Suicide and Associations with Air Pollution and Ambient Temperature: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Study Examination
2.3. Data Extraction and Synthesis
2.4. Assessment of Risk of Bias
3. Results
3.1. Characteristics of the Included Studies
3.2. Risk Summarization
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Suicide Worldwide in 2019: Global Health Estimates; World Health Organization: Geneva, Switzerland, 2021; ISBN 978-92-4-002664-3. [Google Scholar]
- Arensman, E.; Scott, V.; De Leo, D.; Pirkis, J. Suicide and Suicide Prevention from a Global Perspective. Crisis 2020. [Google Scholar] [CrossRef] [PubMed]
- Hawton, K.; van Heeringen, K. Suicide. Lancet 2009, 373, 1372–1381. [Google Scholar] [CrossRef]
- Mann, J.J.; Currier, D.M. Stress, Genetics and Epigenetic Effects on the Neurobiology of Suicidal Behavior and Depression. Eur. Psychiatry 2010, 25, 268–271. [Google Scholar] [CrossRef] [PubMed]
- van Heeringen, K.; Mann, J.J. The Neurobiology of Suicide. Lancet Psychiatry 2014, 1, 63–72. [Google Scholar] [CrossRef]
- Turecki, G.; Brent, D.A. Suicide and Suicidal Behaviour. Lancet 2016, 387, 1227–1239. [Google Scholar] [CrossRef]
- Gładka, A.; Rymaszewska, J.; Zatoński, T. Impact of Air Pollution on Depression and Suicide. Int. J. Occup. Med. Environ. Health 2018, 31, 711–721. [Google Scholar] [CrossRef] [PubMed]
- Ragguett, R.-M.; Cha, D.S.; Subramaniapillai, M.; Carmona, N.E.; Lee, Y.; Yuan, D.; Rong, C.; McIntyre, R.S. Air Pollution, Aeroallergens and Suicidality: A Review of the Effects of Air Pollution and Aeroallergens on Suicidal Behavior and an Exploration of Possible Mechanisms. Rev. Environ. Health 2017, 32. [Google Scholar] [CrossRef] [Green Version]
- Turecki, G.; Brent, D.A.; Gunnell, D.; O’Connor, R.C.; Oquendo, M.A.; Pirkis, J.; Stanley, B.H. Suicide and Suicide Risk. Nat. Rev. Dis. Primers 2019, 5, 74. [Google Scholar] [CrossRef]
- Costanza, A.; Amerio, A.; Aguglia, A.; Escelsior, A.; Serafini, G.; Berardelli, I.; Pompili, M.; Amore, M. When Sick Brain and Hopelessness Meet: Some Aspects of Suicidality in the Neurological Patient. CNS Neurol. Disord. Drug Targets 2020, 19, 257–263. [Google Scholar] [CrossRef]
- Costanza, A.; Baertschi, M.; Weber, K.; Canuto, A. Neurological Diseases and Suicide: From Neurobiology to Hopelessness. Rev. Med. Suisse 2015, 11, 402–405. [Google Scholar]
- Chen, J.-C.; Samet, J.M. Air Pollution and Suicide Risk: Another Adverse Effect of Air Pollution? Eur. J. Epidemiol. 2017, 32, 943–946. [Google Scholar] [CrossRef]
- Yang, C.-Y.; Huang, Y.-T.; Chiu, H.-F. Does Ambient Ozone Air Pollution Trigger Suicide Attempts? A Case Cross-over Analysis in Taipei. J. Toxicol. Environ. Health Part A 2019, 82, 638–644. [Google Scholar] [CrossRef]
- Kim, Y.; Ng, C.F.S.; Chung, Y.; Kim, H.; Honda, Y.; Guo, Y.L.; Lim, Y.-H.; Chen, B.-Y.; Page, L.A.; Hashizume, M. Air Pollution and Suicide in 10 Cities in Northeast Asia: A Time-Stratified Case-Crossover Analysis. Environ. Health Perspect. 2018, 126, 037002. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Cheng, Y.; Cui, G.; Peng, C.; Xu, Y.; Wang, Y.; Liu, Y.; Liu, J.; Li, C.; Wu, Z. Association between High Temperature and Mortality in Metropolitan Areas of Four Cities in Various Climatic Zones in China: A Time-Series Study. Environ. Health 2014, 13, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cianconi, P.; Betrò, S.; Janiri, L. The Impact of Climate Change on Mental Health: A Systematic Descriptive Review. Front. Psychiatry 2020, 11, 74. [Google Scholar] [CrossRef] [PubMed]
- Bushman, B.J.; Wang, M.C.; Anderson, C.A. Is the Curve Relating Temperature to Aggression Linear or Curvilinear? Assaults and Temperature in Minneapolis Reexamined. J. Personal. Soc. Psychol. 2005, 89, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Hill, S.Y.; Jones, B.L.; Haas, G.L. Suicidal Ideation and Aggression in Childhood, Genetic Variation and Young Adult Depression. J. Affect. Disord. 2020, 276, 954–962. [Google Scholar] [CrossRef]
- Gao, J.; Cheng, Q.; Duan, J.; Xu, Z.; Bai, L.; Zhang, Y.; Zhang, H.; Wang, S.; Zhang, Z.; Su, H. Ambient Temperature, Sunlight Duration, and Suicide: A Systematic Review and Meta-Analysis. Sci. Total Environ. 2019, 646, 1021–1029. [Google Scholar] [CrossRef]
- Al Ahad, M.A.; Sullivan, F.; Demšar, U.; Melhem, M.; Kulu, H. The Effect of Air-Pollution and Weather Exposure on Mortality and Hospital Admission and Implications for Further Research: A Systematic Scoping Review. PLoS ONE 2020, 15, e0241415. [Google Scholar] [CrossRef]
- Anenberg, S.C.; Haines, S.; Wang, E.; Nassikas, N.; Kinney, P.L. Synergistic Health Effects of Air Pollution, Temperature, and Pollen Exposure: A Systematic Review of Epidemiological Evidence. Environ. Health 2020, 19, 130. [Google Scholar] [CrossRef] [PubMed]
- Stafoggia, M.; Schwartz, J.; Forastiere, F.; Perucci, C.A. Does Temperature Modify the Association between Air Pollution and Mortality? A Multicity Case-Crossover Analysis in Italy. Am. J. Epidemiol. 2008, 167, 1476–1485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Xiao, H.; Guan, H.; Zheng, N.; Zhang, Z.; Tian, J.; Qu, L.; Zhao, J.; Xiao, H. Chemical Composition and Seasonal Variations of PM2.5 in an Urban Environment in Kunming, SW China: Importance of Prevailing Westerlies in Cold Season. Atmos. Environ. 2020, 237, 117704. [Google Scholar] [CrossRef]
- Gordon, C.J. Role of Environmental Stress in the Physiological Response to Chemical Toxicants. Environ. Res. 2003, 92. [Google Scholar] [CrossRef]
- Ambient Temperature and Health in China: Chap 7. The Interaction of Ambient Temperature and Air Pollution in China; Lin, H.; Ma, W.; Liu, Q. (Eds.) Springer: Singapore, 2019; ISBN 9789811325823. [Google Scholar]
- Liu, Q.; Wang, W.; Gu, X.; Deng, F.; Wang, X.; Lin, H.; Guo, X.; Wu, S. Association between Particulate Matter Air Pollution and Risk of Depression and Suicide: A Systematic Review and Meta-Analysis. Environ. Sci. Pollut. Res. 2021, 28, 9029–9049. [Google Scholar] [CrossRef]
- Davoudi, M.; Barjasteh-Askari, F.; Amini, H.; Lester, D.; Mahvi, A.H.; Ghavami, V.; Ghalhari, M.R. Association of Suicide with Short-Term Exposure to Air Pollution at Different Lag Times: A Systematic Review and Meta-Analysis. Sci. Total Environ. 2021, 771, 144882. [Google Scholar] [CrossRef]
- Zhao, T.; Markevych, I.; Romanos, M.; Nowak, D.; Heinrich, J. Ambient Ozone Exposure and Mental Health: A Systematic Review of Epidemiological Studies. Environ. Res. 2018, 165, 459–472. [Google Scholar] [CrossRef] [PubMed]
- Braithwaite, I.; Zhang, S.; Kirkbride, J.B.; Osborn, D.P.; Hayes, J.F. Air Pollution (Particulate Matter) Exposure and Associations with Depression, Anxiety, Bipolar, Psychosis and Suicide Risk: A Systematic Review and Meta-Analysis. Environ. Health Perspect. 2019, 127, 126002. [Google Scholar] [CrossRef] [Green Version]
- Dickerson, A.S.; Wu, A.C.; Liew, Z.; Weisskopf, M. A Scoping Review of Non-Occupational Exposures to Environmental Pollutants and Adult Depression, Anxiety, and Suicide. Curr. Environ. Health Rep. 2020, 7, 256–271. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.; Hornigold, R.; Page, L.; Waite, T. Associations between High Ambient Temperatures and Heat Waves with Mental Health Outcomes: A Systematic Review. Public Health 2018, 161, 171–191. [Google Scholar] [CrossRef]
- Viswanathan, M.; Patnode, C.D.; Berkman, N.D.; Bass, E.B.; Chang, S.; Hartling, L.; Murad, M.H.; Treadwell, J.R.; Kane, R.L. Recommendations for Assessing the Risk of Bias in Systematic Reviews of Health Care Interventions. J. Clin. Epidemiol. 2017, 97, 26–34. [Google Scholar] [CrossRef]
- Wells, K.; Littell, J.H. Study Quality Assessment in Systematic Reviews of Research on Intervention Effects. Res. Soc. Work Pract. 2009, 19, 52–62. [Google Scholar] [CrossRef]
- Smith, V.; Devane, D.; Begley, C.M.; Clarke, M. Methodology in Conducting a Systematic Review of Systematic Reviews of Healthcare Interventions. BMC Med. Res. Methodol. 2011, 11, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gotzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Healthcare Interventions: Explanation and Elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [Green Version]
- Stroup, D.F.; Berlin, J.A.; Morton, S.C.; Olkin, I.; Williamson, G.D.; Rennie, D.; Moher, D.; Becker, B.J.; Sipe, T.A.; Thacker, S.B. Meta-Analysis of Observational Studies in Epidemiology: A Proposal for Reporting. JAMA 2000, 283, 2008–2012. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in Meta-Analysis Detected by a Simple, Graphical Test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, L.; Lin, L. The Trim-and-Fill Method for Publication Bias: Practical Guidelines and Recommendations Based on a Large Database of Meta-Analyses. Medicine 2019, 98, e15987. [Google Scholar] [CrossRef]
- The World Bank. GNI per Capita, Atlas Method (Current US$)|Data. Available online: https://data.worldbank.org/indicator/NY.GNP.PCAP.CD (accessed on 16 July 2021).
- Handbook for Conducting a Literature-Based Health Assessment Using OHAT Approach for Systematic Review and Evidence Integration; National Institute of Environmental Health Sciences: Triangle Park, NC, USA, 2019; p. 101.
- Astudillo-García, C.I.; Rodríguez-Villamizar, L.A.; Cortez-Lugo, M.; Cruz-De la Cruz, J.C.; Fernández-Niño, J.A. Air Pollution and Suicide in Mexico City: A Time Series Analysis, 2000–2016. Int. J. Environ. Res. Public Health 2019, 16, 2971. [Google Scholar] [CrossRef] [Green Version]
- Bakian, A.V.; Huber, R.S.; Coon, H.; Gray, D.; Wilson, P.; McMahon, W.M.; Renshaw, P.F. Acute Air Pollution Exposure and Risk of Suicide Completion. Am. J. Epidemiol. 2015, 181, 295–303. [Google Scholar] [CrossRef] [Green Version]
- Bando, D.H.; Teng, C.T.; Volpe, F.M.; de Masi, E.; Pereira, L.A.; Braga, A.L. Suicide and Meteorological Factors in São Paulo, Brazil, 1996–2011: A Time Series Analysis. Rev. Bras. Psiquiatr. 2017, 39, 220–227. [Google Scholar] [CrossRef] [Green Version]
- Barker, A.; Hawton, K.; Fagg, J.; Jennison, C. Seasonal and Weather Factors in Parasuicide. Br. J. Psychiatry 1994, 165, 375–380. [Google Scholar] [CrossRef]
- Basagaña, X.; Sartini, C.; Barrera-Gómez, J.; Dadvand, P.; Cunillera, J.; Ostro, B.; Sunyer, J.; Medina-Ramón, M. Heat Waves and Cause-Specific Mortality at All Ages. Epidemiology 2011, 22, 765–772. [Google Scholar] [CrossRef] [PubMed]
- Basu, R.; Gavin, L.; Pearson, D.; Ebisu, K.; Malig, B. Examining the Association between Apparent Temperature and Mental Health-Related Emergency Room Visits in California. Am. J. Epidemiol. 2018, 187, 726–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casas, L.; Cox, B.; Bauwelinck, M.; Nemery, B.; Deboosere, P.; Nawrot, T.S. Does Air Pollution Trigger Suicide? A Case-Crossover Analysis of Suicide Deaths over the Life Span. Eur. J. Epidemiol. 2017, 32, 973–981. [Google Scholar] [CrossRef] [PubMed]
- Deisenhammer, E.A.; Kemmler, G.; Parson, P. Association of Meteorological Factors with Suicide. Acta Psychiatr. Scand. 2003, 108, 455–459. [Google Scholar] [CrossRef] [PubMed]
- Dixon, P.G.; Kalkstein, A.J. Where Are Weather-Suicide Associations Valid? An Examination of Nine US Counties with Varying Seasonality. Int. J. Biometeorol. 2018, 62, 685–697. [Google Scholar] [CrossRef]
- Fernández-Niño, J.A.; Astudillo-García, C.I.; Rodríguez-Villamizar, L.A.; Florez-Garcia, V.A. Association between Air Pollution and Suicide: A Time Series Analysis in Four Colombian Cities. Environ. Health 2018, 17, 47. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Niño, J.; Flórez-García, V.; Astudillo-García, C.; Rodríguez-Villamizar, L. Weather and Suicide: A Decade Analysis in the Five Largest Capital Cities of Colombia. Int. J. Environ. Res. Public Health 2018, 15, 1313. [Google Scholar] [CrossRef] [Green Version]
- Fountoulakis, K.N.; Chatzikosta, I.; Pastiadis, K.; Zanis, P.; Kawohl, W.; Kerkhof, A.J.F.M.; Navickas, A.; Höschl, C.; Lecic-Tosevski, D.; Sorel, E.; et al. Relationship of Suicide Rates with Climate and Economic Variables in Europe during 2000–2012. Ann. Gen. Psychiatry 2016, 15, 19. [Google Scholar] [CrossRef] [Green Version]
- Grjibovski, A.; Kozhakhmetova, G.; Kosbayeva, A.; Menne, B. Associations between Air Temperature and Daily Suicide Counts in Astana, Kazakhstan. Medicina 2013, 49, 59. [Google Scholar] [CrossRef] [Green Version]
- Hiltunen, L.; Ruuhela, R.; Ostamo, A.; Lönnqvist, J.; Suominen, K.; Partonen, T. Atmospheric Pressure and Suicide Attempts in Helsinki, Finland. Int. J. Biometeorol. 2012, 56, 1045–1053. [Google Scholar] [CrossRef]
- Hiltunen, L.; Haukka, J.; Ruuhela, R.; Suominen, K.; Partonen, T. Local Daily Temperatures, Thermal Seasons, and Suicide Rates in Finland from 1974 to 2010. Environ. Health Prev. Med. 2014, 19, 286–294. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Wen, Y.; Duan, Y.; Yan, S.; Liao, Y.; Pan, H.; Zhu, J.; Yin, P.; Cheng, J.; Jiang, H. The Impact of Extreme Heat and Heat Waves on Emergency Ambulance Dispatches due to External Cause in Shenzhen, China. Environ. Pollut. 2020, 261, 114156. [Google Scholar] [CrossRef] [PubMed]
- Kayipmaz, S.; San, I.; Usul, E.; Korkut, S. The Effect of Meteorological Variables on Suicide. Int. J. Biometeorol. 2020, 64, 1593–1598. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Jung, S.H.; Kang, D.R.; Kim, H.C.; Moon, K.T.; Hur, N.W.; Shin, D.C.; Suh, I. Ambient Particulate Matter as a Risk Factor for Suicide. AJP 2010, 167, 1100–1107. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, H.; Kim, D.-S. Association between Daily Environmental Temperature and Suicide Mortality in Korea (2001–2005). Psychiatry Res. 2011, 186, 390–396. [Google Scholar] [CrossRef]
- Kim, Y.; Myung, W.; Won, H.-H.; Shim, S.; Jeon, H.J.; Choi, J.; Carroll, B.J.; Kim, D.K. Association between Air Pollution and Suicide in South Korea: A Nationwide Study. PLoS ONE 2015, 10, e0117929. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, H.; Honda, Y.; Guo, Y.L.; Chen, B.-Y.; Woo, J.-M.; Ebi, K.L. Suicide and Ambient Temperature in East Asian Countries: A Time-Stratified Case-Crossover Analysis. Environ. Health Perspect. 2016, 124, 75–80. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Kim, H.; Gasparrini, A.; Armstrong, B.; Honda, Y.; Chung, Y.; Ng, C.F.S.; Tobias, A.; Íñiguez, C.; Lavigne, E.; et al. Suicide and Ambient Temperature: A Multi-Country Multi-City Study. Environ. Health Perspect. 2019, 127, 117007. [Google Scholar] [CrossRef]
- Kubo, R.; Ueda, K.; Seposo, X.; Honda, A.; Takano, H. Association between Ambient Temperature and Intentional Injuries: A Case-Crossover Analysis Using Ambulance Transport Records in Japan. Sci. Total Environ. 2021, 774, 145511. [Google Scholar] [CrossRef]
- Lee, H.; Myung, W.; Kim, S.E.; Kim, D.K.; Kim, H. Ambient Air Pollution and Completed Suicide in 26 South Korean Cities: Effect Modification by Demographic and Socioeconomic Factors. Sci. Total Environ. 2018, 639, 944–951. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Jung, J.; Myung, W.; Baek, J.H.; Kang, J.M.; Kim, D.K.; Kim, H. Association between Dust Storm Occurrence and Risk of Suicide: Case-Crossover Analysis of the Korean National Death Database. Environ. Int. 2019, 133, 105146. [Google Scholar] [CrossRef]
- Lee, H.; Myung, W.; Kim, H.; Lee, E.-M.; Kim, H. Association between Ambient Temperature and Injury by Intentions and Mechanisms: A Case-Crossover Design with a Distributed Lag Nonlinear Model. Sci. Total Environ. 2020, 746, 141261. [Google Scholar] [CrossRef]
- Li, T.; Yan, M.; Sun, Q.; Anderson, G.B. Mortality Risks from a Spectrum of Causes Associated with Wide-Ranging Exposure to Fine Particulate Matter: A Case-Crossover Study in Beijing, China. Environ. Int. 2018, 111, 52–59. [Google Scholar] [CrossRef]
- Likhvar, V.; Honda, Y.; Ono, M. Relation between Temperature and Suicide Mortality in Japan in the Presence of Other Confounding Factors Using Time-Series Analysis with a Semiparametric Approach. Environ. Health Prev. Med. 2011, 16, 36–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, G.-Z.; Li, L.; Song, Y.-F.; Zhou, Y.-X.; Shen, S.-Q.; Ou, C.-Q. The Impact of Ambient Air Pollution on Suicide Mortality: A Case-Crossover Study in Guangzhou, China. Environ. Health 2016, 15, 90. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.J.; Wang, F.; Liu, H.; Wei, Y.B.; Li, H.; Yue, J.; Que, J.; Degenhardt, L.; Lappin, J.; Lu, L.; et al. Ambient Fine Particulate Matter Is Associated with Increased Emergency Ambulance Dispatches for Psychiatric Emergencies. Environ. Res. 2019, 177, 108611. [Google Scholar] [CrossRef]
- Luan, G.; Yin, P.; Wang, L.; Zhou, M. Associations between Ambient High Temperatures and Suicide Mortality: A Multi-City Time-Series Study in China. Environ. Sci. Pollut. Res. 2019, 26, 20377–20385. [Google Scholar] [CrossRef] [PubMed]
- Makris, G.D.; White, R.A.; Reutfors, J.; Ekselius, L.; Andersen, M.; Papadopoulos, F.C. Sunshine, Temperature and Suicidal Behaviour in Patients Treated with Antidepressants: An Explorative Nested Case-Control Study. Sci. Rep. 2021, 11. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Meyer, F.; Thompson, P.; Peeters, D.; Cosyns, P. Synchronized Annual Rhythms in Violent Suicide Rate, Ambient Temperature and the Light-Dark Span. Acta Psychiatr. Scand. 1994, 90, 391–396. [Google Scholar] [CrossRef]
- Merrill, R.M. Injury-Related Deaths According to Environmental, Demographic, and Lifestyle Factors. J. Environ. Public Health 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Müller, H.; Biermann, T.; Renk, S.; Reulbach, U.; Ströbel, A.; Kornhuber, J.; Sperling, W. Higher Environmental Temperature and Global Radiation Are Correlated with Increasing Suicidality—A Localized Data Analysis. Chronobiol. Int. 2011, 28, 949–957. [Google Scholar] [CrossRef]
- Ng, C.F.S.; Stickley, A.; Konishi, S.; Watanabe, C. Ambient Air Pollution and Suicide in Tokyo, 2001–2011. J. Affect. Disord. 2016, 201, 194–202. [Google Scholar] [CrossRef]
- Nguyen, A.-M.; Malig, B.J.; Basu, R. The Association between Ozone and Fine Particles and Mental Health-Related Emergency Department Visits in California, 2005–2013. PLoS ONE 2021, 16, e0249675. [Google Scholar] [CrossRef] [PubMed]
- Page, L.A.; Hajat, S.; Kovats, R.S. Relationship between Daily Suicide Counts and Temperature in England and Wales. Br. J. Psychiatry 2007, 191, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Salib, E.; Gray, N. Weather Conditions and Fatal Self-Harm in North Cheshire 1989–1993. Br. J. Psychiatry 1997, 171, 473–477. [Google Scholar] [CrossRef] [PubMed]
- Santurtún, A.; Almendra, R.; Silva, G.L.; Fdez-Arroyabe, P.; Santurtún, M.; Santana, P. Suicide and Apparent Temperature in the Two Capitals Cities in the Iberian Peninsula. Soc. Sci. Med. 2020, 265, 113411. [Google Scholar] [CrossRef]
- Schneider, A.; Hampel, R.; Ladwig, K.-H.; Baumert, J.; Lukaschek, K.; Peters, A.; Breitner, S. Impact of Meteorological Parameters on Suicide Mortality Rates: A Case-Crossover Analysis in Southern Germany (1990–2006). Sci. Total Environ. 2020, 707, 136053. [Google Scholar] [CrossRef]
- Sim, K.; Kim, Y.; Hashizume, M.; Gasparrini, A.; Armstrong, B.; Sera, F.; Ng, C.F.S.; Honda, Y.; Chung, Y. Nonlinear Temperature-Suicide Association in Japan from 1972 to 2015: Its Heterogeneity and the Role of Climate, Demographic, and Socioeconomic Factors. Environ. Int. 2020, 142, 105829. [Google Scholar] [CrossRef]
- Szyszkowicz, M.; Willey, J.B.; Grafstein, E.; Rowe, B.H.; Colman, I. Air Pollution and Emergency Department Visits for Suicide Attempts in Vancouver, Canada. Environ. Health Insights 2010, 4, EHI.S5662. [Google Scholar] [CrossRef]
- Thilakaratne, R.A.; Malig, B.J.; Basu, R. Examining the Relationship between Ambient Carbon Monoxide, Nitrogen Dioxide, and Mental Health-Related Emergency Department Visits in California, USA. Sci. Total Environ. 2020, 746, 140915. [Google Scholar] [CrossRef]
- Williams, M.N.; Hill, S.R.; Spicer, J. Do Hotter Temperatures Increase the Incidence of Self-Harm Hospitalisations? Psychol. Health Med. 2016, 21, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-Y.; Weng, Y.-H.; Chiu, Y.-W. Relationship between Ozone Air Pollution and Daily Suicide Mortality: A Time-Stratified Case-Crossover Study in Taipei. J. Toxicol. Environ. Health Part A 2019, 82, 261–267. [Google Scholar] [CrossRef]
- Yarza, S.; Vodonos, A.; Hassan, L.; Shalev, H.; Novack, V.; Novack, L. Suicide Behavior and Meteorological Characteristics in Hot and Arid Climate. Environ. Res. 2020, 184, 109314. [Google Scholar] [CrossRef]
- Zerbini, T.; Gianvecchio, V.A.P.; Regina, D.; Tsujimoto, T.; Ritter, V.; Singer, J.M. Suicides by Hanging and Its Association with Meteorological Conditions in São Paulo. J. Forensic Leg. Med. 2018, 53, 22–24. [Google Scholar] [CrossRef]
- Ma, C.-J.; Kasahara, M.; Höller, R.; Kamiya, T. Characteristics of Single Particles Sampled in Japan during the Asian Dust-Storm Period. Atmos. Environ. 2001, 35, 2707–2714. [Google Scholar] [CrossRef]
- Hodnebrog, Ø.; Solberg, S.; Stordal, F.; Svendby, T.M.; Simpson, D.; Gauss, M.; Hilboll, A.; Pfister, G.G.; Turquety, S.; Richter, A. Impact of Forest Fires, Biogenic Emissions and High Temperatures on the Elevated Eastern Mediterranean Ozone Levels during the Hot Summer of 2007. Atmos. Chem. Phys. 2012, 12, 8727–8750. [Google Scholar] [CrossRef] [Green Version]
- Lelieveld, J.; Hadjinicolaou, P.; Kostopoulou, E.; Chenoweth, J.; El Maayar, M.; Giannakopoulos, C.; Hannides, C.; Lange, M.A.; Tanarhte, M.; Tyrlis, E.; et al. Climate Change and Impacts in the Eastern Mediterranean and the Middle East. Clim. Chang. 2012, 114, 667–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.E.; Lim, Y.-H.; Kim, H. Temperature Modifies the Association between Particulate Air Pollution and Mortality: A Multi-City Study in South Korea. Sci. Total Environ. 2015, 524–525, 376–383. [Google Scholar] [CrossRef]
- Chen, K.; Wolf, K.; Breitner, S.; Gasparrini, A.; Stafoggia, M.; Samoli, E.; Andersen, Z.J.; Bero-Bedada, G.; Bellander, T.; Hennig, F.; et al. Two-Way Effect Modifications of Air Pollution and Air Temperature on Total Natural and Cardiovascular Mortality in Eight European Urban Areas. Environ. Int. 2018, 116, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Choi, H.M.; Kim, D.; Honda, Y.; Leon Guo, Y.-L.; Kim, H. Synergic Effect between High Temperature and Air Pollution on Mortality in Northeast Asia. Environ. Res. 2019, 178, 108735. [Google Scholar] [CrossRef] [PubMed]
- Hajat, S.; Gasparrini, A. The Excess Winter Deaths Measure: Why Its Use Is Misleading for Public Health Understanding of Cold-Related Health Impacts. Epidemiology 2016, 27, 486–491. [Google Scholar] [CrossRef] [Green Version]
- Buckley, J.P.; Samet, J.M.; Richardson, D.B. Commentary: Does Air Pollution Confound Studies of Temperature? Epidemiology 2014, 25, 242–245. [Google Scholar] [CrossRef] [PubMed]
- Ji, M.; Cohan, D.S.; Bell, M.L. Meta-Analysis of the Association between Short-Term Exposure to Ambient Ozone and Respiratory Hospital Admissions. Environ. Res. Lett. 2011, 6, 024006. [Google Scholar] [CrossRef]
- Aguglia, A.; Giacomini, G.; Montagna, E.; Amerio, A.; Escelsior, A.; Capello, M.; Cutroneo, L.; Ferretti, G.; Scafidi, D.; Costanza, A. Meteorological Variables and Suicidal Behavior: Air Pollution and Apparent Temperature Are Associated with High-Lethality Suicide Attempts and Male Gender. Front. Psychiatry 2021, 12, 224. [Google Scholar] [CrossRef] [PubMed]
- Leung, A.; Chue, P.; Psych, M.R.C. Sex Differences in Schizophrenia, a Review of the Literature. Acta Psychiatr. Scand. 2000, 101, 3–38. [Google Scholar] [CrossRef] [PubMed]
- Strüber, D.; Lück, M.; Roth, G. Sex, Aggression and Impulse Control: An Integrative Account. Neurocase 2008, 14, 93–121. [Google Scholar] [CrossRef] [PubMed]
Parameter | Inclusion | Exclusion |
---|---|---|
Patient | Health outcomes related with suicide as measured in studies. | N/A |
Intervention (exposure) |
| Exposure to tobacco smoke or second-hand smoke. Exposure to occupational air pollution or temperature (high or cold). Exposure to carbon monoxide or benzene poisoning from vehicles. |
Comparison | All subpopulations based on biological factors (e.g., age, sex), socioeconomic factors, or contextual factors | N/A |
Outcome | Complete suicide, suicide attempt, suicidal ideation, self-inflicted injury, self-harm. Data can be based on mortality data, hospital data, survey data, and etc. | Suicide by carbon monoxide from automobiles (carbon monoxide poisoning). |
Study types | Epidemiologic study: population-based observational study such as cohort study, case-control study, cross-sectional study, case-crossover study, survival analysis, time-series analysis, etc. |
|
First Author, Publication Year [Reference] | Location | Study Timeframe | Suicide Deaths: Number or Rate (100,000 Population) | Age Range (Years) | Study Design | Exposure Variables for Air Pollution and/or Temperature | Exposure Methods | Health Outcome | ICD Codes (If Applicable) | Increment of Exposure for Estimates of the Association | Considered Confounders |
---|---|---|---|---|---|---|---|---|---|---|---|
Astudillo-Garcia, 2019 [41] | Mexico City | 2000–2016 | Rate: 1.98 | ≥10 | Time-series | PM10, PM2.5, O3, SO2, NO2 | Monitors | Mortality | NR | 1 unit | Daily averages for temperature and relative humidity, holiday |
Bakian, 2015 [42] | Salt Lake County, Utah, US | 2000–2010 | 1546 | All | Case-crossover | NO2, PM2.5, PM10, SO2 | Monitors | Mortality | NR | IQR increase | Average daily sunlight during the previous 3 days, daily mean temperature, daily mean temperature for the previous 3 days, mean dew point temperature, mean dew point temperature for the previous 3 days, daily mean air pressure, and daily mean air pressure for the previous 3 days. |
Bando, 2017 [43] | Sao Paulo, Brazil | 1996–2011 | Rate: 8.7 | NR | Time-series | Weekly minimum temperature | Monitors | Mortality | ICD-10: X60-X84 | 1 unit | Calendar time for week, weekly mean, minimum, and maximum temperature, insolation hour, irradiation, relative humidity, atmospheric pressure, rainfall |
Barker, 1994 [44] | Oxford, England | 1976–1989 | 12,379 | NR | Time-series | temperature (monthly) | NR | Suicide cases | NR | 1 unit | Month, rainfall, sunshine duration, visibility, cloud cover, wind speed |
Basagana, 2011 [45] | Catalonia, Spain | 1983–2006 | 503,389 | All | Case-crossover | Temperature | Monitors | Mortality | ICD-10: X60-X84, ICD-9: E950-E959 | Dichotomous variable of hot days (95 percentile <) and nonhot days | Day of the week, month |
Basu, 2018 [46] | California, US | 2005–2013 | 322,478 | All | Time-series | Apparent temperature | Monitors | Hospital (ER) admissions | ICD-9: E950-959 | 10°F (4.5 °C) | Holidays, day of the week, seasonal trends (calendar time) |
Casas, 2017 [47] | Belgium | 2002–2011 | 20,533 | ≥5 | Case-crossover | Daily average PM10 and daily maximum 8-h average O3 | Kriging model | Mortality | ICD-10: X60-84, Y10-34 | 10 unit increase (microgram/cubic meter) | Day of the week, long-term seasonality, temperature, duration of sunshine |
Deisenhammer, 2003 [48] | Tyrol, Austria | 1995–2000 | 702 (518 males, 184 females) | NR | Case-crossover | Temperature | Monitors | Mortality | NR | 10 degree of Celsius increase | Mean relative humidity, thunderstorm, rainfall, sultriness, mean atmospheric pressure (tested, but not included in the analytic model) |
Dixon, 2018 [49] | 9 counties in US | 1975–2010 | NR | All | Time-series | Daily maximum and minimum temperature | One monitoring station for each county | Mortality | ICD-9: E950-959, ICD-10: X60-X84 | NA | Year, week, day of the week |
Fernandez-Nino, 2018a [50] | 4 cities in Colombia | 2011–2014 | 1942 | All | Time-series | PM2.5, PM10, O3, NO2, SO2, CO | Monitors | Mortality | ICD-10: X60-X84, Y87.0 | increase in 20% of the average exposure level | Temperature, precipitation, relative humidity and holidays |
Fernandez-Nino, 2018b [51] | 5 cities in Colombia | 2005–2015 | Rate: 0.06 to 0.57 for men and from 0.01 to 0.14 for women | All | Time-series | Daily mean temperature | One monitoring station | Mortality | ICD-10: X60-X84 or Y87.0 | 1 unit | Rainfall, holidays, day of the week, month, year |
Fountoulakis, 2016 [52] | 29 European countries | 2000–2012 | Rate: 3.8 to 49.0 for men, 0.7 to 14 for women | All | Cross-sectional | Temperature | Modeling data of gridded dataset for daily climate over Europe (termed E-OBS) with a spatial resolution of 0.22 degree | Standardized mortality rate | NR | NR | Economic variables, weather variables. |
Grjibovski AM, 2013 [53] | Astana, Kazakhstan | 2005–2010 | 685 | All | Time-series | Daily mean temperature, maximum temp, mean apparent temperature, maximum apparent temperature | Monitors | Mortality | ICD-10: X60-X84 | 1 unit | Month, year, holiday |
Hiltunen, 2012 [54] | Helsinki, Finland | 1989–1990, 1997–1998 | 3945 | All | Time-series | Daily mean temperature | Monitors | Mortality | NR | 1 unit | Global solar radiation, precipitation |
Hiltunen, 2014 [55] | Finland | 1974–2010 | 10,802 | All | Time-series | Diurnal temperature | Monitors | Mortality | NR | 1 unit | 21 meteorological factors. |
Hu, 2020 [56] | Shenzhen, China | 2013–2017 | 6642 dispatches for suicides | All | Time-series | Daily mean temperature | NR | Ambulance dispatches | ICD-10: X60-X84 | Heatwave days: 2 to 4 consecutive days with mean temperature above the thresholds (75, 90, 95, 99th percentiles) versus nonheatwave days | Calendar time, O3, CO, NO2, PM10, PM2.5, temperature (same day), holiday, day of the week |
Kayipmaz, 2020 [57] | Ankara, Turkey | 2017–2019 | 6777 | All | Time-series | Daily mean, maximum, minimum temperature | One monitoring station | Hospital admissions | NR | 1 unit | Seasonality, average humidity, average actual pressure (hPa) |
Kim, 2010 [58] | 7 Metropolitan cities in South Korea | 2004 | 4341 | All | Case-crossover | PM10, PM2.5 | Monitors | Mortality | NR | IQR increase | Holidays, mean hours of sunlight from the previous 2 days, temperature, dew point temperature, air pressure |
Kim, 2011 [59] | South Korea | 2001–2005 | 49,451 | All | Time-series | Daily mean temperature | Monitors | Mortality | ICD-10: X60-X84 | 1 unit | Sunshine, relative humidity, holidays, long-term trends |
Kim, 2015 [60] | 16 regions in South Korea | 2006–2011 | NR | All | Time-series (weekly) | PM10, O3, SO2, NO2, CO | Monitors | Mortality | ICD-10: X60-X84 | 1 unit | Celebrity suicide, average national monthly suicide number for the past 5 years by month matching each weekly (seasonality adjustment), sunlight hours, temperature, consumer price index, unemployment rate, stock index, end-of-week, holiday |
Kim, 2016 [61] | 15 major cities in Korea, Japan, Taiwan | 1972–2010 | 66024 in Korea, 126,705 in Japan, 17,879 in Taiwan | ≥0 | Case-crossover | Daily mean temperature | NR | Daily mortality rate | ICD-9: E950.0.E958.9, ICD-10: X60.X84 | SD/2-unit (standard deviation of the mean temperature divided by 2) increase | Age, sex, sunshine duration, relative humidity, atmospheric pressure, time trend, month |
Kim, 2018 [14] | 10 large cities in three Northeast Asian countries (South Korea, Japan, Taiwan) | 1979–2010 | 134,811 | All | Case-crossover | PM10, PM2.5, NO2, SO2, Coarse PM (PM2.5–10) | Monitors | Mortality | ICD-9: E950.0 -E958.9, ICD-10: X60-84 | IQR increase | Day of the week, month, year, temperature, sunshine hours, public holidays, relative humidity, sea-level atmospheric pressure, total precipitation |
Kim, 2019 [62] | 341 locations in 12 countries (Brazil, Canada, Japan, South Korea, Philippines, South Africa, Spain, Switzerland, Taiwan, UK, US, Vietnam) | 4–22 years | 1320,148 | All | Case-crossover | Daily mean temperature (°C) | Monitors | Mortality | ICD-8 and 9: E950.0-E958.9, ICD-10: X60-X84 | Between minimum suicide temperature and maximum suicide temperature | Year, month, day of the week, relative humidity (%), the daily total of sunshine duration (hours) |
Kubo, 2021 [63] | 46 Prefectures, Japan | 2012–2015 | 151,801 | ≥10 | Case-crossover | Daily mean temperature (°C) | Single monitoring station in each city | Emergency room visits | NR | NR | Daily daylight hours, relative humidity |
Lee, 2018 [64] | South Korea | 2002–2013 | 73,445 | All | Case-crossover | PM10, NO2, SO2, O3, CO | Monitors | Mortality | ICD-10: X60-X84 | 1 unit | Temperature, relative humidity, air pressure, influenza epidemics, holidays |
Lee, 2019 [65] | Seoul, South Korea | 2002–2015 | 30,704 | All | Case-crossover | Asian dust storms (ADSs) | Modeling data | Mortality | ICD-10: X60-X84 | Dichotomous variable for days with and without Asian dust storm | Date of the week, month, year, holiday, temperature, rainfall, sunlight hours, influenza epidemics |
Lee, 2020 [66] | Seoul, South Korea | 2008–2016 | Average daily number: 8 | All | Case-crossover | Daily mean temperature (°C) | Monitors | Emergency room visits | Self-harm among ICD-10 S00-T98 | 24.4 °C: difference between the maximum and minimum injury temperature | Holidays and 2-day moving averages (lag 0–1) of relative humidity, sunlight, and precipitation. |
Li, 2018 [67] | Beijing, China | 2009–2012 | 2172 | All | Case-crossover | PM2.5 | Monitors | Mortality | ICD-10: X60-X84 | 10 unit | Long-term trends, seasonality, year, month, day of the week, temperature, relative humidity |
Likhvar, 2011 [68] | 47 prefectures, Japan | 1972–1995 | 501,950 | All | Time-series | Maximum temperature on the same day | Monitors | Daily suicide death | ICD-9: E950-E958, ICD-10: X60-X84 (Non-violent: E950.0-E952.9; X60-X69, violent E953.0-E958.9; X70-X84) | 1 unit | Time, humidity, pressure, sunshine duration, holiday, day of the week |
Lin, 2016 [69] | Guangzhou, China | 2003–2012 | 1550 | All | Case-crossover | Daily PM10, SO2, NO2 | Monitors | Mortality | ICD-10: X64-X84 (non-violent (X60-69), violent (X70-84)) | IQR increase | Month, year, day of the week, weather factors (mean temperature, relative humidity, atmospheric pressure, sunshine duration) |
Liu, 2019 [70] | Beijing, China | 2008–2014 | 61,384 | All | Time-series | PM2.5 | Monitors | Emergency ambulance dispatch | NR | 10 μg/m3 increase | Day of the week, public holiday, temperature, relative humidity, calendar time, sunlight duration |
Luan, 2019 [71] | 31 Metropolitan cities in China | 2008–2013 | 39,347 | All | Time-series | Temperature | Monitors | Mortality | ICD-10: X60-X84 | Differences between the 95th percentile of temperature and the minimum mortality temperature (MMT) | Humidity, day of the week, holiday, calendar date |
Makris, 2021 [72] | Sweden | 2006–2012 | Total cases 1981 | All | Nested case-control | Temperature | Monitors | Hospital visits | ICD-10: X60-X84 | 1 unit | Previous suicide attempt, county, sex, age, year, and season when the antidepressant treatment was initiated |
Maes, 1994 [73] | Belgium | 1979–1987 | NR | All | Cross-sectional | Weekly average temperature | One monitoring station in each region | Mortality | ICD-9: E950-E958 (violent: E953-E957, nonviolent: E950-E952 & E958) | 1 unit | Relative humidity, air pressure, hours of sunlight and precipitation per day, wind speed, geomagnetic index |
Merrill, 2019 [74] | US | 2011–2015 | 182,140 | All | Cross-sectional | Average maximum daily temperature, average PM2.5 | Monitors | Mortality rate | NR | NA | Age, sex, race, average daily sunlight, altitude, average PM2.5, average daily precipitation, percent living in poverty, percent of adults who smoke cigarettes, percent urban residents, percent obese, percent leisure-time physical inactivity. |
Muller, 2011 [75] | Mitte franken, Germany | 1998–2005 | 2987 | All | Cross-sectional ecologic study | Temperature, radiation | Monitors | Mortality | NR | 1 unit | Season |
Ng, 2016 [76] | Tokyo, Japan | 2001–2011 | 29,939 | All | Case-crossover | PM2.5, suspended particulate matter (SPM), SO2, NO2 | Monitors | Mortality | ICD-10: X60-X84 | IQR increase | Holidays, new year holiday season, temperature, relative humidity |
Nguyen, 2021 [77] | California, US | 2005–2013 | 193,530 | All | Time-series | O3, PM2.5 | Nearest monitor | Emergency room visits | ICD-9: E950-959 | 10 ppb increase in O3 and 10 µg/m3 increase in PM2.5 | NO2, apparent temperature, seasonal/long-term trends, public holiday |
Page, 2007 [78] | England and Wales | 1993–2003 | 53,623 | All | Time-series | Daily mean temperature, suspended high temperature days | Monitors | Daily suicide counts | ICD-9: E950.0-E959.0, E980.0-E989.0 excluding E988.8; ICD-10: X60-X84, Y10-Y34 excluding Y33.9 | 1 unit | Month, day of the week, holidays, daylight duration |
Salib, 1997 [79] | North Cheshire, England | 1989–1993 | 197 | All | Case-crossover | Maximum temperature, minimum temperature | One monitoring station | Mortality | ICD-9: E950-959, ICD-9: E980-989 | 1 unit | Total rainfall, sunshine hours, maximum relative humidity |
Santurtún, 2020 [80] | Madrid and Lisbon, Spain | 2002–2012 | Average daily suicide rate: 3.30/100,000 inhabitants in Madrid and of 7.92/100,000 inhabitants in Lisbon | All | Time-series | Apparent Temperature (AT) | Monitors | Mortality | ICD-10: X60-X84 | 17.4: difference between maximum AT and the median AT | NO2, the day of the week, and time |
Schneider, 2020 [81] | 4 Bavarian cities and 11 Bavarian counties, Germany | 1990–2006 | 10,595 | All | Case-crossover | Temperature | Monitors | Mortality rate | ICD-9: E950.E958, ICD-10: X60-X84 | 1 unit | Long-term time trend, precipitation, cloud cover |
Sim, 2020 [82] | 47 prefectures, Japan | 1972–2015 | Average prefecture-specific annual count of suicide: 516.2 | ≥15 | Case-crossover | Temperature | One monitoring station | Mortality | E950.0-E958.9 for ICD-8 and 9; X60-X84 for ICD-10. | 21.5: difference between the maximum suicide temperature versus 5th temperature percentile | Calendar year, month, and day-of-week, humidity |
Szyszkowicz, 2010 [83] | Vancouver, Canada | 1999–2003 | 1605 | All | Case-crossover | NO2, SO2, O3, CO, PM10, PM2.5 | Monitors | Hospital admissions | NR | IQR increase | Temperature, relative humidity, date (day, month, year), day of the week |
Thilakaratne, 2020 [84] | California, US | 2005–2013 | 63,108 | All | Time-series | NO2, CO | Monitors | Hospital admissions | ICD-9: E950-E959 | IQR increase | Daily mean apparent temperature, holidays, day of the week, seasonal/long-term trends |
Williams, 2016 [85] | New Zealand | 1993–2009 | 47,265 | All | Time-series | Temperature | Interpolation | Hospital admissions | ICD-9: E950-E958 | 1 unit | Season, population |
Yang, 2019a [86] | Taipei, Taiwan | 2004–2008 | 2001 | All | Case-crossover | O3 | Monitors | Daily mortality | ICD-9: E950-E959 | IQR increase | Month, day of the week, temperature (lag 0), humidity (lag 0), pollutants (lag 0-2). In two-pollutants models, PM10, NO2, SO2, and CO were adjusted |
Yang, 2019b [13] | Taipei, Taiwan | 2008–2012 | 4752 | All | Case-crossover | O3 | Monitors | Hospital admissions | NR | IQR increase | Temperature (lag 0), humidity, day of the week |
Yarza, 2020 [87] | Southern Israel | 2002–2017 | 2338 (age 16–90 years) | 16–90 | Case-crossover, time-series | Daily average temperature | One monitoring station | Hospital admissions | NR | 5-unit | Day of the week, month, relative humidity, age, sex, ethnicity, psychiatric diagnosis, SES |
Zerbini, 2018 [88] | Sao Paulo, Brazil | 2006–2007 | NR | NR | Cross-sectional | Perceived temperature | One monitoring station | Mortality | NR | 1 unit | None |
Variable | Number of Included Results | RR | 95% CI | p-Value | I2 |
---|---|---|---|---|---|
Temperature (°C) | 25 | 1.09 | (1.06, 1.13) | <0.0001 | 96.9% |
PM2.5 (µg/m3) | 7 | 1.02 | (1.00, 1.05) | 0.098 | 61.4% |
PM10 (µg/m3) | 7 | 1.01 | (1.00, 1.03) | 0.054 | 62.3% |
O3 (ppb) | 5 | 1.02 | (0.96, 1.10) | 0.491 | 54.1% |
SO2 (ppb) | 5 | 1.02 | (1.00, 1.04) | 0.222 | 71.5% |
NO2 (ppb) | 6 | 1.03 | (1.00, 1.07) | 0.041 | 64.1% |
CO (ppm) | 4 | 1.02 | (0.95, 1.08) | 0.631 | 61.5% |
Exposure and Effect Modifier | N | RR (95% CI) | p-Value |
---|---|---|---|
Temperature | |||
GNI (US$) per capita | |||
Higher (≥$12,375) | 31 | 1.09 (1.07, 1.11) | 0.001 |
Lower (<$12,375) | 9 | 1.20 (1.14, 1.26) | |
National suicide rates (per 100,000 population) | |||
High (≥16) | 5 | 1.11 (1.06, 1.16) | 0.964 |
Medium (14–15.9) | 12 | 1.10 (1.07, 1.13) | |
Low (<14) | 23 | 1.11 (1.08, 1.14) | |
Average exposure level a | |||
High | 17 | 1.18 (1.13, 1.23) | 0.235 |
Low | 18 | 1.14 (1.10, 1.18) | |
PM2.5 | |||
GNI (US$) per capita | |||
Higher ($12,375) | 5 | 1.01 (1.00, 1.03) | 0.519 |
Lower (<$12,375) | 4 | 1.03 (1.00, 1.06) | |
National suicide rates (per 100,000 population) | |||
High (≥16) | 2 | 1.02 (0.97, 1.06) | 0.830 |
Medium (14–15.9) | 0 | - | |
Low (<14) | 6 | 1.02 (0.99, 1.05) | |
Average exposure level a | |||
High | 4 | 1.01 (0.98, 1.05) | 0.864 |
Low | 4 | 1.02 (0.98, 1.05) | |
PM10 | |||
GNI (US$) per capita | |||
Higher (≥$12,375) | 10 | 1.01 (0.99, 1.03) | 0.386 |
Lower (<$12,375) | 6 | 1.01 (0.99, 1.03) | |
National suicide rates (per 100,000 population) | |||
High (≥16) | 6 | 1.01 (1.00, 1.01) | 0.680 |
Medium (14–15.9) | 3 | 1.00 (0.99, 1.01) | |
Low (<14) | 7 | 1.00 (0.99, 1.01) | |
Average exposure level a | |||
High | 7 | 1.00 (1.00, 1.01) | 0.893 |
Low | 8 | 1.00 (1.00, 1.01) | |
O3 | |||
GNI (US$) per capita | |||
Higher (≥$12,375) | 2 | 1.01 (0.91, 1.29) | 0.417 |
Lower (<$12,375) | 3 | 0.99 (0.86, 1.13) | |
National suicide rates (per 100,000 population) | |||
High (≥16) | 1 | 1.37 (0.93, 2.03) | 0.138 |
Medium (14–15.9) | 0 | - | |
Low (<14) | 4 | 1.02 (0.96, 1.08) | 0.129 |
Average exposure level a | |||
High | 2 | 0.94 (0.83, 1.08) | 0.129 |
Low | 3 | 1.07 (0.97, 1.18) | |
SO2 | |||
GNI (US$) per capita | |||
Higher (≥$12,375) | 9 | 1.02 (1.00, 1.04) | 0.139 |
Lower (<$12,375) | 4 | 0.99 (0.96, 1.03) | |
National suicide rates (per 100,000 population) | |||
High (≥16) | 5 | 1.02 (0.99, 1.06) | 0.357 |
Medium (14–15.9) | 4 | 1.02 (1.00, 1.04) | |
Low (<14) | 4 | 0.99 (0.96, 1.03) | |
Average exposure level a | |||
High | 6 | 1.03 (0.97, 1.10) | 0.908 |
Low | 7 | 1.04 (0.97, 1.11) | |
NO2 | |||
GNI (US$) per capita | |||
Higher (≥$12,375) | 10 | 1.03 (1.01, 1.05) | 0.938 |
Lower (<$12,375) | 5 | 1.03 (0.97, 1.09) | |
National suicide rates (per 100,000 population) | |||
High (≥16) | 5 | 1.03 (0.99, 1.06) | 0.871 |
Medium (14–15.9) | 4 | 1.03 (0.99, 1.06) | |
Low (<14) | 6 | 1.04 (0.99, 1.10) | |
Average exposure level a | |||
High | 6 | 1.02 (1.00, 1.05) | 0.015 |
Low | 7 | 1.04 (1.01, 1.07) | |
CO | |||
GNI (US$) per capita | |||
Higher (≥$12,375) | 4 | 1.02 (0.95, 1.08) | - |
Lower (<$12,375) | 0 | - | |
National suicide rates (per 100,000 population) | |||
High (≥16) | 2 | 1.02 (0.94, 1.11) | 0.877 |
Medium (14–15.9) | 0 | 1.01 (0.87, 1.16) | |
Low (<14) | 2 | ||
Average exposure levela | |||
High | 2 | 1.02 (0.94, 1.11) | 0.877 |
Low | 2 | 1.01 (0.87, 1.16) |
Exposure | Group of GDP (US$) per Capita | Group of PPP (US$) per Capita | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Lower (<$30,025) | Higher (≥$30,025) | p-Value | Lower (<$37,058) | Higher (≥$37,058) | p-Value | |||||
N | RR (95% CI) | N | RR (95% CI) | N | RR (95% CI) | N | RR (95% CI) | |||
Temperature (°C) | 9 | 1.20 (1.14, 1.26) | 31 | 0.92 (0.87, 0.98) | 0.005 | 9 | 1.23 (1.15, 1.31) | 29 | 1.11 (1.08, 1.14) | 0.003 |
PM2.5 (µg/m3) | 4 | 1.01 (0.99, 1.03) | 4 | 1.01 (0.99, 1.03) | 0.839 | 4 | 1.01 (0.99, 1.03) | 4 | 1.01 (0.99, 1.03) | 0.839 |
PM10 (µg/m3) | 6 | 1.00 (0.99, 1.01) | 10 | 1.01 (1.00, 1.01) | 0.386 | 6 | 1.00 (0.99, 1.01) | 10 | 1.01 (0.99, 1.02) | 0.386 |
O3 (ppb) | 3 | 0.99 (0.90, 1.10) | 1 | 1.28 (0.92, 1.78) | 0.144 | 3 | 0.90 (0.90, 1.10) | 1 | 1.28 (0.92, 1.78) | 0.144 |
SO2 (ppb) | 4 | 1.00 (0.98, 1.01) | 9 | 1.01 (1.00, 1.02) | 0.139 | 4 | 1.00 (0.98, 1.01) | 9 | 1.01 (1.00, 1.02) | 0.139 |
NO2 (ppb) | 5 | 1.02 (0.98, 1.05) | 10 | 1.02 (1.00, 1.03) | 0.938 | 5 | 1.02 (0.98, 1.05) | 10 | 1.02 (1.00, 1.03) | 0.938 |
CO (ppm) | 0 | - | 1.02 (0.95, 1.08) | - | 0 | - | 1.02 (0.95, 1.08) | - |
First Author’s Last Name & Publication Year | Exposure | Selection Bias | Confounding Bias | Attrition/Exclusion Bias | Detection Bias | Selective Reporting Bias | Appropriateness of Statistical Analysis | Final Score of Overall Risk of Bias | Included in Meta-Analysis (Yes, No) |
---|---|---|---|---|---|---|---|---|---|
Astudillo-Garcia, 2019 | AP | 3 | 3 | 3 | 2 | 3 | 3 | 2.8 | Yes |
Bakian, 2015 | AP | 3 | 3 | 3 | 2 | 1 | 3 | 2.5 | Yes |
Casas, 2017 | AP | 3 | 3 | 3 | 3 | 2 | 3 | 2.8 | No |
Fernandez-Nino, 2018 | AP | 3 | 3 | 3 | 2 | 3 | 3 | 2.8 | Yes |
Kim, 2010 | AP | 3 | 3 | 3 | 2 | 3 | 2 | 2.7 | Yes |
Kim, 2015 | AP | 3 | 3 | 3 | 2 | 3 | 1 | 2.5 | Yes |
Kim, 2018 | AP | 3 | 3 | 2 | 3 | 3 | 3 | 2.8 | Yes |
Lee, 2019 | AP | 3 | 3 | 3 | 3 | 3 | 3 | 3.0 | No |
Lee, 2018 | AP | 3 | 3 | 3 | 2 | 3 | 3 | 2.8 | Yes |
Li, 2018 | AP | 3 | 3 | NR | 3 | 3 | 3 | 2.7 | Yes |
Lin, 2016 | AP | 3 | 3 | 3 | 2 | 3 | 3 | 2.8 | Yes |
Liu, 2019 | AP | 3 | 3 | 3 | 2 | 3 | 3 | 2.8 | No |
Ng, 2016 | AP | 3 | 3 | 3 | 2 | 2 | 3 | 2.7 | Yes |
Nguyen, 2021 | AP | 3 | 2 | NR | 2 | 3 | 2 | 2.2 | Yes |
Szyszkowicz, 2010 | AP | 3 | 2 | 3 | 2 | 1 | 3 | 2.3 | Yes |
Thilakaratne, 2020 | AP | 3 | 3 | 3 | 2 | 3 | 3 | 2.8 | No |
Yang, 2019a | AP | 3 | 2 | 3 | 2 | 3 | 3 | 2.7 | Yes |
Yang, 2019b | AP | 3 | 1 | 3 | 2 | 3 | 3 | 2.5 | No |
Bando, 2017 | TP | 3 | 2 | 3 | 2 | 1 | 3 | 2.3 | No |
Barker, 1994 | TP | 1 | 1 | 2 | 1 | 1 | 2 | 1.3 | Yes |
Basagana, 2011 | TP | 3 | 1 | 3 | 2 | 3 | 3 | 2.5 | No |
Basu, 2018 | TP | 3 | 3 | 3 | 2 | 3 | 3 | 2.8 | No |
Deisenhammer, 2003 | TP | 3 | 0 | 3 | 2 | 3 | 1 | 2.0 | Yes |
Dixon, 2018 | TP | 3 | 1 | NR | 1 | 3 | 2 | 1.8 | No |
Fernandez-Nino, 2018 | TP | 3 | 2 | 2 | 1 | 3 | 3 | 2.3 | Yes |
Fountoulakis, 2016 | TP | 2 | 1 | NR | 2 | 3 | 2 | 1.8 | No |
Grjibovski, 2013 | TP | 3 | 3 | 3 | 2 | 3 | 2 | 2.7 | Yes |
Hiltunen, 2014 | TP | 3 | 0 | 3 | 2 | 2 | 2 | 2.0 | No |
Hiltunen, 2012 | TP | 3 | 1 | 2 | 2 | 3 | 1 | 2.0 | Yes |
Hu, 2020 | TP | 3 | 3 | 2 | 2 | 3 | 3 | 2.7 | No |
Kayipmaz, 2020 | TP | 3 | 2 | 3 | 2 | 3 | 3 | 2.7 | Yes |
Kim, 2019 | TP | 3 | 2 | 2 | 2 | 3 | 3 | 2.5 | Yes |
Kim, 2011 | TP | 3 | 2 | 3 | 2 | 3 | 2 | 2.5 | Yes |
Kim, 2016 | TP | 3 | 2 | NR | 2 | 3 | 3 | 2.3 | Yes |
Kubo, 2021 | TP | 3 | 1 | 3 | 1 | 3 | 3 | 2.3 | No |
Lee, 2020 | TP | 3 | 2 | 3 | 2 | 3 | 3 | 2.7 | Yes |
Likhvar, 2011 | TP | 2 | 2 | 3 | 1 | 3 | 3 | 2.3 | Yes |
Luan, 2019 | TP | 3 | 3 | 3 | 2 | 3 | 3 | 2.8 | No |
Maes, 1994 | TP | 3 | 1 | NR | NR | 3 | 1 | 1.7 | No |
Makris 2021 | TP | 2 | 0 | 3 | 1 | 3 | 2 | 1.8 | No |
Merrill, 2019 | TP | 2 | 2 | 2 | 2 | 3 | 2 | 2.2 | No |
Muller, 2011 | TP | 3 | 0 | 3 | 2 | 2 | 1 | 1.8 | Yes |
Page, 2007 | TP | 3 | 2 | 3 | 1 | 3 | 3 | 2.5 | Yes |
Salib, 1997 | TP | 2 | 0 | 3 | 1 | 3 | 1 | 1.7 | No |
Santurtún, 2020 | TP | 3 | 2 | NR | 2 | 3 | 3 | 2.3 | Yes |
Schneider, 2020 | TP | 3 | 2 | 3 | 2 | 3 | 3 | 2.7 | Yes |
Sim, 2020 | TP | 3 | 2 | 3 | 1 | 3 | 3 | 2.5 | Yes |
Williams, 2016 | TP | 3 | 1 | 3 | 2 | 3 | 0 | 2.0 | Yes |
Yarza, 2020 | TP | 1 | 2 | 3 | 1 | 3 | 3 | 2.2 | Yes |
Zerbini, 2018 | TP | 2 | 0 | NR | 0 | 3 | 0 | 1.0 | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heo, S.; Lee, W.; Bell, M.L. Suicide and Associations with Air Pollution and Ambient Temperature: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 7699. https://doi.org/10.3390/ijerph18147699
Heo S, Lee W, Bell ML. Suicide and Associations with Air Pollution and Ambient Temperature: A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health. 2021; 18(14):7699. https://doi.org/10.3390/ijerph18147699
Chicago/Turabian StyleHeo, Seulkee, Whanhee Lee, and Michelle L. Bell. 2021. "Suicide and Associations with Air Pollution and Ambient Temperature: A Systematic Review and Meta-Analysis" International Journal of Environmental Research and Public Health 18, no. 14: 7699. https://doi.org/10.3390/ijerph18147699
APA StyleHeo, S., Lee, W., & Bell, M. L. (2021). Suicide and Associations with Air Pollution and Ambient Temperature: A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health, 18(14), 7699. https://doi.org/10.3390/ijerph18147699