 (0.2) |
Household income (in SRD) | |
<3000 | 227 (59.1) |
≥3000 | 136 (35.4) |
Missing | 21 (5.5) |
Educational Level | |
None, primary, lower secondary/vocational | 208 (54.2) |
Upper secondary/vocational or tertiary | 176 (45.8) |
BMI | |
Median (IQR) | 25.9 (22.6–30.8) |
Underweight (<18.5 kg/m2) | 20 (5.2) |
Normal (18.5–24.9 kg/m2) | 133 (34.6) |
Overweight (25–29.9 kg/m2) | 90 (23.4) |
Obese (≥30 kg/m2) | 104 (27.1) |
Missing | 37 (9.6) |
Region | |
Urban | 265 (69.0) |
Rural | 82 (21.4) |
Interior | 37 (9.6) |
Missing | 0 (0) |
Concentrations of chemicals (median, IQR) | |
Hg (ug/L) | 2.9 (1.7–4.6) |
Pb (ug/dL) | 2.0 (1.3–3.1) |
Se (ug/L) | 191.2 (167.4–217.7) |
Sn (ug/L) | 0.7 (0.5–1.0) |
Prob > |r| under H0: Rho = 0 | Se_Sn_Hg_Pb | Depression | Stress | Ind_res 1 | Comm_eng 2 | BMI | GA 3 | BW 4 | Apgar Score |
---|---|---|---|---|---|---|---|---|---|
Se_Sn_Hg_Pb p-value | 1.00 | 0.04 | −0.07 | 0.02 | 0.03 | −0.02 | −0.06 | −0.04 | −0.04 |
0.47 | 0.19 | 0.67 | 0.54 | 0.66 | 0.24 | 0.47 | 0.49 | ||
Depression p-value | 1.00 | 0.61 ** | −0.10 | −0.03 | −0.06 | 0.02 | −0.07 | 0.00 | |
<0.001 | 0.06 | 0.61 | 0.28 | 0.74 | 0.22 | 0.99 | |||
Stress p-value | 1.00 | −0.16 ** | −0.16 ** | −0.04 | −0.05 | −0.14 ** | −0.03 | ||
0.002 | 0.002 | 0.45 | 0.37 | 0.01 | 0.56 | ||||
Ind_res 1 p-value | 1.00 | 0.34 ** | 0.04 | −0.02 | 0.00 | 0.01 | |||
<0.001 | 0.44 | 0.71 | 0.97 | 0.86 | |||||
Comm_eng 2 p-value | 1.00 | −0.01 | 0.07 | 0.05 | 0.08 | ||||
0.83 | 0.18 | 0.38 | 0.14 | ||||||
BMI p-value | 1.00 | −0.03 | 0.13 * | 0.01 | |||||
0.65 | 0.03 | 0.87 | |||||||
GA 3 p-value | 1.00 | 0.65 ** | 0.55 ** | ||||||
<0.001 | <0.001 | ||||||||
BW 4 p-value | 1.00 | 0.46 ** | |||||||
<0.001 | |||||||||
Apgar score p-value | 1.00 | ||||||||
Fit indices | Model 1 | Model 2 | Model 3 | |
---|---|---|---|---|
Absolute Index | Fit Function | 0.03 | 0.03 | 0.03 |
Chi-Square | 11.00 | 9.64 | 10.63 | |
Pr > Chi-Square | 0.20 | 0.29 | 0.22 | |
Parsimony Index | RMSEA Estimate | 0.03 | 0.02 | 0.03 |
Incremental Index | Bentler Comparative Fit Index | 0.99 | 0.99 | 0.99 |
Bentler-Bonett Normed Fit Index | 0.95 | 0.96 | 0.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gokoel, A.R.; Shankar, A.; Abdoel Wahid, F.; Hindori-Mohangoo, A.D.; Covert, H.H.; Wickliffe, J.K.; Harville, E.W.; Zijlmans, W.C.W.R.; Lichtveld, M.Y. The Cumulative Risk of Prenatal Exposures to Chemical and Non-Chemical Stressors on Birth Outcomes in Suriname. Int. J. Environ. Res. Public Health 2021, 18, 7683. https://doi.org/10.3390/ijerph18147683
Gokoel AR, Shankar A, Abdoel Wahid F, Hindori-Mohangoo AD, Covert HH, Wickliffe JK, Harville EW, Zijlmans WCWR, Lichtveld MY. The Cumulative Risk of Prenatal Exposures to Chemical and Non-Chemical Stressors on Birth Outcomes in Suriname. International Journal of Environmental Research and Public Health. 2021; 18(14):7683. https://doi.org/10.3390/ijerph18147683
Chicago/Turabian StyleGokoel, Anisma R., Arti Shankar, Firoz Abdoel Wahid, Ashna D. Hindori-Mohangoo, Hannah H. Covert, Jeffrey K. Wickliffe, Emily W. Harville, Wilco C. W. R. Zijlmans, and Maureen Y. Lichtveld. 2021. "The Cumulative Risk of Prenatal Exposures to Chemical and Non-Chemical Stressors on Birth Outcomes in Suriname" International Journal of Environmental Research and Public Health 18, no. 14: 7683. https://doi.org/10.3390/ijerph18147683
APA StyleGokoel, A. R., Shankar, A., Abdoel Wahid, F., Hindori-Mohangoo, A. D., Covert, H. H., Wickliffe, J. K., Harville, E. W., Zijlmans, W. C. W. R., & Lichtveld, M. Y. (2021). The Cumulative Risk of Prenatal Exposures to Chemical and Non-Chemical Stressors on Birth Outcomes in Suriname. International Journal of Environmental Research and Public Health, 18(14), 7683. https://doi.org/10.3390/ijerph18147683