Evaluation of Groundwater Using an Integrated Approach of Entropy Weight and Stochastic Simulation: A Case Study in East Region of Beijing
Abstract
:1. Introduction
2. Study Area
2.1. Location and Climate
2.2. Geology and Hydrogeology
3. Materials and Methods
3.1. Sample Collection and Analysis
3.2. Data Analysis
3.3. Self-Organization Assessment Method
3.3.1. Calculation of Subjective Weight through EWQI
3.3.2. Weight Based on Stochastic Simulation Approach (SSA)
3.3.3. Calculation of Integrated-Weight
3.3.4. Calculation of Self-Organizing Water Quality Assessment
3.3.5. Sensitivity Analysis
4. Results and Discussion
4.1. Descriptive Statistics of Chemical Components in Groundwater
4.2. Spatial Characteristics of TDS, TH and -N in Groundwater
4.3. Hydrochemical Facies
4.4. Source analysis of Main Hydrochemical Components
4.4.1. Natural Control Factor
4.4.2. Analysis of Main Ion Sources in Groundwater
4.5. The Comparison between IWQI and WQI in Groundwater
4.6. Sensitivity Analysis of Assessment Index
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- An, D.; Xi, B.; Wang, Y.; Xu, D.; Tang, J.; Dong, L.; Ren, J.; Pang, C. A sustainability assessment methodology for prioritizing the technologies of groundwater contamination remediation. J. Clean. Prod. 2016, 112, 4647–4656. [Google Scholar] [CrossRef]
- Moussa, A.B.; Chandoul, S.; Mzali, H.; Salem, S.B.H.; Elmejri, H.; Zouari, K.; Hafiane, A.; Mrabet, H. Hydrogeochemistry and evaluation of groundwater suitability for irrigation purpose in the Mornag region, northeastern Tunisia. Environ. Dev. Sustain. 2021, 23, 2698–2718. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Y.; Zhou, H. Groundwater chemistry and groundwater quality index incorporating health risk weighting in Dingbian County, Ordos basin of northwest China. Geochemistry 2020, 80, 125607. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, P.; Chen, M.; Dong, Z.; Lu, C. Groundwater quality for potable and irrigation uses and associated health risk in southern part of Gu’an County, North China Plain. Environ. Geochem. Health 2021, 43, 813–835. [Google Scholar] [CrossRef]
- Adimalla, N.; Qian, H. Groundwater quality evaluation using water quality index (WQI) for drinking purposes and human health risk (HHR) assessment in an agricultural region of Nanganur, south India. Ecotoxicol. Environ. Saf. 2019, 176, 153–161. [Google Scholar] [CrossRef]
- Eslami, F.; Yaghmaeian, K.; Mohammadi, A.; Salari, M.; Faraji, M. An integrated evaluation of groundwater quality using drinking water quality indices and hydrochemical characteristics: A case study in Jiroft, Iran. Environ. Earth Sci. 2019, 78. [Google Scholar] [CrossRef]
- Malakootian, M.; Mohammadi, A.; Faraji, M. Investigation of physicochemical parameters in drinking water resources and health risk assessment: A case study in NW Iran. Environ. Earth Sci. 2020, 79. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, Y.; Luo, K.; Shahid, M.Z. Hydrochemical characteristics and a health risk assessment of the use of river water and groundwater as drinking sources in a rural area in Jiangjin District, China. Environ. Earth Sci. 2020, 79. [Google Scholar] [CrossRef]
- Liu, J.; Gao, Z.; Wang, Z.; Xu, X.; Su, Q.; Wang, S.; Qu, W.; Xing, T. Hydrogeochemical processes and suitability assessment of groundwater in the Jiaodong Peninsula, China. Environ. Monit. Assess. 2020, 192. [Google Scholar] [CrossRef]
- Hua, K.; Xiao, J.; Li, S.; Li, Z. Analysis of hydrochemical characteristics and their controlling factors in the Fen River of China. Sustain. Cities Soc. 2020, 52, 101827. [Google Scholar] [CrossRef]
- Liu, J.; Wang, M.; Gao, Z.; Chen, Q.; Wu, G.; Li, F. Hydrochemical characteristics and water quality assessment of groundwater in the Yishu River basin. Acta Geophys. 2020, 68, 877–889. [Google Scholar] [CrossRef]
- Das, R.; Laishram, B.; Jawed, M. Perception of groundwater quality and health effects on willingness to procure: The case of upcoming water supply scheme in Guwahati, India. J. Clean. Prod. 2019, 226, 615–627. [Google Scholar] [CrossRef]
- Chen, J.; Huang, Q.; Lin, Y.; Fang, Y.; Qian, H.; Liu, R.; Ma, H. Hydrogeochemical Characteristics and Quality Assessment of Groundwater in an Irrigated Region, Northwest China. Water 2019, 11, 96. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Sun, M.; Wang, N.; Huo, Z.; Huang, G. Risk assessment of shallow groundwater contamination under irrigation and fertilization conditions. Environ. Earth Sci. 2016, 75. [Google Scholar] [CrossRef]
- Nong, X.; Shao, D.; Zhong, H.; Liang, J. Evaluation of water quality in the South-to-North Water Diversion Project of China using the water quality index (WQI) method. Water Res. 2020, 178, 115781. [Google Scholar] [CrossRef]
- Zhai, Y.; Lei, Y.; Zhou, J.; Li, M.; Wang, J.; Teng, Y. The spatial and seasonal variability of the groundwater chemistry and quality in the exploited aquifer in the Daxing District, Beijing, China. Environ. Monit. Assess. 2015, 187, 43. [Google Scholar] [CrossRef]
- Piper, A.M. A graphic procedure in the geochemical interpretation of water-analyses. Trans. Am. Geophys. Union 1944, 25, 914–928. [Google Scholar] [CrossRef]
- Gibbs, R.J. Mechanisms Controlling World Water Chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Li, Z.; Ma, H.; Wang, L.; Martin, J.D. Identification of the hydrogeochemical processes and assessment of groundwater quality using classic integrated geochemical methods in the Southeastern part of Ordos basin, China. Environ. Pollut. 2016, 218, 879–888. [Google Scholar] [CrossRef]
- Zhai, Y.; Zheng, F.; Zhao, X.; Xia, X.; Teng, Y. Identification of hydrochemical genesis and screening of typical groundwater pollutants impacting human health: A case study in Northeast China. Environ. Pollut. 2019, 252, 1202–1215. [Google Scholar] [CrossRef] [PubMed]
- Horton, R.K. An index number system for rating water quality. J. Water Pollut. Control Fed. 1965, 37, 300–306. [Google Scholar]
- Ako, A.A.; Eyong, G.E.T.; Shimada, J.; Koike, K.; Hosono, T.; Ichiyanagi, K.; Richard, A.; Tandia, B.K.; Nkeng, G.E.; Roger, N.N. Nitrate contamination of groundwater in two areas of the Cameroon Volcanic Line (Banana Plain and Mount Cameroon area). Appl. Water Sci. 2014, 4, 99–113. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Qian, H.; Wang, H.; Chen, J.; Ren, W.; Yang, F. Assessment of background levels and pollution sources for arsenic and fluoride in the phreatic and confined groundwater of Xi’an city, Shaanxi, China. Environ. Sci. Pollut. Res. 2019, 27, 34702–34714. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, P.; Qian, H.; Yang, F. Hydrogeochemistry and fluoride contamination in Jiaokou Irrigation District, Central China: Assessment based on multivariate statistical approach and human health risk. Sci. Total. Environ. 2020, 741, 140460. [Google Scholar] [CrossRef] [PubMed]
- Islam, A.R.M.T.; Al Mamun, A.; Rahman, M.M.; Zahid, A. Simultaneous comparison of modified-integrated water quality and entropy weighted indices: Implication for safe drinking water in the coastal region of Bangladesh. Ecol. Indic. 2020, 113, 106229. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 623–656. [Google Scholar] [CrossRef]
- Amiri, V.; Rezaei, M.; Sohrabi, N. Groundwater quality assessment using entropy weighted water quality index (EWQI) in Lenjanat, Iran. Environ. Earth Sci. 2014, 72, 3479–3490. [Google Scholar] [CrossRef]
- Kamrani, S.; Rezaei, M.; Amiri, V.; Saberinasr, A. Investigating the efficiency of information entropy and fuzzy theories to classification of groundwater samples for drinking purposes: Lenjanat Plain, Central Iran. Environ. Earth Sci. 2016, 75. [Google Scholar] [CrossRef]
- Hyltoft Petersen, P.; Lund, F.; Fraser, C.G.; Sandberg, S.; Sölétormos, G. Valid analytical performance specifications for combined analytical bias and imprecision for the use of common reference intervals. Ann. Clin. Biochem. Int. J. Lab. Med. 2018, 55, 612–615. [Google Scholar] [CrossRef]
- Hao, J.; Zhang, Y.; Jia, Y.; Wang, H.; Niu, C.; Gan, Y.; Gong, Y. Assessing groundwater vulnerability and its inconsistency with groundwater quality, based on a modified DRASTIC model: A case study in Chaoyang District of Beijing City. Arab. J. Geosci. 2017, 10, 144. [Google Scholar] [CrossRef]
- Qian, C.; Wu, X.; Mu, W.-P.; Fu, R.-Z.; Zhu, G.; Wang, Z.-R.; Wang, D.-D. Hydrogeochemical characterization and suitability assessment of groundwater in an agro-pastoral area, Ordos Basin, NW China. Environ. Earth Sci. 2016, 75, 1356. [Google Scholar] [CrossRef]
- Binda, G.; Pozzi, A.; Livio, F. An integrated interdisciplinary approach to evaluate potentially toxic element sources in a mountainous watershed. Environ. Geochem. Health 2019, 42, 1255–1272. [Google Scholar] [CrossRef]
- Xu, P.; Feng, W.; Qian, H.; Zhang, Q. Hydrogeochemical Characterization and Irrigation Quality Assessment of Shallow Groundwater in the Central-Western Guanzhong Basin, China. Int. J. Environ. Res. Public Health 2019, 16, 1492. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Zhang, Q.; Qian, H.; Li, M.; Hou, K. Characterization of geothermal water in the piedmont region of Qinling Mountains and Lantian-Bahe Group in Guanzhong Basin, China. Environ. Earth Sci. 2019, 78. [Google Scholar] [CrossRef]
- Tian, Y.; Jiang, Y.; Liu, Q.; Dong, M.; Xu, D.; Liu, Y.; Xu, X. Using a water quality index to assess the water quality of the upper and middle streams of the Luanhe River, northern China. Sci. Total. Environ. 2019, 667, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Talib, M.A.; Tang, Z.; Shahab, A.; Siddique, J.; Faheem, M.; Fatima, M. Hydrogeochemical Characterization and Suitability Assessment of Groundwater: A Case Study in Central Sindh, Pakistan. Int. J. Environ. Res. Public Health 2019, 16, 886. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Qian, H.; Ren, W.; Wang, H.; Liu, F.; Yang, F. Hydrogeochemical characterization and quality assessment of groundwater based on integrated-weight water quality index in a concentrated urban area. J. Clean. Prod. 2020, 260, 121006. [Google Scholar] [CrossRef]
- Patil, V.B.B.; Pinto, S.M.; Govindaraju, T.; Hebbalu, V.S.; Bhat, V.; Kannanur, L.N. Multivariate statistics and water quality index (WQI) approach for geochemical assessment of groundwater quality—A case study of Kanavi Halla Sub-Basin, Belagavi, India. Environ. Geochem. Health 2020, 42, 2667–2684. [Google Scholar] [CrossRef] [PubMed]
- Hui, T.; Jizhong, D.; Shimin, M.; Zhuang, K.; Yan, G. Application of water quality index and multivariate statistical analysis in the hydrogeochemical assessment of shallow groundwater in Hailun, northeast China. Hum. Ecol. Risk Assess. Int. J. 2021, 27, 651–667. [Google Scholar] [CrossRef]
- Asare-Donkor, N.K.; Adimado, A.A. Groundwater quality assessment in the Northern and Upper East Regions of Ghana. Environ. Earth Sci. 2020, 79. [Google Scholar] [CrossRef]
- Ustaoglu, F.; Tepe, Y.; Taş, B. Assessment of stream quality and health risk in a subtropical Turkey river system: A combined approach using statistical analysis and water quality index. Ecol. Indic. 2020, 113, 105815. [Google Scholar] [CrossRef]
- Baghapour, M.A.; Shooshtarian, M.R.; Zarghami, M. Process Mining Approach of a New Water Quality Index for Long-Term Assessment under Uncertainty Using Consensus-Based Fuzzy Decision Support System. Water Resour. Manag. 2020, 34, 1155–1172. [Google Scholar] [CrossRef]
- Ghaffari, H.R.; Yunesian, M.; Nabizadeh, R.; Nasseri, S.; Pourfarzi, F.; Poustchi, H.; Sadjadi, A.; Eshraghian, A. Assessment of hydrogeochemical characteristics and quality of groundwater resources in relation to risk of gastric cancer: Comparative analysis of high- and low-risk areas in Iran. Environ. Geochem. Health 2021, 43, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Jehan, S.; Ullah, I.; Khan, S.; Muhammad, S.; Khattak, S.A.; Khan, T. Evaluation of the Swat River, Northern Pakistan, water quality using multivariate statistical techniques and water quality index (WQI) model. Environ. Sci. Pollut. Res. 2020, 27, 38545–38558. [Google Scholar] [CrossRef]
- Karunanidhi, D.; Aravinthasamy, P.; Subramani, T.; Muthusankar, G. Revealing drinking water quality issues and possible health risks based on water quality index (WQI) method in the Shanmuganadhi River basin of South India. Environ. Geochem. Health 2021, 43, 931–948. [Google Scholar] [CrossRef]
- Vaiphei, S.P.; Kurakalva, R.M.; Sahadevan, D.K. Water quality index and GIS-based technique for assessment of groundwater quality in Wanaparthy watershed, Telangana, India. Environ. Sci. Pollut. Res. 2020, 27, 45041–45062. [Google Scholar] [CrossRef] [PubMed]
- El Baba, M.; Kayastha, P.; Huysmans, M.; De Smedt, F. Evaluation of the Groundwater Quality Using the Water Quality Index and Geostatistical Analysis in the Dier al-Balah Governorate, Gaza Strip, Palestine. Water 2020, 12, 262. [Google Scholar] [CrossRef] [Green Version]
- Zolekar, R.B.; Todmal, R.S.; Bhagat, V.S.; Bhailume, S.A.; Korade, M.S.; Das, S. Hydro-chemical characterization and geospatial analysis of groundwater for drinking and agricultural usage in Nashik district in Maharashtra, India. Environ. Dev. Sustain. 2021, 23, 4433–4452. [Google Scholar] [CrossRef]
- Adimalla, N. Controlling factors and mechanism of groundwater quality variation in semiarid region of South India: An approach of water quality index (WQI) and health risk assessment (HRA). Environ. Geochem. Health 2020, 42, 1725–1752. [Google Scholar] [CrossRef]
- Al-Mashagbah, A.F. Assessment of Surface Water Quality of King Abdullah Canal, Using Physico-Chemical Characteristics and Water Quality Index, Jordan. J. Water Resour. Prot. 2015, 7, 339–352. [Google Scholar] [CrossRef] [Green Version]
- Chaurasia, A.K.; Pandey, H.K.; Tiwari, S.K.; Prakash, R.; Pandey, P.; Ram, A. Groundwater Quality assessment using Water Quality Index (WQI) in parts of Varanasi District, Uttar Pradesh, India. J. Geol. Soc. India 2018, 92, 76–82. [Google Scholar] [CrossRef]
- Kükrer, S.; Mutlu, E. Assessment of surface water quality using water quality index and multivariate statistical analyses in Saraydüzü Dam Lake, Turkey. Environ. Monit. Assess. 2019, 191, 71. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Tiwary, D.; Ohri, A.; Agnihotri, A.K. Assessment of groundwater quality using WQI and GIS near the Karsara municipal landfill site, Varanasi, India. Arab. J. Geosci. 2018, 11, 252. [Google Scholar] [CrossRef]
- Rabeiy, R.E. Assessment and modeling of groundwater quality using WQI and GIS in Upper Egypt area. Environ. Sci. Pollut. Res. 2018, 25, 30808–30817. [Google Scholar] [CrossRef] [PubMed]
- Hurley, T.; Sadiq, R.; Mazumder, A. Adaptation and evaluation of the Canadian Council of Ministers of the Environment Water Quality Index (CCME WQI) for use as an effective tool to characterize drinking source water quality. Water Res. 2012, 46, 3544–3552. [Google Scholar] [CrossRef]
- Muzenda, F.; Masocha, M.; Misi, S.N. Groundwater quality assessment using a water quality index and GIS: A case of Ushewokunze Settlement, Harare, Zimbabwe. Phys. Chem. Earth Parts A B C 2019, 112, 134–140. [Google Scholar] [CrossRef]
- Yu, C.; Yin, X.; Li, H.; Yang, Z. A hybrid water-quality-index and grey water footprint assessment approach for comprehensively evaluating water resources utilization considering multiple pollutants. J. Clean. Prod. 2020, 248, 119225. [Google Scholar] [CrossRef]
- Lodwick, W.A.; Monson, W.; Svoboda, L. Attribute error and sensitivity analysis of map operations in geographical informations systems: Suitability analysis. Int. J. Geogr. Inf. Syst. 1990, 4, 413–428. [Google Scholar] [CrossRef]
- Zhang, Q.; Qian, H.; Xu, P.; Hou, K.; Yang, F. Groundwater quality assessment using a new integrated-weight water quality index (IWQI) and driver analysis in the Jiaokou Irrigation District, China. Ecotoxicol. Environ. Saf. 2021, 212, 111992. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Guidelines for Drinking Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Soltani, A.A.; Bermad, A.; Boutaghane, H.; Oukil, A.; Abdalla, O.; Hasbaia, M.; Oulebsir, R.; Zeroual, S.; Lefkir, A. An integrated approach for assessing surface water quality: Case of Beni Haroun dam (Northeast Algeria). Environ. Monit. Assess. 2020, 192, 630. [Google Scholar] [CrossRef]
- Zhai, Y.; Wang, J.; Zhang, Y.; Teng, Y.; Zuo, R.; Huan, H. Hydrochemical and isotopic investigation of atmospheric precipitation in Beijing, China. Sci. Total. Environ. 2013, 456, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Pang, Z. Groundwater Recharge and Dynamics in Northern China: Implications for Sustainable Utilization of Groundwater. Procedia Earth Planet. Sci. 2013, 7, 369–372. [Google Scholar] [CrossRef] [Green Version]
- Xiong, G.-Y.; Chen, G.-Q.; Xu, X.-Y.; Liu, W.-Q.; Fu, T.-F.; Khokiattiwong, S.; Kornkanitnan, N.; Seddique, A.A.; Shi, X.-F.; Liu, S.-F.; et al. A comparative study on hydrochemical evolution and quality of groundwater in coastal areas of Thailand and Bangladesh. J. Asian Earth Sci. 2020, 195, 104336. [Google Scholar] [CrossRef]
pH | TDS | TH | Ca2+ | Na+ | Mg2+ | K+ | Fe3+ | Cl− | NO3-N | F− | NO2-N | R | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.013 | 0.038 | 0.056 | 0.016 | 0.023 | 0.016 | 0.015 | 0.021 | 0.027 | 0.136 | 0.375 | 0.184 | [37] | ||
0.083 | 0.104 | 0.042 | 0.042 | 0.083 | 0.042 | 0.021 | 0.083 | 0.021 | 0.104 | 0.104 | 0.083 | 0.083 | [38] | |
0.032 | 0.063 | 0.063 | 0.048 | 0.063 | 0.048 | 0.079 | 0.016 | 0.048 | 0.063 | 0.079 | 0.079 | [39] | ||
0.041 | 0.068 | 0.041 | 0.041 | 0.068 | 0.068 | 0.068 | 0.068 | 0.054 | [40] | |||||
0.069 | 0.069 | 0.023 | 0.023 | 0.069 | 0.068 | 0.114 | 0.114 | [41] | ||||||
0.070 | 0.040 | 0.138 | 0.076 | 0.053 | 0.127 | 0.191 | 0.058 | 0.063 | 0.038 | 0.098 | 0.024 | [37] | ||
0.093 | 0.080 | 0.096 | 0.120 | 0.134 | 0.098 | 0.082 | 0.375 | 0.121 | 0.360 | [42] | ||||
0.143 | 0.176 | 0.071 | 0.071 | 0.107 | 0.071 | 0.071 | 0.071 | 0.107 | 0.107 | [43] | ||||
0.080 | 0.110 | 0.060 | 0.060 | 0.080 | 0.060 | 0.020 | 0.080 | 0.110 | 0.110 | 0.110 | [44] | |||
0.103 | 0.064 | 0.026 | 0.077 | 0.026 | 0.026 | 0.077 | 0.051 | 0.077 | 0.128 | [45] | ||||
0.071 | 0.071 | 0.071 | 0.048 | 0.071 | 0.048 | 0.048 | 0.048 | 0.095 | 0.095 | 0.119 | 0.119 | [11] | ||
0.050 | 0.050 | 0.020 | 0.040 | 0.020 | 0.020 | 0.020 | 0.070 | 0.100 | [44] | |||||
0.114 | 0.114 | 0.057 | 0.086 | 0.057 | 0.057 | 0.029 | 0.114 | 0.143 | [9] | |||||
0.093 | 0.116 | 0.070 | 0.047 | 0.023 | 0.047 | 0.070 | 0.093 | 0.070 | 0.116 | 0.116 | [46] | |||
0.103 | 0.172 | 0.069 | 0.103 | 0.069 | 0.034 | 0.069 | 0.103 | 0.103 | 0.172 | [47] | ||||
0.068 | 0.114 | 0.045 | 0.068 | 0.114 | 0.068 | 0.045 | 0.023 | 0.114 | 0.114 | 0.114 | 0.114 | [48] | ||
0.110 | 0.060 | 0.060 | 0.060 | 0.030 | 0.080 | 0.110 | 0.080 | 0.140 | 0.110 | [49] | ||||
0.031 | 0.031 | 0.031 | 0.031 | 0.063 | 0.031 | 0.031 | 0.094 | 0.031 | 0.031 | 0.031 | 0.063 | 0.063 | [50] | |
0.070 | 0.023 | 0.023 | 0.070 | 0.070 | 0.116 | 0.116 | [51] | |||||||
0.069 | 0.063 | 0.063 | 0.070 | 0.084 | 0.070 | 0.070 | 0.126 | [52] | ||||||
0.094 | 0.094 | 0.063 | 0.063 | 0.063 | 0.125 | 0.063 | 0.125 | 0.094 | [53] | |||||
0.135 | 0.108 | 0.054 | 0.054 | 0.027 | 0.135 | 0.108 | 0.081 | 0.135 | 0.108 | [54] |
Season | IWQI Rank | <25 | 25–50 | 50–75 | 75–100 | >100 |
---|---|---|---|---|---|---|
Water Quality | Excellent (Ⅰ) | Good (Ⅱ) | Medium (Ⅲ) | Poor (Ⅳ) | Extremely Poor (Ⅴ) | |
Dry season | No. of sample | 0 | 13 | 10 | 4 | 1 |
Percentage (%) | 0.00 | 46.43 | 35.71 | 14.29 | 3.57 | |
Wet season | No. of sample | 1 | 13 | 9 | 4 | 1 |
Percentage (%) | 3.57 | 46.43 | 32.14 | 14.29 | 3.57 |
Indexes | Dry Season | Wet Season | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | SD | % of SES | Min | Max | Mean | SD | % of SES | |
pH | 7.01 | 8.13 | 7.57 | 0.25 | 0.00 | 7.04 | 8.62 | 7.69 | 0.33 | 3.57 |
TDS | 248 | 1040 | 527.75 | 196.03 | 3.57 | 165 | 993 | 495.29 | 194.41 | 0.00 |
TH | 88 | 711 | 373.64 | 153.45 | 35.71 | 70 | 633 | 344.32 | 147.37 | 32.14 |
Ca2+ | 22.3 | 194 | 87.84 | 39.44 | 0.00 | 18.6 | 170 | 80.07 | 35.88 | 0.00 |
Na+ | 19.1 | 118 | 49.58 | 21.69 | 0.00 | 10.2 | 110 | 46.65 | 21.62 | 0.00 |
Mg2+ | 7.89 | 56.6 | 37.48 | 13.98 | 0.00 | 5.74 | 56.2 | 35.04 | 14.58 | 0.00 |
K+ | 0.46 | 3.34 | 1.95 | 0.63 | 0.00 | 0.44 | 3.11 | 1.86 | 0.56 | 0.00 |
Fe3+ | 0.02 | 16 | 0.19 | 0.41 | 14.29 | 0.01 | 0.15 | 0.02 | 0.03 | 0.00 |
200 | 587 | 327.89 | 90.83 | 82.14 | 110 | 563 | 318.86 | 96.26 | 82.14 | |
SO42− | 35.9 | 162 | 79.88 | 30.58 | 0.00 | 30.9 | 165 | 77.41 | 31.91 | 0.00 |
Cl− | 12.1 | 154 | 76.17 | 47.64 | 0.00 | 7.34 | 155 | 69.67 | 46.44 | 0.00 |
NO3-N | 0.258 | 22.6 | 6.36 | 6.21 | 3.57 | 0.018 | 20.3 | 5.16 | 5.77 | 3.57 |
F− | 0.135 | 0.753 | 0.32 | 0.10 | 0.00 | 0.087 | 0.795 | 0.34 | 0.12 | 0.00 |
NO2-N | 0.0003 | 0.0003 | 0.0003 | 0.00 | 0.00 | 0.0003 | 0.0142 | 0.0022 | 0.00 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Jia, R.; Wu, J.; Wang, H.; Luo, Z. Evaluation of Groundwater Using an Integrated Approach of Entropy Weight and Stochastic Simulation: A Case Study in East Region of Beijing. Int. J. Environ. Res. Public Health 2021, 18, 7703. https://doi.org/10.3390/ijerph18147703
Zhang Y, Jia R, Wu J, Wang H, Luo Z. Evaluation of Groundwater Using an Integrated Approach of Entropy Weight and Stochastic Simulation: A Case Study in East Region of Beijing. International Journal of Environmental Research and Public Health. 2021; 18(14):7703. https://doi.org/10.3390/ijerph18147703
Chicago/Turabian StyleZhang, Yongxiang, Ruitao Jia, Jin Wu, Huaqing Wang, and Zhuoran Luo. 2021. "Evaluation of Groundwater Using an Integrated Approach of Entropy Weight and Stochastic Simulation: A Case Study in East Region of Beijing" International Journal of Environmental Research and Public Health 18, no. 14: 7703. https://doi.org/10.3390/ijerph18147703
APA StyleZhang, Y., Jia, R., Wu, J., Wang, H., & Luo, Z. (2021). Evaluation of Groundwater Using an Integrated Approach of Entropy Weight and Stochastic Simulation: A Case Study in East Region of Beijing. International Journal of Environmental Research and Public Health, 18(14), 7703. https://doi.org/10.3390/ijerph18147703