Omega-3 Index and Clinical Outcomes of Severe COVID-19: Preliminary Results of a Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Simonnet, A.; Chetboun, M.; Poissy, J.; Raverdy, V.; Noulette, J.; Duhamel, A.; Labreuche, J.; Mathieu, D.; Pattou, F.; Jourdain, M. High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity 2020, 28, 1195–1199. [Google Scholar] [CrossRef]
- O’Driscoll, M.; Dos Santos, G.R.; Wang, L. Age-specific mortality and immunity patterns of SARS-CoV-2. Nature 2021, 590, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Tan, Y.; Ling, Y.; Lu, G.; Liu, F.; Yi, Z.; Jia, X.; Wu, M.; Shi, B.; Xu, S.; et al. Viral and host factors related to the clinical outcome of COVID-19. Nat. Cell Biol. 2020, 583, 437–440. [Google Scholar] [CrossRef]
- Michalakis, K.; Ilias, I. SARS-Cov-2 infection and obesity: Common inflamatory and metabolic aspects. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 19–22. [Google Scholar] [CrossRef] [PubMed]
- Tay, M.Z.; Poh, C.M.; Rénia, L.; Macary, P.A.; Ng, L.F.P. The trinity of COVID-19: Immunity, inflammation and intervention. Nat. Rev. Immunol. 2020, 20, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, B.; Sharma, L.; Roberts, L. Severe SARS-CoV-2 infection in humans is defined by a shift in the serum lipidome resulting in dysregulation of eicosanoid immune mediators. medRxiv 2020. [Google Scholar] [CrossRef]
- Serhan, C.N.; Chiang, N.; Dalli, J. The resolution code of acute inflammation: Novel pro-resolving lipid mediators in resolution. Semin. Immunol. 2015, 27, 200–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duvall, M.G.; Levy, B.D. Airway Inflammation. Chest 1998, 114, 290S. [Google Scholar]
- Oni, O.; Papazafeiropoulou, A. A socio-technical approach to broadband diffusion by SMEs. Int. J. Knowl. Manag. Stud. 2008, 2, 335. [Google Scholar] [CrossRef] [Green Version]
- Calder, P.C. Omega-3 fatty acids and inflammatory processes: From molecules to man. Biochem. Soc. Trans. 2017, 45, 1105–1115. [Google Scholar] [CrossRef] [Green Version]
- Stark, K.D.; Van Elswyk, M.E.; Higgins, M.R.; Weatherford, C.A.; Salem, N. Global survey of the omega-3 fatty acids, docosahexaenoic acid and eicosapentaenoic acid in the blood stream of healthy adults. Prog. Lipid Res. 2016, 63, 132–152. [Google Scholar] [CrossRef] [PubMed]
- Thuppal, S.V.; Von Schacky, C.; Harris, W.S.; Sherif, K.D.; Denby, N.; Steinbaum, S.R.; Haycock, B.; Bailey, R.L. Discrepancy between Knowledge and Perceptions of Dietary Omega-3 Fatty Acid Intake Compared with the Omega-3 Index. Nutrients 2017, 9, 930. [Google Scholar] [CrossRef] [PubMed]
- Serhan, C.N. Novel Pro-Resolving Lipid Mediators in Inflammation Are Leads for Resolution Physiology. Nature 2014, 510, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Krishnamoorthy, N.; Abdulnour, R.-E.E.; Walker, K.H.; Engstrom, B.D.; Levy, B.D. Specialized Proresolving Mediators in Innate and Adaptive Immune Responses in Airway Diseases. Physiol. Rev. 2018, 98, 1335–1370. [Google Scholar] [CrossRef] [PubMed]
- Leuti, A.; Maccarrone, M.; Chiurchiù, V. Proresolving Lipid Mediators: Endogenous Modulators of Oxidative Stress. Oxid. Med. Cell. Longev. 2019, 2019, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Amengual, O.; Atsumi, T. COVID-19 pandemic in Japan. Rheumatol. Int. 2021, 41, 1–5. [Google Scholar] [CrossRef]
- Kim, S.W.; Kim, S.M.; Kim, Y.K. Clinical Characteristics and Outcomes of COVID-19 Cohort Patients in Daegu Metropolitan City Outbreak in 2020. J. Korean Med. Sci. 2021, 36, 1–15. [Google Scholar]
- Block, R.C.; Harris, W.S.; Pottala, J.V. Clinical Investigation: Determinants of Blood Cell Omega-3 Fatty Acid Content. Open Biomark. J. 2008, 1, 1–6. [Google Scholar] [CrossRef]
- Walker, R.E.; Jackson, K.H.; Tintle, N.L.; Shearer, G.C.; Bernasconi, A.; Masson, S.; Latini, R.; Heydari, B.; Kwong, R.Y.; Flock, M.; et al. Predicting the effects of supplemental EPA and DHA on the omega-3 index. Am. J. Clin. Nutr. 2019, 110, 1034–1040. [Google Scholar] [CrossRef]
- Von Schacky, C. Omega-3 index and cardiovascular health. Nutrients 2014, 6, 799–814. [Google Scholar] [CrossRef]
- Bozzatello, P.; Rocca, P.; Mantelli, E.; Bellino, S. Polyunsaturated Fatty Acids: What is Their Role in Treatment of Psychiatric Disorders? Int. J. Mol. Sci. 2019, 20, 5257. [Google Scholar] [CrossRef] [Green Version]
- Larrieu, T.; Layé, S. Food for Mood: Relevance of Nutritional Omega-3 Fatty Acids for Depression and Anxiety. Front. Physiol. 2018, 9, 1047. [Google Scholar] [CrossRef]
- Bäck, M.; Hansson, G.K. Omega-3 fatty acids, cardiovascular risk, and the resolution of inflammation. FASEB J. 2019, 33, 1536–1539. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.P.; Aggarwal, K.K.; Zhang, P.Y. Omega-3 fatty acids and cardiovascular disease. Eur. Rev. Med. Phanmacol. Sci. 2015, 19, 441–445. [Google Scholar]
- Itomura, M.; Fujioka, S.; Hamazaki, K.; Kobayashi, K.; Nagasawa, T.; Sawazaki, S.; Kirihara, Y.; Hamazaki, T. Factors influencing EPA+DHA levels in red blood cells in Japan. Vivo 2008, 22, 131–136. [Google Scholar]
- Asher, A.; Tintle, N.L.; Myers, M.; Lockshon, L.; Bacareza, H.; Harris, W.S. Blood omega-3 fatty acids and death from COVID-19: A pilot study. Prostaglandins Leukot. Essent. Fat. Acids 2021, 166, 102250. [Google Scholar] [CrossRef] [PubMed]
- Jackson, K.; Polreis, J.; Tintle, N.; Kris-Etherton, P.; Harris, W. Association of reported fish intake and supplementation status with the omega-3 index. Prostaglandins Leukot. Essent. Fat. Acids 2019, 142, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Hǎdǎruga, D.I.; Ünlüsayin, M.; Gruia, A.T. Thermal and oxidative stability of Atlantic salmon oil (Salmo salar L.) and complexation with β-cyclodextrin. Beilstein. J. Org. Chem. 2016, 12, 179–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhardwaj, S.; Passi, S.J.; Misra, A.; Pant, K.; Anwar, K.; Pandey, R.; Kardam, V. Effect of heating/reheating of fats/oils, as used by Asian Indians, on trans fatty acid formation. Food Chem. 2016, 212, 663–670. [Google Scholar] [CrossRef]
- Arnardottir, H.; Pawelzik, S.-C.; Wistbacka, U.Ö.; Artiach, G.; Hofmann, R.; Reinholdsson, I.; Braunschweig, F.; Tornvall, P.; Religa, D.; Bäck, M. Stimulating the Resolution of Inflammation Through Omega-3 Polyunsaturated Fatty Acids in COVID-19: Rationale for the COVID-Omega-F Trial. Front. Physiol. 2021, 11, 624657. [Google Scholar] [CrossRef]
- Weill, P.; Plissonneau, C.; Legrand, P. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company ’ s public news and information. Biochimie 2020, 179, 275–280. [Google Scholar] [CrossRef]
- Doaei, S.; Gholami, S.; Rastgoo, S.; Gholamalizadeh, M.; Bourbour, F.; Bagheri, S.E.; Samipoor, F.; Akbari, M.E.; Shadnoush, M.; Ghorat, F.; et al. The effect of omega-3 fatty acid supplementation on clinical and biochemical parameters of critically ill patients with COVID-19: A randomized clinical trial. J. Transl. Med. 2021, 19, 1–9. [Google Scholar] [CrossRef]
- Harris, W.S. The Omega-6:Omega-3 ratio: A critical appraisal and possible successor. Prostaglandins Leukot. Essent. Fat. Acids 2018, 132, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Fritsche, K.L. The Science of Fatty Acids and Inflammation. Adv. Nutr. 2015, 6, 293S–301S. [Google Scholar] [CrossRef]
- Chiurchiù, V.; Leuti, A.; Maccarrone, M. Bioactive Lipids and Chronic Inflammation: Managing the Fire Within. Front. Immunol. 2018, 9, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shakoor, H.; Feehan, J.; Al Dhaheri, A.S.; Ali, H.I.; Platat, C.; Ismail, L.C.; Apostolopoulos, V.; Stojanovska, L. Immune-boosting role of vitamins D, C, E, zinc, selenium and omega-3 fatty acids: Could they help against COVID-19? Maturial 2021, 143, 1–9. [Google Scholar] [CrossRef] [PubMed]
Qualitative Variable | Categories | Number | Percentage |
---|---|---|---|
Sex | Male | 39 | 52.7 |
Female | 35 | 47.3 | |
Co morbidities * | Hypertension | 35 | 47.3 |
Diabetes | 27 | 36.5 | |
Asthma, chronic lung disease | 12 | 16.2 | |
Chronic kidney disease | 5 | 6.8 | |
Heart disease | 5 | 6.8 | |
Immunosuppressive treatment | 2 | 2.7 | |
HIV/AIDS | 1 | 1.4 | |
Cancer | 0 | 0.0 | |
Tobacco consumption | 6 | 8.1 | |
Symptoms of COVID-19 | Respiratory distress | 70 | 94.6 |
Fatigue | 44 | 59.5 | |
Cough | 37 | 50.0 | |
Fever | 31 | 41.9 | |
Muscular pain | 23 | 31.1 | |
Headache | 8 | 10.8 | |
Throat pain | 5 | 6.8 | |
Chest pain | 4 | 5.4 | |
Loss of smell | 3 | 4.1 | |
Loss of taste | 3 | 4.1 | |
Abdominal pain or diarrhea | 2 | 2.7 | |
Mechanical ventilation required | 43 | 58.1 | |
Death | 14 | 18.9 | |
Quantitative variable | Mean ± Standard deviation | Minimum | Maximum |
Age | 59.68 ± 13.6 | 21 | 82 |
Body Mass Index | 29.47 ± 6.14 | 20 | 44.5 |
Oximetry | 87% ± 7.2% | 58.00% | 98.00% |
Days of hospital stay | 21.5 ± 12.39 | 3 | 68 |
Omega-3 Index | 4.15% ± 0.69% | 3.06% | 6.14% |
Categorical by O3 Index Quartile | Q1: ≤3.56% (n = 19) [n (%)] | Q2: 3.57–4.15% (n = 18) [n (%)] | Q3: 4.16–4.52% (n = 19) [n (%)] | Q4: ≥4.53% (n = 18) [n (%)] | Total Mean ± SD [n (%)] | |
---|---|---|---|---|---|---|
Age | (Mean ± SD) | 60.3 ± 11.9 | 57.6 ± 11.1 | 60.0 ± 15.5 | 60.8 ± 15.9 | 59.68 ± 13.6 |
Sex | (Male) | 12 (63.2) | 10 (55.6) | 7 (36.8) | 10 (55.6) | 39 (52.7) |
BMI | (Mean ± S.D.) | 26.6 ± 5.5 | 30.8 ± 5.9 | 30.9 ± 6.5 | 29.5 ± 6.3 | 29.47 ± 6.14 |
Tobacco consumption | 4 (21.1) | 1 (5.6) | 1 (5.3) | 0.0 | 6 (8.1) | |
Diabetes | 5 (26.3) | 9 (50.0) | 6 (31.6) | 7 (38.9) | 27 (36.5) | |
Hypertension | 6 (31.6) | 9 (50.0) | 10 (52.6) | 10 (55.6) | 35 (47.3) | |
Asthma or chronic lung disease | 2 (10.5) | 1 (5.6) | 3 (15.8) | 6 (33.3) | 12 (16.2) | |
Fish consumption | ||||||
Two or more times a week | 4 (21.0) | 3 (16.7) | 3 (15.8) | 2 (11.1) | 13 (17.6) | |
Less than two times a week | 13 (63.2) | 10 (55.6) | 14 (63.2) | 13 (72.2) | 50 (67.5) | |
Does not consume | 2 (10.5) | 4 (22.2) | 2 (10.5) | 3 (16.7) | 11 (14.9) | |
Type of fish consumed | ||||||
Salmon, mackerel, saw (Over 300 mg O3/100 g) | 4 (21.1) | 6 (33.3) | 3 (15.8) | 5 (27.8) | 18 (24.3) | |
Tuna, hake, croaker, pippin (200–300 mg O3/100 g) | 13 (68.4) | 8 (44.4) | 14 (73.7) | 10 (55.6) | 45 (60.1) | |
Does not consume | 2 (10.5) | 4 (22.2) | 2 (10.5) | 3 (16.7) | 11 (14.9) | |
Method of cooking fish | ||||||
Oven, griddle, pot, canned, raw | 10 (52.7) | 5 (27.8) | 10 (52.7) | 6 (33.3) | 31 (41.9) | |
Fried | 7 (36.8) | 9 (50.0) | 7 (36.9) | 9 (50.0) | 32 (43.2) | |
Does not consume | 2 (10.5) | 4 (22.2) | 2 (10.5) | 3 (16.7) | 11 (14.9) | |
O3 supplement consumption | 0.0 | 0.0 | 1 (5.3) | 2 (11.1) | 3 (4.1%) | |
Mechanical ventilation | 14 (73.7) | 12 (66.6) | 11 (57.9) | 6 (33.3) | 43 (58.1) | |
Death | 7 (36.8) | 1 (5.6) | 5 (26.3) | 1 (5.6) | 14 (18.9) |
OR | C.I. | p * | |
---|---|---|---|
Risk of MV for the lowest O3I quartile (<3.57%) compared to higher quartiles | 1.348 | 0.925–1.964 | 0.183 |
Risk of death for the lowest O3I quartile (<3.57%) compared to higher quartiles | 3.111 | 1.261–7.676 | 0.032 |
Reduction in the risk of MV for the highest O3I quartile (>4.51%) compared to the lowest quartile | 0.257 | 0.083–0.791 | 0.026 |
Reduction in the risk of death for the highest O3I quartile of (>4.51%) compared to the lowest quartile | 0.195 | 0.024–1.605 | 0.165 |
Clinical Outcome | Unadjusted Model | Adjusted by Age and Sex | Adjusted by Age, Sex, Comorbidities, BMI and Tobacco Use | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
OR | C.I. | p | OR | C.I. | p | OR | C.I. | p | |||
Mechanical | 0.48 | 0.233–0.987 | 0.046 | Full model | 0.469 | 0.227–0.969 | 0.041 | Full model | 0.459 | 0.211–0.997 | 0.049 |
ventilation | Age (years) | 0.993 | 0.958–1.029 | 0.680 | Age (years) | 0.998 | 0.957–1.042 | 0.945 | |||
Sex (male) | 2.206 | 0.834–5.836 | 0.111 | Sex (male) | 2.327 | 0.834–6.493 | 0.107 | ||||
Diabetes | 1.061 | 0.340–3.314 | 0.919 | ||||||||
Hypertension | 0.599 | 0.183–1.966 | 0.398 | ||||||||
COPD | 1.179 | 0.272–5.106 | 0.826 | ||||||||
BMI | 0.993 | 0.910–1.084 | 0.881 | ||||||||
Tobacco | 1.252 | 0.152–10.330 | 0.834 | ||||||||
Death | 0.37 | 0.128–1.071 | 0.067 | Full model | 0.299 | 0.092–0.976 | 0.046 | Full model | 0.28 | 0.08–0.985 | 0.047 |
Age (years) | 1.070 | 1.009–1.138 | 0.025 | Age (years) | 1.083 | 1.013–1.158 | 0.019 | ||||
Sex (male) | 1.689 | 0.466–6.129 | 0.425 | Sex (male) | 1.842 | 0.453–7.496 | 0.394 | ||||
Diabetes | 1.367 | 0.306–6.104 | 0.682 | ||||||||
Hypertension | 0.408 | 0.09–1.482 | 0.244 | ||||||||
COPD | 2.388 | 0.391–14.599 | 0.346 | ||||||||
BMI | 1.044 | 0.931–1.172 | 0.462 | ||||||||
Tobacco | 0.883 | 0.063–12.282 | 0.412 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zapata B., R.; Müller, J.M.; Vásquez, J.E.; Ravera, F.; Lago, G.; Cañón, E.; Castañeda, D.; Pradenas, M.; Ramírez-Santana, M. Omega-3 Index and Clinical Outcomes of Severe COVID-19: Preliminary Results of a Cross-Sectional Study. Int. J. Environ. Res. Public Health 2021, 18, 7722. https://doi.org/10.3390/ijerph18157722
Zapata B. R, Müller JM, Vásquez JE, Ravera F, Lago G, Cañón E, Castañeda D, Pradenas M, Ramírez-Santana M. Omega-3 Index and Clinical Outcomes of Severe COVID-19: Preliminary Results of a Cross-Sectional Study. International Journal of Environmental Research and Public Health. 2021; 18(15):7722. https://doi.org/10.3390/ijerph18157722
Chicago/Turabian StyleZapata B., Rodrigo, José Miguel Müller, Juan Enrique Vásquez, Franco Ravera, Gustavo Lago, Eduardo Cañón, Daniella Castañeda, Madelaine Pradenas, and Muriel Ramírez-Santana. 2021. "Omega-3 Index and Clinical Outcomes of Severe COVID-19: Preliminary Results of a Cross-Sectional Study" International Journal of Environmental Research and Public Health 18, no. 15: 7722. https://doi.org/10.3390/ijerph18157722
APA StyleZapata B., R., Müller, J. M., Vásquez, J. E., Ravera, F., Lago, G., Cañón, E., Castañeda, D., Pradenas, M., & Ramírez-Santana, M. (2021). Omega-3 Index and Clinical Outcomes of Severe COVID-19: Preliminary Results of a Cross-Sectional Study. International Journal of Environmental Research and Public Health, 18(15), 7722. https://doi.org/10.3390/ijerph18157722